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Abstract. In this paper, we consider the problem of stabilizing the kine-
matic model of a car to a general path in the plane, subject to very mild
restrictions. The car model, although rather simpli�ed, contains some of
the most relevant limitations that make application of existing results
in the literature impossible: namely, the car can only move forward, and
turn with a bounded steering radius; also, only limited sensory informa-
tion is available.
The approach we follow to stabilization is to adapt to the present gen-
eral case an optimal synthesis approach successfully applied in our pre-
vious work to tracking rectilinear paths. Due to both the nature of the
problem, and the solution technique used, the analysis of the controlled
system involves a rather complex switching logic. Hybrid formalism and
veri�cation techniques prove extremely useful in this context to formally
proof stability of the resulting system, and are described in detail in the
paper.

1 Introduction

In this paper we consider the design of a control law for path tracking by a
so{called Dubins' model of a car. Dubins' cars are kinematic models of wheeled
(nonholonomic) vehicles that move only forward in a plane, and possess a lower{
bounded turning radius. The model is relevant to the kinematics of road vehicles
as well as aircraft cruising at constant altitude, or sea vessels.

Although the design of control techniques for nonholonomic vehicles has been
the subject of extensive research recently (see e.g. [10, 12, 6]), the additional
constraint that the steering radius of the vehicle is lower bounded has not been
explicitly considered. However, such a restriction appears to be crucial in making
a kinematic model of a car relevant to real{world vehicles encountered in most
applications. Another important assumption often used in the literature is that
the full state of the system is available for measurement, and that the path to
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be tracked is entirely known in advance. Instead, we consider in this paper the
more realistic and less demanding case that the vehicle can only measure its
current distance and heading angle error with respect to the closest point on
the reference path in the plane, where only the sign of the path curvature is
detected.

The approach we follow to stabilization of Dubins' cars is to adapt to the
present general case an optimal synthesis approach successfully applied in our
previous work to tracking rectilinear paths [11]. Due to both the nature of the
problem, the type of sensors, and the solution technique used, the analysis of the
controlled system involves a rather complex switching logic. Hybrid formalism
(see [5, 14, 2]) and veri�cation techniques (see [8, 7, 1]) prove extremely useful in
this context to formally proof stability of the resulting system, and are described
in detail in the paper, which is organized as follows.

In Section 2, a hybrid automaton that describes the motion of the vehicle
with respect to the path is introduced, while in Section 3 the path{tracking con-
troller is developed. Such controller, described in detail in Section 3.2, is obtained
by considering a local approximation of the desired path with the tangent line,
and by using a feedback controller designed for stabilization on straight paths
(reported in Section 3.1). The advantages of the novel hybrid path{tracking
formalization are exploited in Section 4, where the stability properties of the
proposed controller are investigated. By a reachability analysis in the continu-
ous state space, a �nite state abstract representation of the hybrid closed{loop
automaton is obtained. Though this representation is not a bisimulation, but
rather a simulation, of the hybrid automaton ([5]), it suÆces to prove the sta-
bility properties of the proposed control. It is shown that the proposed hybrid
feedback controller achieves stabilization of the Dubins' car on a generic reference
path and suÆcient conditions for global attractivity are derived.

2 Hybrid path tracking modeling using switching Frenet

frames

We consider the kinematic model of a car-like robot moving forward on a plane,
which was introduced by Dubins in [4]. A con�guration of the vehicle is de�ned
by an ordered pair (M(x; y); �) 2 IR2� S1, where (x; y) are the coordinates of a
reference point M in the plane and � is the angle made by the direction of the
robot with respect to the x-axis. The kinematics of the car are described by8<

:
_x = V cos �
_y = V sin �
_� = !

with j!j <
V

R
(1)

where V is the constant forward velocity, ! the is turning speed and the input
constraint models a lower bound R > 0 on the turning radius of the car.

The problem we are concerned with is that of steering the vehicle to a given
feasible path � , de�ned in the arclength parametrization by

� =
�
(x̂; ŷ) 2 IR2 j (x̂; ŷ) = ĝ(�) for � 2 IR

	
(2)
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Fig. 1. Reference path and transformed coordinates.

with the following conditions:

A) ĝ(�) is a class C1 mapping from IR to IR2 and the orientation of � is that
induced by increasing. �;

B) Denoting by �(�) the curvature of � at ĝ(�) for all � 2 IR where it is well{
de�ned and setting �(�) = lims!�� �(s), when �(�) is not well{de�ned,
there exists a positive real R� such that the normalized curvature �̂(s) �
R�(s) satis�es

j�̂(�)j = Rj�(�)j �
R

R�

� C < 1: (3)

C) Considering the open neighborhood of the path

T� =
�
x 2 IR2 : 9� 2 IR; kx� ĝ(�)k < R�

	
� IR2; (4)

for all x 2 T� there exists a unique nearest point on � .

In order to describe the motion of the vehicle with respect to the reference path �
a mobile Frenet's frame associated to the curve � is considered. Given a vehicle
position M(x; y) 2 T� , the Frenet's frame ST (s)js=�� is de�ned by the tangent,

the principal normal and the binormal axes of the curve at the point (x̂( ��); ŷ( ��))
of � , located at the minimum distance1 from M(x; y) (see Figure 1). As the
vehicle moves with velocity V , the Frenet's frame ST (s) follows its motion so
as to keep it on the principal normal axis. The arclength abscissa s locates the
current Frenet's frame. The tangent and the principal normal axes of ST (s)
remain within the plane containing the curve, while the binormal axis points
either upwards, if the local curvature of � is counterclockwise (i.e. �(s) > 0),
or downwards, if the local curvature is clockwise (i.e. �(s) < 0). Introduce the
transformated coordinates (s; ~y; ~�), where:

{ abscissa s de�nes the position of the Frenet's frame along the curve;

1 Note that, by assumptions A), B) and C) the Frenet's frame is well-de�ned along
� .
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downwards
�̂(s) < 0

~y := �~y ~� := �~�

�̂(s) > 0

~y := �~y ~� := �~�

_s =
cos(~�)j�̂(s)j

1� ~yj�̂(s)j
V

_~y = sin(~�)
V

R

_~� = �
cos(~�)j�̂(s)j

1� ~yj�̂(s)j

V

R
� !

_s =
cos(~�)j�̂(s)j

1� ~yj�̂(s)j
V

_~y = sin(~�)
V

R

_~� = �
cos(~�)j�̂(s)j

1� ~yj�̂(s)j

V

R
+ !

upwards

Fig. 2. Hybrid automaton PTHA3 modeling the car in the transformed state space.

{ ~y denotes the position of the robot along the principal normal of ST (s)
(lateral distance) normalized with respect to the minimum turning radius
R;

{ ~� denotes its orientation with respect to the tangent axis of ST (s) (heading
angle error), with sign taken according to the local direction of the binormal
axis (see Figure 1).

It can be noticed that this coordinate system is similar to the one used by
Samson [9], except for the switchings of the Frenet's frame. In fact, a change
of curvature along the path produces a jump of the variables ~y and ~� to the
symmetric point with respect to the origin in the (~y; ~�){plane. The reason for
introducing such discontinuity in the model is related to the di�erent behaviors
that a vehicle with bounded curvature has when it approaches a reference path.
Indeed, the approach is apparently easier if the vehicle and the center of cur-
vature of the path lie on the opposite sides of the curve2. This formulation will
turn out to be useful in the veri�cation of the proposed path tracking controller.

The motion of the robot in the transformed state (s; ~y; ~�)T can be described
by using the formalism of hybrid automata (see [5, 3]). The discrete nature of the
model arises from the fact that the Frenet's frame ST (s) changes its orientation
during the motion, depending on the sign of the curvature �̂(s). The discrete
state, referred to as bin , assumes values in the set fupwards; downwardsg,
where upwards and downwards stands, respectively, for a upwards and down-
wards binormal axis of ST (s(t)), at time t. The initial mode bin is: upwards, if
�̂(s(0)) > 0; downwards, if �̂(s(0)) < 0; and any of those, otherwise. The dy-
namics the continuous states are subject to, in any open interval of time where
the sign of �̂(s(t)) does not change, are obtained by geometric arguments. The
complete Path{Tracking Hybrid Automaton, referred to as PTHA3 , is depicted
in Figure 2.

The speci�cation for the design of a path tracking controller for the Dubins'
car can be formulated using the hybrid automaton PTHA3 , which captures the

2 For instance, if the vehicle is required to approach a circle with curvature 1=R, then
it can approach it only from outside.
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Fig. 3. Hybrid automaton PTHA2 of the vehicle in the reduced state space.

di�erent behaviors of the bounded{curvature vehicle in approaching the path.
For such hybrid model, the problem reduces to that one of steering (~y; ~�) to
(0; 0).

Assuming that only the sign of �̂(s) is available but not its amplitude, a
reduced hybrid automaton can be considered for the path tracking problem.
The local curvature j�̂(s)j is replaced by an unknown input disturbance d(t) the
path tracking controller has to be robust to. By (3), disturbance d(t) satis�es

0 � d(t) � C < 1: (5)

The path tracking problem is described in the reduced continuous state space
(~y; ~�). Curvature sign switching conditions �̂(s) > 0 and �̂(s) < 0 are modeled
by a discrete uncontrollable input �r assuming either switch (when a change
of curvature sign occurs) or the silent move � (otherwise). The reduced hybrid
automaton, referred to as PTHA2 , is reported in Figure 3.

In this case the path tracking problem is formulated as follows:

Problem 1. Let � as in (2) be a feasible reference path. Given the hybrid au-
tomaton PTHA2 , �nd a feedback control law !(bin; (~y; ~�)) satisfying curvature

constraint (1) such that, from any initial state (bin0; (~y0; ~�0)) the trajectory
(~y(t); ~�(t)) converges to the origin under the action of any unknown disturbance
d(t), bounded as in (5), and any sequence of uncontrollable events �r.

3 Hybrid path{tracking feedback controller

3.1 Optimal feedback control for line tracking

In [11], the problem of driving the Dubins' car to a straight path has been
considered. An optimal feedback control that minimizes the length travelled by
the vehicle to reach the speci�ed path was deviced. De�ne �N (~y; ~�) = ~y + 1 +
cos(~�) and �P (~y; ~�) = ~y � 1 � cos(~�). The optimal feedback control presented
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in [11] is de�ned inside the region

D(~y;~�) =

8>>>><
>>>>:

�N (~y; ~�) < 0 ^ ~� 2 [�; 32�) _
�P (~y; ~�) � 0 ^ ~� 2 (�2 ; �) _
~� 2 [��

2 ;
�
2 ] _

�N (~y; ~�) � 0 ^ ~� 2 [��;��
2 ) _

�P (~y; ~�) > 0 ^ ~� 2 (� 3
2�;��)

(6)

in the state space (~y; ~�), which, modulo 2� angles on ~�, corresponds to the whole
space (see Figure 5). The optimal controller is described by three modes,


0 = sr [ sl [O; 
� = r [ rsr [ rsl [ rl(1) [ rl(2); 
+ = l [ lsr [ lsl [ lr(1) [ lr(2); O = f(0; 0)g
r=r(1) [ r(1) [ r(3), lr(1)= lr(1:1) [ lr(1:2) [ lr(1:3), lsr= lsr(1) [ lsr(2), rsr=rsr(1) [ rsr(2)

l= l(1) [ l(1) [ l(3), rl(1)= rl(1:1) [ rl(1:2) [ rl(1:3), rsl=rsl(1) [ rsl(2), lsl= lsl(1) [ lsl(2)

r(1)=f(~y; ~�)j~� 2 (0; �
2
); �R(~y; ~�) = 0g; l(1)=f(~y; ~�)j~� 2 (��

2
; 0); �L(~y; ~�) = 0g;

r(2)=f(~y; ~�)j~� 2 [�
2
; �); �R(~y; ~�) = 0g; l(2)=f(~y; ~�)j~� 2 (��;��

2
]; �L(~y; ~�) = 0g;

r(3)=f(~y; ~�)j~� 2 [�; 3
2
�); �R(~y; ~�) = 0g [ f(0; �) l(3)=f(~y; ~�)j~� 2 (� 3

2
�;��]; �L(~y; ~�) = 0g;

lr(1:1)=f(~y; ~�)j~� 2 (0; �
2
); �N(~y; ~�) � 0; �L(~y; ~�) < 0g rl(1:1)=f(~y; ~�)j~� 2 (��

2
; 0); �L(~y; ~�) > 0; �P (~y; ~�) � 0g

lr(1:2)=f(~y; ~�)j~� 2 (��
2
; 0]; �N (~y; ~�) � 0; �R(~y; ~�) < 0g rl(1:2)=f(~y; ~�)j~� 2 [0; �

2
); �R(~y; ~�) > 0; �P (~y; ~�) � 0g

lr(1:3)=f(~y; ~�)j~� 2 (��;��
2
]; �N (~y; ~�) � 0; �R(~y; ~�) < 0g rl(1:3)=f(~y; ~�)j~� 2 [�

2
; �); �R(~y; ~�) > 0; �P (~y; ~�) � 0g

lr(2)=f(~y; ~�)j~� 2 [�; 3
2
�); �R(~y; ~�) > 0; �N (~y; ~�) < 0g rl(2)=f(~y; ~�)j~� 2 (� 3

2
�;��]; �P (~y; ~�) > 0; �L(~y; ~�) < 0g

sr =f(~y; ~�)j~y < �1; ~� = �
2
g sl =f(~y; ~�)j~y > +1; ~� = ��

2
g

lsr(1)=f(~y; ~�)j~� 2 [0; �
2
); �N (~y; ~�) < 0g rsl(1)=f(~y; ~�)j~� 2 (��

2
; 0]; �P (~y; ~�) > 0g

lsr(2)=f(~y; ~�)j~� 2 [��
2
; 0); �N (~y; ~�) < 0g rsl(2)=f(~y; ~�)j~� 2 (0; �

2
]; �P (~y; ~�) > 0g

rsr(1)=f(~y; ~�)j~� 2 (�
2
; �); �R(~y; ~�) < 0g lsl(1)=f(~y; ~�)j~� 2 (��;��

2
); �L(~y; ~�) > 0g

rsr(2)=f(~y; ~�)j~� 2 [�; 3
2
�); �R(~y; ~�) < 0g lsl(2)=f(~y; ~�)j~� 2 (� 3

2
�;��]; �L(~y; ~�) > 0g

Table 1. Partition of domain D(~y;~�), where �R(~y;
~�) = ~y + 1 � cos(~�) and �L(~y; ~�) =

~y � 1 + cos(~�).

� go straight; where ! = 0
� turn right; where ! = �V

R

� turn left; where ! = +V
R

(7)

which are chosen as follows

[go straight; if (~y; ~�) 2 
0]^[turn right; if (~y; ~�) 2 
�]^[turn left; if (~y; ~�) 2 
+]
(8)

where the partition 
0 [ 
� [ 
+ of domain D(~y;~�) is de�ned as in Table 1.

In Figure 5 the boundaries between subsets of the partition 
0 [
� [
+ are
represented by dotted lines, and the direction of motion, when the reference path
is a straight line i.e. d = 0, is represented by directed curves.
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3.2 Feedback tracking control for generic path

In this section a hybrid feedback controller which solves Problem 1 is derived
from the one reported in the previous section. The hybrid model of the vehicle
PTHA2 is characterized by the two modes: upwards and downwards. In mode
downwards input ! appears with opposite sign with respect to mode upwards.
Since the controller modes in (8) has been set assuming an upwards binormal
axis then, the controller modes turn right and turn left have to be switched when
the vehicle is in mode downwards. Hence, for a generic feasible path � , the full{
state feedback controller is de�ned in fupwards; downwardsg � D(~y;~�) by setting
the controller modes as follows

� go straight; if (bin; (~y; ~�)) 2 fupwards; downwardsg �
0

� turn right; if (bin; (~y; ~�)) 2 (upwards�
�) _ (bin; (~y; ~�)) 2 (downwards �
+)

� turn left; if (bin; (~y; ~�)) 2 (upwards�
+) _ (bin; (~y; ~�)) 2 (downwards �
�)
(9)

where 
0, 
� and 
+ are as in Table 1. The closed{loop hybrid automaton
CLHA obtained by applying the feedback (7),(9) to the vehicle hybrid automaton
PTHA2 is depicted in Figure 4. According to (9) and (8), CLHA has the discrete
statemode that assumes values in the setO = fzero;negative; positiveg, as follows

� mode = zero if (~y; ~�) 2 
0

� mode = negative if (~y; ~�) 2 
�

� mode = positive if (~y; ~�) 2 
+

(10)

The initial state (mode0; (~y0; ~�0)) of the hybrid automaton CLHA has to sat-
isfy (10).

The coordinate transformation (x; y; �) ! (s; ~y; ~�) becomes singular when
the vehicle lies on the center of the local osculating circle to the path � . That is
if, at some time �t, ~y(�t) j�̂(s(�t))j = 1, or equivalently ~y(�t) d(�t) = 1. For any initial
con�guration (M(x0; y0); �0), with M(x0; y0) 2 T� as in (4), the corresponding
state (~y0; ~�0) satis�es ~y0 < C�1. Further since, by (5) d � C, then ~y0 d < 1 at
the given initial condition. However, to ensure that

~y d < 1 i.e. 1� ~y d > 0 (11)

will hold along all the trajectories of CLHA , we need to further restrict the
admissible initial vehicle con�gurations, in terms of its initial orientation �0.

Proposition 1. Let the continuous disturbance d be bounded to belong to the
interval [0; C], with

C < 0:5 : (12)

Then, (11) is satis�ed along all trajectories of CLHA starting from (mode0; (~y0; ~�0))
such that

(~y0; ~�0) 2 I(~y;~�) =
n
(~y; ~�) 2 D(~y;~�) j j~yj < C�1 � 1 + j cos(~�)j

o
(13)
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Fig. 4. Hybrid model of the closed-loop system CLHA .

Proof. The proof is not reported due to space limitation.

Note that, for initial con�gurations satisfying (13) we have M(x0; y0) 2 T� as
in (4). By Proposition 1, if a reference path � has minimum radius of curvature
R� greater than twice the minimum turning radius R of the vehicle, and if no
change on the sign of the curvature occurs, then for any initial vehicle con�g-
uration (M(x0; y0); �0), with lateral position and orientation errors bounded to
belong to I(~y;~�) as in (13), condition (11) is ensured.

4 Veri�cation of the hybrid path{tracking controller

In this section the behavior of the hybrid automaton CLHA is analyzed by intro-
ducing an equivalence relation � in the hybrid state space O�D(~y;~�) and by com-

puting the corresponding quotient (see [5]). Consider the partition �(~y;~�) of the

domainD(~y;~�) in (6) given by the 24 subsets
n
r(1); � � � ; rl(2)l(3); � � � ; lsl(2);O

o
, de-

�ned in Table 1, with rl(2) and l(3) replaced by rl(2)l(3). We say that (mode1; (~y1; ~�1)),
(mode2; (~y2; ~�2)) are equivalent, i.e. (mode1; (~y1; ~�1)) � (mode2; (~y2; ~�2)), i� (~y1; ~�1) 2
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p, for some p 2 �(~y;~�), implies (~y2; ~�2) 2 p. We associate to the corresponding

quotient space Q� =
�
O � r(1); � � � ;O �O

	
a nonderministic �nite state ma-

chine, referred to as FSMPTC , with states corresponding to the equivalence

classes in Q� (labeled, with a slight abuse of notation, r(1); � � � ;O). The next{
state function of FSMPTC is de�ned as follows: for any Q1; Q2 2 Q�, a transi-
tion from Q1 to Q2 occurs i� there exists an arc of trajectory of the hybrid auto-
moton CLHA from some (mode1; (~y1; ~�1)) 2 Q1 to some (mode2; (~y2; ~�2)) 2 Q2,
for some discrete disturbance �r and some continuous disturbance d.

Proposition 2. Given the hybrid system CLHA , if the discrete disturbance �r
takes always the value �, then, for any initial hybrid state (mode; (~y0; ~�0)) 2
O � I(~y;~�) as in (13), under the action of any disturbance d bounded as in (5)

with C as in (12), we have:

{ the quotient system obtained from the equivalence relation � is the �nite
state machine FSMPTC depicted in Figure 5;

{ an upper bound for the space travelled by the origin of the Frenet`s frame
along the path � , when the hybrid state is in a given equivalence class is
represented by the weight associated to exiting arc;

{ the quotient system FSMPTC remains in each equivalence class a bounded

amount of time except for O where (~y; ~�) = (0; 0).

Proof. The proof, which is based on reachability analysis, is not reported here
due to space limitation.

If the reference path � has curvature always of the same sign, the convergence
of the Dubins' car to the path is guaranteed by:

Corollary 1. If the reference path � has curvature always of the same sign and
amplitude lower than 1

2R , the hybrid feedback control (7) and (9), ensures the
tracking of � for any initial vehicle con�guration in the domain I(~y;~�) as in (13).
The origin of the Frenet frame covers at most a distance of�

1 + 9
2� + �

C
if C 2 [0; �

6+5� )

4 + 7� + �
2C if C 2 [ �

6+5� ;
1
2 )

(14)

along the reference path � before the vehicle approaches it with correct orienta-
tion.

Proof. The proof is not reported due to space limitation.

By Proposition 2, if � is a straight line then the closed{loop system enforces
sliding motions (see [13] for a tutorial) in the space (~y; ~�) on the lines sr, sl

and the arcs r(1), l(1), r(3), l(3) untill the origin is reached. If the reference path
� is not a straight line, sliding motions are enforced only on the lines sr, sl,
on the arcs r(1), r(3) and on a piece of the arc l(3). Under ideal sliding motion,
around the origin the control ! switches at in�nite frequency between V

R
; 0 and

�V
R
. The mean value of such control (i.e. the equivalent control) is the signal �V
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Fig. 5. On the left: shortest paths synthesis in the (~y; ~�) - plane. On the right: �nite
state machine FSMPTC representing the behavior of the closed{loop hybrid system
CLHA , when �r = �.

that makes the robot follows the reference path � with velocity V . In the real
implementation smoothing techniques are applied to avoid this chattering.

The behavior of the closed{loop system CLHA under the action of the dis-
crete disturbance �r is characterized by the following propositions.

Proposition 3. Given an initial condition (~y0; ~�0) in the open neighborhood of
the origin

N(~y;~�) =

�
(~y; ~�) : j~yj < 1;� arccos

�
1

2
�

~y

2

�
< ~� < arccos

�
1

2
+

~y

2

��
(15)

(see Figure 6), the hybrid closed{loop system CLHA keeps the continuous{time
trajectory (~y(t); ~�(t)) inside N(~y;~�), under any disturbance d(t) bounded as in (5)
and any sequence of events �r.

Proof. The proof is not reported due to space limitation.
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Fig. 6. On the left:quotient system FSMD

PTC representing the behavior of the closed{
loop hybrid system CLHA , when the intial state belongs to O �N(~y;~�). On the right:

regions in the domain D(~y;~�) where
_W > 0.

Proposition 4. If the reference path � is such that changes in the curvature
sign are at distance greater than (5 + �

2 )R along it, then the hybrid feedback
control (7), with modes chosen according to (9) stabilizes the robot along the
reference path � .

Proof. The set N(~y;~�) de�ned in (15) is such that

N(~y;~�) � O [ r(1) [ l(1) [ lr(1:1) [ lr(1:2) [ rl(1:1) [ rl(1:2) :

Since, by Proposition 3, N(~y;~�) is a robust invariant set for the closed{loop hy-
brid system CLHA , then, if we restrict our attention to the domain N(~y;~�), the

transitions from lr(1:2)to lsr(2)and from rl(1:1)to rsl(1)in the quotient system
FSMPTC should be removed. Furthermore, notice that, under the action of the

discrete disturbance �r = switch, the reset ~y := �~y and ~� := �~� introduces the

mutual transitions r(1) ! l(1), lr(1:1) !rl(1:1), and lr(1:2) ! rl(1:2). Hence, in the

presence of the discrete disturbance �r and for any disturbance d as in (5), when
the initial state belongs to O �N(~y;~�), the quotient system FSMD

PTC obtained
from the equivalent relation � is as in Figure 6.

To analyse the convergence to O of trajectories (~y(t); ~�(t)), introduce the
function

W (~y; ~�) =
1

2
(~y2 + ~�2): (16)

W (~y; ~�) has the property that if, at time t = �t, �r = switch then W (~y(�t); ~�(�t)) =
W (~y(�t�); ~�(�t�)). The derivative with respect to time of function (16) evaluates
to

_W (~y; ~�) =

"
~y sin(~�)� ~�

cos(~�)d

1� ~yd
� ~�$

#
V

R
; (17)
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where $ = 0;�1, and 1 in mode zero, negative, and positive, respectively. The
study of the sign of _W (~y; ~�) is extended to the entire domain D(~y;~�). Under

assumption (11), multiplying (17) by R
V
(1� ~yd), we have

_W > 0 $ �(~y; ~�) = d
h
�~y2 sin(~�)� ~� cos(~�) +$~y~�

i
+
h
~y sin(~�)�$~�

i
> 0

for some disturbance d bounded as in (5). Hence, for any (~y; ~�) such that

�1(~y; ~�) = ~y sin(~�)�$~� > 0

there exists d as in (5) such that �(~y; ~�) > 0 and _W > 0. Otherwise, if (~y; ~�) is
such that �1(~y; ~�) < 0, then there exists d as in (5) such that _W > 0 if and only
if �(~y; ~�) is positive for d = 1. That is, if

�2(~y; ~�) = � sin(~�)~y2 +
h
sin(~�) +$~�

i
~y �

h
~� cos(~�) +$~�

i
> 0;

which can be solved for ~y given �. The regions in the domain D(~y;~�) where

the function (16) locally increases are reported in Figure 6. Such regions are
delimited by curves �1(~y; ~�) = 0 and �2(~y; ~�) = 0, where $ = 0;�1 and 1 if
(~y; ~�) 2 
0, 
�, and 
+, respectively. By (17), the continuous disturbance d
which maximizes _W (t) is

d? =

�
1 if ~� cos(~�) < 0 i.e. ~� 2 (��

2 ; 0) [ (
�
2 ;

3
2�)

0 if ~� cos(~�) > 0 i.e. ~� 2 (� 3
2�;�

�
2 ) [ (0;

�
2 )

(18)

Consider an initial condition (~y0; ~�0) in a neighborhood of the origin and in region

N(~y;~�) \ rl
(1:2). At the initial time, the hybrid model CLHA is in mode negative.

Let us assume that �r = �, for the moment, and let us analyse the evolution of
the hybrid model CLHA under the action of the continuous disturbance d. Under
the action of the worst disturbance (18), the trajectory (~y(t); ~�(t)) originating

from (~y0; ~�0) reaches the curves r(1). First W (t) decreases (in rl(1:2)), then it

increases (in rl(1:1)). Hence, mode switches to positive. W (t) decreases (in the

�rst part of lr(1:2)), and it increases again later on (in lr(1:2) and lr(1:1)) until
(~y(t); ~�(t)) reaches r(1). Finally, following a sliding motion along the curve r(1),
(~y(t); ~�(t)) reaches the origin.

Along this trajectory W (t) assume two local maxima, which correspond to

the intersections of l(1) and r(1), and two local minima: the �rst on the line ~� = 0
when ~y > 0, and the second inside region rl(1:2). Let Æ = k(~y0; ~�0)k. Since the
trajectory (~y(t); ~�(t)) is continuous with respect to the initial condition (~y0; ~�0),
then there exist two continuous functions �max; �min : IR! IR such that

max
d

max
t
k(~y(t); ~�(t))k = �max(Æ) and min

d
min
t
k(~y(t); ~�(t))k = �min(Æ):(19)

Further, since the local maximum and minimum points tend to the origin as
k(~y0; ~�0)k tends to zero, then limÆ!0 �max(Æ) = 0 and limÆ!0 �min(Æ) = 0.
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Suppose now that a discrete disturbance �r = switch occurs at the precise
time �t at which (~y(�t�); ~�(�t�)) is opposite to (~y0; ~�0) with respect to the ori-
gin. Then, the state (~y(�t�); ~�(�t�)) is reset to (~y(�t); ~�(�t)) = (�~y(�t�);�~�(�t�)) 2
N(~y;~�), which lies on the same line to the origin of (~y0; ~�0). If W (~y0; ~�0) >

W (~y(�t); ~�(�t)) = W (�~y(�t�);�~�(�t�)) then the convergence is preserved. But, if
W (~y0; ~�0) < W (~y(�t); ~�(�t)) = W (�~y(�t�);�~�(�t�)) then, under the action of the
discrete disturbance �r = switch, the state (~y; ~�) is reset to a point farther away
from the origin than the initial state (~y0; ~�0) and convergence can be lost.

However, if the reference path � is such that changes in the curvature sign
are at a distance greater than (5+ �

2 )R along it, between to successive actions of

the discrete disturbance �r, the state (~y; ~�) has enough time to reach the origin.

In fact, assuming that, in the worst case, (~y(�t); ~�(�t)) 2 N(~y;~�) \ rl
(1:2), an up-

per bound on the length the arc of � spanned by the origin of the Frenet frame
as (~y(t); ~�(t)) converges to the origin, is given by L(rl(1:2))+ L(rl(1:1))+ L(l(1))+

L(lr(1:2))+ L(lr(1:1))+ L(r(1)) that, according to the weighted FSMPTC reported
in Figure 5, evaluates to (5 + �

2 )R.

To prove the robust stabilization of the robot along the reference path �

we have to show that for any � > 0, there exists Æ > 0 such that any trajec-
tory (~y(t); ~�(t)) of the hybrid system CLHA , originating from any (~y0; ~�0) with
k(~y0; ~�0)k < Æ, we have k(~y(t); ~�(t))k < �. Given any � > 0, consider any initial
condition (~y0; ~�0) with

k(~y0; ~�0)k � Æ = ��1max(�
�1
min(�

�1
max(�))): (20)

The trajectory (~y(t); ~�(t)) evolves inside a ball of radius ��1min(�
�1
max(�)). If a

disturbance �r = switch occurs at some time �t, then the state is reset to
(~y(�t); ~�(�t)) = (�~y(�t�);�~�(�t�)) 2 N(~y;~�). In the evolution for t > �t the tra-
jectory reaches the origin before a further discrete disturbance will show up.
Morever, since k(~y(�t); ~�(�t)k � ��1min(�

�1
max(�)) then, the trajectory (~y(t); ~�(t)) for

t > �t does not exit a ball of radius �max(�
�1
max(�)) = �. Then, the hybrid feedback

control (7), with modes chosen according to (9) robustly stabilizes the robot
along the reference path � .

5 Conclusions

In this paper, we have used modern techniques developed for hybrid systems
simulation and veri�cation to solve and prove stability of a control technique
for an interesting problem, that is route tracking by nonholonomic vehicles with
bounds on the curvature and limited sensory information. The proposed con-
troller is reminiscent of a synthesis proposed elsewhere for an optimal control
problem to track straight routes, whose generalization to generic routes turned
out to be diÆcult to analyze otherwise. We believe that this case study, besides
its intrinsic interest in applications, also has a value in showing the potential of
hybrid systems analysis techniques as applied to complex control problems.
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