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Closed Loop Steering of
Unicycle-like Vehicles via
Lyapunov Techniques

With a special choice for the system state equations, the use of the simplest
quadratic form as candidate Lyapunov function directly leads to the
definition of very simple, smooth and effective closed loop control laws
for unicycle-like vehicles, suitable to be used for steering, path follow-
ing, and navigation. The authors provide simulation examples to
show the effectiveness and, in a sense, the “natural behavior” of the ob-
tained closed loop motions (whenever compared with our everyday

driving experience).

INTRODUCTION

The majority of the mobile robots made available for research
or effectively employed within real applications are often char-
acterized, for maneuverability reasons, by a unicycle-like
structure. The problem of steering such vehicles has received
a great deal of attention within the wide existing literature on
mobile robots. Recently there has also been a great deal of in-
terest in results obtained with the geometric-based approach
to non-linear control theory, and the emerging field of the so-
called non-holonomic motion planning and control. Most at-
tention has been devoted to the determination of control laws
that assure the attainment of a target position and orientation
starting from any initial conditions (we can call it “parking
problem”). There are two basic points of view: closed loop con-
trol and the planning. The first relates to the determination of
steering laws assuring the asymptotic execution of the parking
task and can be set as a stabilization problem. Regarding the
determination of such laws, a well known work of Brockett [1]
identifies a class of systems that cannot be stabilized via
smooth state feedback. Cartesian state space representations
of unicycles fall into this class. On this basis, for the control of
vehicles represented in the Cartesian state space, a number of
solutions have been found involving both discontinuous and/
or time varying control laws ([2], [3], Samson [4], [5]).

From the planning point of view, the natural framework is
that of the non-linear control theory of non-holonomic sys-
tems. Murray and Sastry [6] provided a procedure to generate
open-loop control actions for steering the vehicles. Obviously
in this case, a finite time accomplishment of the task can be
obtained.

point of view. As we have already noted, almost all previous
works were based on the fact that, due to the limits imposed
by the Brockett's resuit, a goal position and orientation are not
reachable asymptotically by means of smooth and time invari-
ant feedback control laws. If the vehicle is localized with a Car-
tesian set of variable, this is true. Nevertheless, if a different
state-space representation is adopted, simpler approaches can
be used, directly allowing smooth stabilization properties. For
example, Badreddin and Mansour [7] use polar coordinates to
localize the vehicle, but their analysis ends with the determi-
nation of a constant state feedback law that assures only local
stabilizability around the final target position and orientation.

In this article, we explicitly show that, with a special choice
of the system state variables, global stability properties can be
guaranteed by smooth feedback control law. Such a result will
be found using a very simple mathematical framework that
can be considered a byproduct of the well known Lyapunov
stability theory.

Moreover, an effective use of such a control law can also be
devised for both the cases of path following and navigation
among (possibly on-line) assigned via points, without requir-
ing, for the latter case, of any sort of a-priori trajectory plan-
ning or re-planning. This will be possible by using the simple
idea of making the goal move along a desired path while the
vehicle follows it with the same control law used for the park-
ing problem. The structure of the velocity of the goal will be
an additional control variable that will be matter of discussion
with reference to the desired degree of accuracy required for
the tracking.

In section 2 the basic kine-

Since for practical purposes
an asymptotic convergence to
the goal can be sufficient, we
consider the problem from this
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matic equations are reported,
and in section 3 the Lyapunov
analysis is carried out and the
steering controls are deter-
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mined. In section 4 the behavior of the system is discussed
with some simulation examples. In section 5 the use of the de-
termined control laws for the path following problem and nav-
igation among via-points are reported together with simula-
tion experiments. We conclude with a short summary of the
results and their use in future works.

KINEMATIC EQUATIONS

Consider a unicycle-like vehicle positioned at a non-zero dis-
tance with respect to a goal frame <g>, whose motion is gov-
erned by the combined action of both the angular velocity ,

and the linear velocity vector u always directed as one of the
axis of its attached frame <a>, as depicted in Fig. 1.

e
..
~e
..

Figure 1. Vehicle's position and orientation with respect to the target
frame.

Then, the usual set of kinematic equations, which involves the
vehicle Cartesian position x, y, and its orientation angle 0, are:

X= ucos¢
Y= usind a)

A

where u is simply the component of u evaluated along its di-
rection, and x, y, ¢ are all measured with respect to the target
frame-point <g>.

By instead representing the position of the vehicle in terms
of its polar coordinates, involving the error distance e > 0 and
its orientation © with respect to <g>, the following others are
easily obtained:

é=-~ucos (0-¢)
6= u—c @)
$=0

Now, letting o = 6 - ¢ be the angle measured between the
vehicle principal axis and the distance vector e, we finally have
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é=-ucosa
. sinQ
A==+ U—p— (3)
. sina
b=u—~

Notwithstanding the fact that an infinite number of other
basic kinematic equations might obviously be devised, within
this work particular attention will be devoted to the last ob-
tained equations (3), since, as it will be shown later, their form
will be suitable for easily designing appropriate closed loop
control laws for the vehicle manoeuvering. As a matter of fact,
equations (3) allow for a set of state variables which closely re-
semble the same ones regularly used within our car-driving
experience.

Note however that, since they are based on the use of polar
coordinates, kinematic equations (3) (as well as (2) and con-
trary to (1)) are actually valid only for non zero values assumed
by the distance errors e, since both angles o and 8 are unde-
fined when e = 0; thus implying that the generally existing
one-to-one correspondence with (1) is actually lost in corre-
spondence of such singular points.

CLOSED LOOP STEERING

Now we consider the basic problem of finding suitable
strategies which allow the unicycle vehicle to reach the goal.
In particular, we want to determine steering strategies that as-
ymptotically drive the unicycle toward a desired position and
orientation. First, note that every set of kinematic equations
mentioned before falls in the class of systems characterized by
the general structure

m

i= Y h@y

im1

with ze ®M and uje R. In other words, we have dynamic systems

without drift with n state variables and m control variables.

For such systems, a well known result of Brockett [1] states
that a point z* cannot be asymptotically stabilized using
smooth and time invariant feedback laws if in a compact
neighborhood of z*, the vectors fj(z) are independent, contin-
uously differentiable and m<n. It is easy to see that the Carte-
sian representation (1) allows the application of the Brockett's
result for any (x*, y*, ¢*). This is the reason why most of the
previous approaches provided discontinuous and/or time vary-
ing control laws.

On the other hand, we can see that, whenever equations (3)
are used to localize the vehicle with respect to its goal, the ba-
sic parking manoeuver can be accomplished reaching asymp-
totically the limiting point (0,0,0). For system (3) the regular-
ity assumptions needed to apply the Brockett's result do not
hold. Then the asymptotic stabilizability of such a limiting
point by means of smooth and time invariant feedback laws is
not prevented.

Given these considerations, we can now better specify the
aforementioned closed loop steering problem in the following
general terms:
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Parking Problem: Let the unicycle-like vehicle be initially
positioned at any non zero distance from the target frame <g>
and assume state variables [e, o, 61 to be directly measur-
able in correspondence with any e> 0. Find a suitable state de-
pendent control law [u,0] = g (e, o, 0) which guarantees
the state to be asymptotically driven to the null limiting point

[0, 0, 01’ without attaining the condition e=0 in finite time.

Clearly, while the first specification expresses the require-
ment of reaching the target frame with the appropriate orien-
tation, the second one technically serves only to avoid the
complexities that could arise in correspondence with any, fi-
nite time, loss of validity of the considered model (3). In this
respect, also note how it was necessary to use the more general
concept of “limiting point” to correctly specify the need of ob-
taining an asymptotic convergence of the state toward a point,
namely the point [0,0,0]', which is actually located on the
frontier of the open set of validity of model equations (3) (i.e.,
the subset of R3 where e > 0).

One of the most commonly used methods to study the as-
ymptotic behavior of a dynamic system is based on the
Lyapunov stability theory. In our case, terms like “Lyapunov
analysis” and “candidate Lyapunov function” can be consid-
ered an abuse of terminology. Nevertheless, the concept of
limiting point and the possibility of projecting the motion of
(3) on a suitable scalar function survive. In the following, a
Lyapunov-like framework will be used, even if we continue to
use standard terms just to avoid cumbersome terminology.

With the above aims in mind, let us now start by consider-
ing the simplest choice for the structure of a candidate
Lyapunov function related to the considered control problem;
i.e., the positive definite quadratic form

1 1 4
V= V1+V2=§7Le2+§(a2+h62); AA>O @

whose terms V;, V, represent (one half of) the squared weight-
ed norms of both the “error distance vector” e and the so-
called “alignment error vector” [a, JA0]’ exhibited by the
vehicle with respect to the target frame <g>.

Then, consider its time derivative V along (3), given by

V-V1+V2-xeé+(ad+h99) (5)
siLu(ouhe)]

-leucosa+a[—m+u o -

From the latter expression we see that the first term, cor-

responding to V1, can be made non-positive by letting the lin-

ear velocity ¥ have the smooth form (independent from both
the parameters A, k)

u=(ycosa)e; y >0 (6)

In this way, the term V1 becomes
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V, = —(ksin’a)e’<0 . )

This means that the first term V; of (4) is always non increasing
in time and consequently, since it is lower bounded by zero, it is as-
ymptotically converging toward a non negative finite limit.

The fact that V1 is simply proportional to the square of the
positive scalar variable e also implies that e is also monotoni-
cally non increasing in time and that the null value cannot
ever be approached in finite time, thereby assuring the validity
of (3) for all the parking process.

Furthermore, in correspondence with the choice (6), the

second term V,, of (5) turns out to be

cosasina

= (a+he)]. ®)

V,=a [— ©+Y

This can also be made non-positive, by letting the angular

velocity  take on the smooth form (it is also independent
from the parameter A, but not from A)

© = ko4 Y (o + h0); (k> 0) ©)
Hence,
V2 = ka’<0 (10)

finally leading to the following expression for the time deriva-
tive of the original global Lyapunov function V

V= Vl + V2 = -\ (ycos ‘a)e’—ka<0 (11)
which results in a negative semi-definite form.

From this it follows that Lyapunov function V'is always non
increasing in time and consequently, since lower bounded by
zero, asymptotically converging toward a finite non-negative
limit. This fact, joined with the radial unboundedness of V it-
self, in turn guarantees the boundedness of the state trajectory

corresponding to any bounded initial condition. Moreover,
due to the boundedness of the state trajectory, the uniform

continuity in time of V directly follows.
Finally, as a consequence of the uniform continuity in time

of V, and of the existence of a convergence limit for V; by ap-

plying Barbalat's Lemma it follows that V necessarily con-
verges to zero for increasing time; thus in turn implying the
convergence of the state trajectory toward some subset of the
line [e,, 6] = [0,0,0]’ (i.e., toward a part of the sub-

space where function V can attain the null value; see (11)).
At this point, to show that the only possible convergence
subset within the line [e, o, 8]’ = [0,0,08]’ isactually con-
stituted by the sole origin point [0, 0, 0]', and that such con-
vergence occurs with null time derivatives for the state trajec-

IEEE Robotics & Automation Magazine - 29



FE LR R EE DR ED VR R T DORRENDORD OO DEDPE 0TS RSSO0 ORREE e B

tory, let us consider the state equations (3) in the presence of
the established feedback laws (6), (9); that is the closed loop
equations, having the form

é=—(ycos 2(7.)8
i (_ka_‘yhcoso;sina)

e(0)>0 (12)

O=ycosasina

Then, due to the convergence to zero of both e and ¢, it im-
mediately follows from the first and third of (12) that both the

time derivatives ¢ and 8 converge to zero. Moreover, due to
the boundedness of the state trajectory, the convergence to

zeroof  also implies that 8 tends to some finite limit @ for
increasing time. Then, due to this, from the second of (12) it

follows that also & must necessarily tend to the finite limit
—yh(; .
At this point, by still keeping into account the convergence

to zero of ¢, and also noting that & is actually a uniformly
continuous time function, as implied by the boundedness of

the state trajectory, by Barbalat's Lemma it follows that & ac-
tually also converges to zero; thus in turn implying that the fi-

nite limit 6 , for 8, it must also be necessarily zero. This is suf-

ficient for completely proving the fulfillment of the control re-
quirements by the established state feedback law (6), (9).

Remark 1. We note once again that feedback control law
(6), (9) actually results in a very simple form, which also can
be easily implemented by simple on-board computing devices
(and relatively simple sensor systems for evaluating distances,
as well as angular orientations). Moreover, as it can be possi-
bly recognized by the set of simulation examples reported be-
low, it also exhibits a closed loop behavior that could be con-
sidered very “natural,” whenever compared with those that we
could expect as the result of our everyday car-driving experi-
ence. It is our opinion that such a behavior also arises as a di-
rect consequence of the use, within the feedback loop, of a set
of state variables that, as it has been already mentioned, appar-
ently coincides with the ones which are presumably used by
any human operator involved in driving tasks.

Remark 2. Note that the convergence toward any one of
the limiting points [0, zn7, #nwl'n e N, could also have
been considered as appropriate, whenever seen from the point
of view of the task accomplishment. Notwithstanding this last
fact, we shall not deal with such additional possibilities that
can be taken into consideration when using “multiple
Lyapunov functions” as has been suggested in [8].

To conclude this section, we note that, due to the particular
structure assigned to the Lyapunov function V, the corre-
sponding control law results in a form which is actually inde-
pendent from the positive value assigned to the A parameter
appearing in the first term V| of the global function V. In a later
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section we will show how such parameters instead play a very im-
portant role within the problems of closed loop path following
and navigation among via points. Relationships among the posi-
tive parameters A, v, k, which determine the limiting behavior of
the curvature of the resulting path can be found in [8].

SIMULATION EXAMPLES FOR THE PARKING
PROBLEM

Let us start with the simple example of a vehicle located in
(x,y,0) = (-1,1,31/4) with respect to the reference frame. The
target is in the origin of the reference frame, i.e.,
(x,,6)=(0,0,0). The corresponding initial conditions for
(e,0,8) are e(0)= A2, 6(0) = -1/4, and o(0) = 8(0) - ¢(0) = -T.
The resulting manoeuver, corresponding to y=3; h=1, and
k=6, is shown in Figures 2 and 3.
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Figure 2. Starting position and goal.
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Figure 3. Resulting parking maneuver.
Note now that even if in the (x,y) plane the trajectory has

an angular point the relevant controls over the time horizon
result in continuous and smooth signals as reported in the
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previous section. If we had assumed ¢(0) = -5m/4 (which gives
the same absolute orientation), we would have obtained a dif-
ferent manoeuver, since in this case o(0) would have been
equal to +T. Nevertheless, the convergence to the final goal
and the smoothness of the control signals would have been al-
ways assured.

We now present some simulation examples which corre-
spond to a couple of cases where the unicycle vehicle is re-
quired to reach (x,y,0)=(0,0,0), starting from many different
initial configurations, all characterized by a unitary initial val-
ue for e(0). In particular, in Figs. 4 and 5 the initial orienta-
tions ¢(0) of the vehicle with respect to the target have been
assumed to be always zero and /2 respectively. As we can see,
the vehicle eventually approaches the target always with a pos-
itive linear velocity. This is due to the fact that the steering
strategy has been designed on the basis of the Lyapunov func-
tion (4) without taking into account the considerations made
in Remark 2. In fact, since the steering laws continuously
drive o to zero, it is easily understood that such a situation can
be obtained only by using, in the last part of the manoeuver, a
positive velocity. Even if it might seem a limitation as to the
parking problem, this possibility positively contributes to
solving the path following problem, as will be apparent in the
next section.

05k

L
-1 0.5 0 0.5 1

Figure 4. 4(0)=0

PATH FOLLOWING AND NAVIGATION
AMONG VIA-POINTS

The first control problem that will be addressed in this section
corresponds to the requirement, for the vehicle, of approxi-
mately following an assigned smooth directed path, by ap-
proaching it from an initial frame <p,> tangently located on
the path itself, as indicated in Fig 6.

By assuming the oriented path parametrized by the curvi-
linear abscissa s, and denoting with <p(s)> the corresponding
frame tangently located on the oriented path, let us now con-
sider the possibility of continuously moving <p(s)> from its
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Figure 5. §(0)=T0/2

<p(s)>

Figure 6.

initial position <p,> with a non-negative velocity § to be
appropriately assigned.

Then, by considering <p(s)> as the current target for the
vehicle, we can easily verify that in this case, due to the super-
imposed target motion, the original kinematic equations (3)
modify as follows:

e=-u cosa. + $cos

. sina  sin®

A=-Q+U—— =S5~ e(0)>0 (13)
0= sinQ Ssine $

U T TR ()

where R(s) is the current “signed” curvature radius of the path
{positive or negative depending from its location on the right
or left side of the path itself) and where all the additional terms

depending on § just represent the “perturbations” which are
introduced by the assumed motion of the target.

By assuming now that the control laws (6), (9) are applied
also in the present case, we immediately have that in such
closed loop conditions the corresponding equations (13) be-
come
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e=— (ycos?a)e +$cosO

. cosasina sin®
az-ka+yh—a——9—57 e(0)>0 (14)

O=ysina.cosa Ssine_s
=ysinacosa-s—— -5

where the rate s now represents the sole control action which
is made available for the accomplishment of the required path
following task.

To this aim, assuming for simplicity h>1, the following
closed loop policy is then proposed for the on-line specifica-

tion of the target motion rate s € [0, v]; v>0:

0 V=he® + (a2+h92) >€ 2
§ = O<e< (15)
f(e,0,0) V=he® + (a2+h92) <g

where fle,0,0) is any continuous radial function centered on

the ellipsoidal domain re’+ (OL2 +he)) = ¢ , which attains
its maximum value vpyax (equal to the largest admissible one

for $ in correspondence with the origin, and a null minimum
value in correspondence on the border of the ellipsoid itself.
The rationale underlying the proposed policy structure for

$ can be now explained on the basis of the following consider-
ations.

First, when the vehicle state is outside the ellipsoidal do-
main (as it could be, for instance, during the beginning of the
motion, when the vehicle has to approach the starting frame
<p,>) the target is maintained in a fixed absolute position as
specified by the first of (15), thus implying that in this case the
vehicle results in being driven by control laws (6), (9) acting
within their usual “fixed target” operating conditions. These
force the state trajectory to evolve continuously in such a way
to asymptotically converge toward the origin, while maintain-
ing e > 0 as explained earlier. Due to such behavior, it then
necessarily follows that the vehicle state will reach the ellip-
soid surface in a finite time (say t*) and within the relevant
subset of points corresponding to e > 0. Then, by noting that

the rate $ is also zero on the whole ellipsoid surface as pre-
scribed by fle,0,0) evaluated on it, and due to the fact that in

correspondence with the reached point we actually have V <
0 due to e > 0, we can also immediately conclude that, succes-
sive to £* but connected with it, a time interval exists during
which the state trajectory evolves continuously strictly inside
the ellipsoid, while still maintaining e > 0.

Once the state is inside the ellipsoid with e > 0, a non-zero

positive value is consequently assigned to the rate s by func-
tion fle,a,0) as prescribed by (15). Then, since within the el-
lipsoid both 181 and |l are less than /2 (due to the assumption
h>1), it immediately follows that a positive contribution is ac-
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tually added to ¢, as established by the first of (14). Hence,
during the motion inside of the ellipsoid, the state trajectory
cannot consequently reach the condition e = 0 in a whatever
finite time; thus guaranteeing the continuity of the state tra-
jectory evolution also within the ellipsoidal domain itself.

Moreover, inside the ellipsoid the Lyapunov function V is
certainly no more guaranteed to have a negative semi-definite
time derivative (as instead it occurs outside and on the surface
of it). This induces the obvious possibility that, from the inside
of such domain and within a certain time interval, the state
norm might also increase continuously and in a way that can
allow the state trajectory itself to eventually reach again the el-
lipsoid surface, by now proceeding from its internal side.

But, if this occurs in correspondence with a time instant,
we can again see, on the basis of the previous consideration,
that it must be e > 0. Consequently, the application of the
same previous reasoning line allows, once more, to show that
an immediate future time interval certainly exists, where the
state trajectory is again strictly located inside the ellipsoid.

As a net result, we are led by induction to conclude that,
once the vehicle state trajectory has been “captured” for the
first time within the inside of the ellipsoid, it will remain con-
tinuously confined within such domain throughout all future
time instants, by always maintaining e > 0. Moreover, the pos-
sibility of lying on its border surface is represented by the oc-
casional occurrence of “events” which are characterized by a
null duration time.

Due to this latter fact it also follows that, once the state ve-

hicle is confined within the ellipsoid, the rate s might actually
attain the zero value only in correspondence of a subset of the
time axis characterized by a null measure. The obvious conse-

quence is that since $ is a non negative quantity, the curvilin-
ear abscissa s will be certainly a monotonically increasing
function of time; thus finally implying that the goal frame-
point <p(s)> will proceed monotonically along the assigned
path, till its complete covering. Moreover, during its travel
along the path, <p(s)> will maintain the vehicle behind of it,
with an error distance and misalignment whose (squared)
norms are, at each time instant, measured by the actual value
assumed by the Lyapunov function V, which is however main-

tained within the a-priori assigned threshold € € (0, n2/4) .

Also note how in the present path following case (and on
the contrary of the parking one considered earlier) an impor-
tant role is now played by the parameter A appearing in the
Lyapunov function V: by assigning to it a specific positive val-
ue, a general upper bound €/) is consequently established to
the (squared) value for the admissible error distance occurring
during the motion of <p(s)>. It is worth pointing out that such
an upper bound is not to be confused with the actual maxi-
mum value attainable by e2, this is just the value beyond which

$ is set to zero by (15) even in presence of null angular errors.

A different matter is the determination of the actual value
that e can take on. As a particular case, consider the asymp-
totic behavior of e when a straight line has to be tracked. Once
the angular quantities have reached values that can be ne-
glected, the first of (14) becomes
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¢ = —vye+s (16)

Hence, in case of constant and perfect alignment with the
path, the eventual value for e can be found solving the equa-
tion

-ye + § =0; ie. fle,0,0)=ye (17)
It is easy to see that, due to the structure of f(-)set in equa-
tion 15, equation (17) has always a positive solution fulfilling

the condition e < ./e/A . Finally, it should also be noted how
the general vehicle behavior induced by the proposed closed
loop control law for path following actually turns out to be
qualitatively similar to the behavior apparently adopted within
our everyday car-driving experience, where, in presence of
good alignment with the road path, we are naturally led to pro-
gdressively point our sight toward farther goals on the road it-
self, provided they remain sufficiently aligned with our car and
within a certain maximum distance range; thus inducing a
progressive increment in our car speed. On the contrary, when
the misalignments begin to increase, as happens when we ap-
proach a curve of the road, we reduce our speed, and in the
same time point our sight toward progressively closer goals in
front of us; thus reducing the error distance, while maintain-
ing the misalignments within an acceptable range. Further-
more, when the misalignments start again to reduce, as it hap-
pens at the outlet of a curve, we can in turn restart to increase
our car speed. Figure 7 represents a path following experiment
corresponding to the following choices:

x(0)=-2; y(0)=0; $(0)=0;

Path equation y = Atan(x4), x>0

$ =max(0,1-V/e); vmax=1

Figure 7 deserves some discussion. First note that it shows
good accuracy in path tracking. Second, we have plotted the
velocity u in order to obtain a one-to-one correspondence be-
tween the actual position of the vehicle and its velocity (both
denoted with dashed lines). To better understand the behavior,
note that the current value of £ is such that, once the state has
been captured by the ellipsoid, the maximum value of lof and
16 1is such that both cos o and cos 8 can be considered almost
everywhere equal to 1. Then the evolution of the vehicle veloc-
ity u can be considered the same as that of the error distance
e (recall that y=1). On this basis, given a certain position of the
vehicle in Fig. 7, the corresponding position of the target
frame can be found at any time by adding to the position of the
vehicle a segment of length « with the other edge on the ref-
erence path. If we want to explain why at x=1 the vehicle be-
gins to slow its speed, we can simply note that for that posi-
tion, the error e takes on a value close to 0.5 (see z(1)). Hence,
we can see that when the vehicle is in x=1 the x of the target
frame is close to 1.5, that is at the beginning of the second

curve. Due to this, the angular errors will increase and s will
be reduced. As a consequence e will decrease and then u also.
Finally, note that with the chosen values of the parameters,
the eventual value of e can be easily computed by solving equa-
tion (17), that yields e=0.9687. Obviously, as € increases, we
get less accuracy in the tracking.

We now wish to consider the case of navigation among via
points (possibly assigned by an external off-line or on-line act-
ing roadmap planner) as depicted in Fig. 8. Let us first explic-

1=0.001; £=0.03; itly state that we will completely neglect (since it is too cum-
2 o . v v v T T v v
N
Y .
N
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1.5} Y i
\
\
\
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i \ - = - 1T U
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Figure 7. Reference trajectory =
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bersome or even infeasible, especially within an on-line con-
text) the obvious possibility of transforming the assigned
problem into a path following one, consequently with the pre-
liminary evaluation of some sort of smooth interpolating
curve among the assigned via points. On the contrary, what
will be considered here simply corresponds to the trivial idea
of applying the above developed (smooth) path following tech-
nique also to the present case of navigation among via points,
once the same are considered as connected each others by
straight line segments (the most trivial and computationally
zero-expensive form of interpolation) as it has been actually
indicated also in Fig. 8.

Figure 8.

By acting in this way, we can however note a fundamental
difference with the previous smooth path following case: finite
“jumps” always occur in the angular component 0 of the state,
and in correspondence of the “corner points” of the path, co-
inciding with the via points themselves. As it can be trivially
verified, the effect introduced by the presence of such jumps is
simply makes the state trajectory generally discontinuous (in
the 0 variable only) in correspondence with the transitions of
the curvilinear abscissa s from one segment to the next one.
When the angle measured between two successive segments is
very wide, the corresponding jump of the 0 variable can also
be so high that the state is instantaneously transferred outside
of the ellipsoidal domain, where, once the rate $ has been con-
sequently and instantaneously zeroed, the control law will
bring back the state itself on the ellipsoidal surface, and fur-
ther on the inside of it, where it will remain successively con-
fined until the possible occurrence of another “sufficiently
high jump” of the 6 variable.

Obviously, provided the error distance e is sufficiently close

to its largest upper bound J&/A , at the time of occurrence of
a large jump for 0, sensibly wide deviations from the segment-
ed path can actually occur.

This phenomenon is clearly evidenced in the motion exam-
ple reported in Fig. 9a, where a large jump of 8 occurs just
when the vehicle, being previously well aligned with the ante-
cedent straight line path segment, had already allowed the er-
ror distance to almost attain its admissible maximum value.

Such a phenomenon can however be reduced to any desired
extent, by acting, for example, in the following way: at the in-
stant when a large jump for 8 is detected (in correspondence
of a corner point), the value of the A parameter is simulta-
neously and suitably increased (i.e., the dimension of the ellip-
soid in the direction of e is suddenly reduced) while the same
target frame preceding the jump is still maintained as the cur-
rent target. This will have the instantaneous effect of letting
the current state at the outside of the new ellipsoid, within a
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direction sufficiently close to that of the e axis. As a conse-

quence of this, the rate § will be instantaneously zeroed, thus
allowing the state to re-enter inside the new ellipsoid with a
reduced value for e, and without a substantial change for the
alignment relevant to the maintained old target frame. Once
the state is inside the new ellipsoid, the abrupt change for 0 is
inserted (i.e., the current target frame is instantaneously
changed with the new one corresponding to the starting point
of the new path segment) and A is re-established in its original
value. Even in this new condition, the state will be outside of

the ellipsoid. Then, the null value of § will be kept, allowing
the alignment with respect to the new current frame-point to
re-enter within the admissible range while continuing to de-
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crease the error distance, till the ellipsoid is not reached. Once
this happens, everything will proceed in the usual way till the
eventual occurrence of a new large jump for 8. The results cor-
responding to the application of such additional technique are
reported in Fig. 9b. As the above two examples show, the first
one could be considered as acceptable only when a large space
for manoeuvering actually exists around the vehicle; the sec-
ond one is more indicated for maneuvering within con-
strained environments, for instance in the case of navigation
along narrow corridors.

CONCLUSIONS

This paper has presented evidence that a special choice for the
system state equations allows the almost straightforward use
of Lyapunov theory, leading to the definition of very simple
and effective closed loop control laws for unicycle-like vehi-
cles, suitable for both steering, path following, and navigation
among assigned via points; without requiring, in the latter
case, of any sort of trajectory planning or re-planning, as it has
been instead very often proposed.

The simplicity of the approach, whenever compared with
the more sophisticated ones based on advanced non linear sys-
tems concepts and differential geometric techniques, also
seems to suggest the possibility of an extension toward the
more complex case of car-like or articulated vehicles.
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