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Abstract

The problem of driving a vehicle along a given path is considered. The vehicle is supposed to

move forward only, with a given velocity pro�le, and to have bounds on its turning radius. Such

a model, also known as \Dubins' vehicle", is relevant to the kinematics of road vehicles as well

as aircraft cruising at constant altitude, or sea vessels. We consider the optimal control problem

consisting of minimizing the length travelled by the vehicle starting from a generic con�guration to

connect to a speci�ed route. A feedback law is proposed, such that straight routes can be approached

optimally, while the system is asymptotically stabilized. Experimental results are reported showing

real{time feasibility of the proposed approach.

keywords: Optimal control, regular synthesis, route tracking, nonholonomic vehicles.

1 Introduction

In this paper, we consider the problem of driving a vehicle along a given route. We consider the
so{called Dubins' model for the vehicle, whose motion is restricted to a plane, and is subject to a
nonholonomic constraint on the trajectory (no velocity allowed in the direction perpendicular to the
main axis of the vehicle), to the speci�cation of a unidirectional velocity pro�le (only forward motion
at given speed pro�le allowed), and to a limitation on the curvature of the trajectory (bounded yaw
rate, or steering radius) [10].
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Such model ignores the vehicle dynamics, and is therefore a rather idealized model for practical
vehicles. However, it explicitly takes into account inherent limitations of automobiles along highways
and aircraft cruising at constant altitude, thus providing a complete model of the kinematics involved,
and a reference framework for extending results to more complex models. Constraints on the direction
of motion of the vehicle, and on its curvature, are re
ected in input bounds that have not been
previously considered in the route tracking problem (see discussion below).

We propose an hybrid feedback control law for Dubins' model for tracking rectilinear routes. This
controller locally stabilizes the vehicle on the route, and guarantees global convergence in �nite{time.
It is also shown to achieve optimal (in the shortest-length sense) connecting paths to the route. The
study of convergence and optimality is done using Pontryagin's maximum principle (henceforth PMP,
[15]) completed with global geometric arguments. Afterwards, we prove that the optimality of paths
can be con�rmed by applying su�cient optimality conditions provided by a regular synthesis theorem
[14] [3]. Stability is discussed in a hybrid control framework.

The paper is organized as follows. Related works are presented in section section 1.1. In section 2
we formalize and provide a complete solution to the optimal tracking problem for rectilinear paths.
In section 3 we synthesize a feedback controller that implements optimal trajectories, formalize it as
an hybrid control system, and prove its global asymptotic stability. Finally, in section 4 experimental
results are presented demonstrating the practical feasibility of the proposed control laws.

1.1 Related work

The literature on planning and control techniques for nonholonomic vehicles has grown extensive in
the recent few years, providing results among which a few have a direct bearing to the work reported
in this paper. In particular, it was shown that the kinematic model of a vehicle that can drive both
forward and backward with bounded curvature (but allowing cusps in the path, such as e.g. in the case
of an automobile in a parking maneuver), is locally controllable. A vehicle that can only move forward
and is subject to curvature bounds (such as the model under consideration here) is still controllable,
although not small time locally controllable. For this latter type of vehicle, Dubins [10] studied the
shortest paths joining two arbitrary con�gurations. He proved that optimal paths can be built with
at most three pieces of either type \C" (arcs of circle with minimal radius R), or type \S" (straight
line segments). Furthermore, optimal paths necessarily belong to the following su�cient family made
of two path types only,

fCaCbCe ; CuSdCvg (1)

where the subscripts, indicating the length of each piece, are restricted respectively to

b 2 (�R; 2�R); a; e 2 [0; b]; u; v 2 [0; 2�R); d � 0 (2)

Reeds and Shepp [16] extended Dubins' results to a vehicle that can reverse its motion. Later, [24]
and [4], gave new proofs of Dubins' result and Reeds and Shepp's result by using optimal control
theory. Finally, on the basis of these works, the complete synthesis of optimal paths was constructed
in [6] for Dubin's problem, and in [23] for Reeds and Shepp's problem, providing a complete solution
of the open{loop point-to-point planning problem.

On the other hand, the feedback stabilization problem is particularly challenging for nonholonomic
vehicles [5]. Stabilization to a con�guration has been widely studied, and partially solved via non{
smooth (see e.g. [22, 1, 2, 11]), time{varying ([18, 7, 17]), and dynamic extension feedback algorithms
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(cf. e.g. [8, 9]). Trajectory or route tracking control is simpler in principle for nonholonomic systems.1

Previous work on trajectory tracking and route following includes [26, 21, 19]. The paper of Samson
[18] has a thorough treatment of systems in chained form (hence, of more general vehicles than are
considered here), and solves the problems of route following, trajectory tracking, and point stabilization
in a uniform, elegant way.

As opposite to work in route planning, most literature on vehicle stabilization does not consider
curvature bounds in the vehicle model. On the other hand, as already noted, most real{world vehicles
have limited turning radii. In this paper, we attack and give an optimal solution to the route following
problem under path curvature bounds.

2 Shortest paths to join straight routes

Let the con�guration of the vehicle be described as X = (M; �) 2 IR2 � S1, with M := (x; y)
coordinates of a reference point in the vehicle and � is the angle made by the vehicle direction, with
respect to some �xed reference frame in the plane. The kinematics of the vehicle is described by8><

>:
_x = v cos �
_y = v sin �
_� = !

(3)

where v is the forward velocity of the vehicle, and ! is its turning (yawing) rate. The vehicle is thus
constrained to move tangentially to its main axis, with a given linear velocity v(t) > 0. Without loss
of generality, up to a time{axis rescaling (cf. e.g. [17]), we assume that _v(t) = 0, v(t) � V . The
turning radius of the vehicle is lower bounded by a constant value R > 0, which results in an upper
bound on the vehicle's angular velocity ! as

j!j <
V

R
: (4)

Let T be a rectilinear route in the plane, with a prescribed direction of motion determined by the
angle � 2 [��; �] with respect to the x{axis (see �gure 9). We consider the optimal control problem:

Minimize J =
Z T

0

q
_x2 + _y2dt = V T; (5)

subject to (3) and (4), with X(0) = (M0; �0) and such that, at the unspeci�ed terminal time T ,
M(T ) 2 T and �(T ) = �.

The determination of optimal paths is done as follows: In section 2.1 we characterize extremal
solutions by applying PMP [15] along the lines of [24], [4], and [23], then in section 2.2 we complete the
characterization of optimal paths by using global geometric arguments. From this result we construct
a synthesis of optimal paths in section 2.3 which provides a complete solution to the problem. Finally,
in section 2.4 we show that our result can be con�rmed by applying a theorem which guarantees
su�cient optimality conditions from the regularity properties of the synthesis [3], [14].

1By \route" or \path" we refer to a curve in the plane where the vehicle moves. The former is preferred to indicate

prespeci�ed reference curves. By \trajectory" we mean a path with an associated time law.
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2.1 Characterization of extremal arcs

As the linear velocity v is constant, the minimum-length problem is equivalent to a minimum-time
problem. The Hamiltonian associated to our problem is

H( ;X; !) =  1V cos � +  2V sin � +  3!; (6)

where  = ( 1;  2;  3)
T is the system costate.

We will consider controls in the class ! of piecewise continuous function on [0; T ] taking values in
[�V

R
;+V

R
]. Such choice for the admissible controls, motivated by practical applications, may appear

to be somewhat restrictive. However this is not the case. In fact, necessary conditions for extremals
could be worked out for the much more general class of bounded measurable controls, in exactly the
same way as we do below for piecewise continuous controls (see [15]). However, we will show that the
class 
 actually contains optimal controls, hence no improvement in cost could be obtained by using
bounded measurable controls that are not in 
.

According to PMP, a necessary condition for the control !�(t) to be optimal is that the adjoint
vector  (t) is continuous and nonzero, and that there exists a negative constant  0, such that at all
times t 2 [0; T ]

� 0 = H( (t); X(t); !�(t)) = min
!2


H( (t); X(t); !(t)); (7)

Writing the adjoint equations

_ (t) = �
@H

@X
( (t); X(t); !�(t)) (8)

we get
@H

@x
=
@H

@y
= 0 )  1 and  2 are constant;

and
@ 3
@t

= �
@H

@�
= V ( 1 sin � �  2 cos �) =  1 _y �  2 _x;

which gives
 3(t) =  3(0) +  1(y(t)� y(0))�  2(x(t)� x(0)): (9)

From (6), the third costate component  3(t) is the switching function for !�. As described in [23],
two cases may occur along an optimal path:

1. !� is regular, i.e.  3 only vanishes at isolated points of [0; T ]. In that case, we deduce from (7)
that j!j = V

R
and the sign of ! is opposite to the sign of  3. The path is made of arcs C.

2. ! is singular, i.e.  3 vanishes over a non zero interval I � [0; T ]. From nontriviality of the
costate and from (7) we deduce that

� 0 =  1V cos � +  2V sin �; 8t 2 I: (10)

Hence, �(t) keeps constant along I and the resulting motion is a line segment S.

Control switches between two arcs C (points of in
ection) or between an arc C and a line segment
S, occur when  3 = 0. According to (9) the relation  3(t) = 0 determines a vertical plane in
IR2 � [�2�; 2�],

 1y(t)�  2x(t) +  3(0)�  1y(0) +  2x(0) = 0: (11)
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Projecting this plane perpendicularly on the plane of the vehicle's motion we obtain a line D described
by (11), a tangent vector of which is given by ( 1;  2)

T . Hence, the line D supports all line segments
and points of in
ection of all optimal paths.

In our optimal control problem, a supplementary transversality condition applies stating that, at
the unspeci�ed �nal time T ,  (T ) ? T . As (cos�; sin�; 0)T is a vector tangent to T , the transversality
condition states:

cos(�) 1(T ) + sin(�) 2(T ) = 0: (12)

Hence, we have the following:

Lemma 1 Optimal paths solving problem (5) belong to the Dubins' family (1), and are such that

rectilinear segments and points of in
ection belong to an unique line D perpendicular to the target line

T .

On the basis of lemma 1, the family (1), (2) can be further re�ned using geometric arguments.

2.2 Re�nement of the su�cient family

Notation To specify the vehicle's direction of motion, we replace the (C) by (l) for left turn or by (r)
for right turn. Each path will be represented by a word belonging to the family flrl; rlr; lsl; rsr; rsl; lsrg.
Subscripts are used to specify the length of each piece.

Property 1 In the plane of the vehicle's motion, let � be the line of equation ycos �2 + xsin �
2 = 0,

and M , M 0 any two points symmetric with respect to �. If 
 is a path starting from (O; 0) and ending

at (M; �), there exists a path 
 0 isometric to 
, starting from (O; 0) and ending at (M 0; �). The word

for 
0 is obtained by writing the word for 
 in reverse direction.

Property 1 is illustrated by �gure 1. The proof can be directly deduced from [23], lemma 1, p 676.
The problem was stated in terms of ending at (O; 0), but the reasoning for our problem is similar2.

θ )(M ,   

γ’
)(M ,   ’ θ

y

x

.

.

∆
γ

(0 , 0)

Figure 1: Symmetry in plane of the vehicle's motion

Two isometric paths have then naturally the same length, therefore when they link the same two
oriented points they are equivalent for our optimization problem.

2In that work � was denoted by �?

� and the symmetric points here called M and M 0 were called M and M3.
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Consider now the case that the �nal orientation of paths is �. In that case the line � is identical
to the y�axis and the directed points (M;�) and (M 0; �) belong necessarily to the same directed line
T , parallel to the x-axis (see �gure 2). From property 1 both paths are equivalent for linking (O; 0)
to T . This result can be stated in a more general way as follows:

Property 2 If 
 is a path starting from (M; �) and reaching T with orientation � = � � �, there

exists an isometric path 
0 from (M; �) to T . The word for 
0 is obtained by writing the word for 
 in

the reverse direction.

γ’

). .
γ

(0 , 0) x

∆

’(M ,   (Μ ,   )π π T

Figure 2: Isometric paths r(�R+a)la and lar(�R+a)

Property 3 A path CCC is never optimal for reaching tangentially a directing line.

Proof: Suppose that a path larble is optimal for linking a point (M0; �) to T with direction � (same
reasoning for path ralbre). From (2) a necessary condition for such a path to be optimal is that b > �R.
Lemma 1 indicates that both points of in
ection belong to a line D ? T . It follows that b = �R+ 2e.
There exist then necessarily a point M1 belonging to the middle arc r of the path, whose direction is
�+ �. Consider the subpath 
 : r(�R+e)le linking (M1; �+ �) to T . From property 2 there exists an
equivalent path 
0 : ler(�R+e) linking also (M1; �+�) to T . The initial path larble is equivalent to the
path lareler(�R+e) obtained by replacing the subpath 
 by 
0. As this last path contains three points
of in
ection which do not belong to a line D ? T , it cannot be optimal (see �gure 3). The initial path
larble, being equivalent to a nonoptimal path, is itself nonoptimal. 2

According to (1) and property 3 it su�ces to consider paths CSC. Obviously, this path type
contains the subtypes CC, C and SC (a path Sd with d > 0 is trivially not optimal for reaching
tangentially T ).

Property 4 A necessary condition for a path Ca to be optimal is that a � 3�
2 R

Proof: If a = 3�
2 R + " there exist an equivalent path C"C�RC�

2
R which is not optimal because the

line D containing the two points of in
ection is parallel to the target line (see �gure 4). 2
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γ ’

.
.

.

.
. .T

D

α
γ

1 

0

(M  ,α + π)

θ)(M  ,

Figure 3: A path larble equivalent to lareler�+e

. . D

T

ε

Figure 4: A path l 3�
2
R+" equivalent to l"r�Rl�2R

Property 5 A necessary condition for a path CaCb to be optimal is that one of the following two

conditions be veri�ed:

� b 2 [0; �2R] and a 2 [0; b+ �R],

� b 2 [�R; 3�2 R] and a 2 [0; b� �R],

Proof: Consider a path larb with
�
2R < b < �R. The line D ? T containing the point of in
ection I ,

cuts the last arc r at a point N where the control ! does not switch (see �gure 5). However, as stated
in x2.1, the control must switch each time D is crossed; therefore, b 2 [0; �2R] or b 2 [�R; 3�2 R].

- If b 2 [0; �2R] and a = b + �R + ", " > 0, there exists a point (M;� � �) on the �rst arc (�
being the direction of T ). The subpath l(b+�R)rb, linking (M;� � �) to T , can be replaced by an
equivalent path rbl(b+�R) (see �gure 6). The path larb is then equivalent to a path l"rbl(b+�R) which
is not optimal according to property 3. Then, necessarily a 2 [0; b+ �R].

- If b 2 [�R; 3�2 R] and a = b� �R+ ", there exists a point (M;�� �) on the �rst arc l. Using the
same reasoning, we deduce the existence of an equivalent subpath rbla�" linking (M;���) to T . The
initial path larb is equivalent to a path l"rbla�" which is not optimal according to property 3. Then,
necessarily a 2 [0; b� �R].

The same reasoning applies to paths of type ralb. 2

Property 6 A necessary condition for a path CaSdCb to be optimal is that the segment S be perpen-

dicular to T , a 2 [0; �R] and b = �
2R.

Proof: >From lemma 1 the segment S belongs to D ? T . Therefore, necessarily, b = �R
2 or b = 3�R

2 . If
b = 3�

2 R, the path is equivalent to a path CSC�RC�

2
R. The latter is not optimal as it contains a point
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.

.
. T

D

N

I

Figure 5: A path larb with
�
2R < b < 3�

2 R

.
ε

(Μ, α−π)

T. .

Figure 6: A path lb+�R+"rb with b 2 [0; �R2 ]

of in
ection I =2 D (see �gure 7). It follows that b = �
2R. On the other hand, if a = �R+ "; " > 0, we

can construct an equivalent path C"C�RSC�

2
R which is not optimal as it contains a point of in
ection

I =2 D (see �gure 8). 2

. .
T

D

I

. ..
.

Figure 7: A path rasdlb with b =
3�
2 R

At this stage, gathering the preceding properties we can reduce our search for optimal paths to
the family described in table 1.

2.3 Optimal synthesis

We have proven in the previous section that any optimal path reaching the directed line must belong
to the family in table 1. To solve the optimal control problem this family must be further re�ned
to contain an unique optimal path for linking each point in the state space to (0; 0). To do so,
it is be expedient to use path{based coordinates (s; ~y; ~�) 2 IR � IR � S1 (see �gure 9). Here, s is
the abscissa on the path of the normal projection of the center of the vehicle, taken with the same
orientation of the path; ~y represents the (signed) distance from the path of the center of the vehicle,
divided by the minimum turning radius R; and ~� = � � � is the heading error. The path tracking
problem (5) is reformulated in these variables as a minimum{time convergence to the submanifold

8



.

. .

D

I

Figure 8: A path lasdl�
2
R with a = �R+ ".

Ca

ra

la

a 2 (0; 3�2 R]

CaCb

larb

ralb

b 2 (0; �2R] and a 2 (0; b+ �R]

or

b 2 [�R; 3�2 R] and a 2 (0; b� �R]

CaSdC�

2
R

rasdr�
2
R

lasdr�
2
R

rasdl�
2
R

lasdl�
2
R

d > 0 and a 2 [0; �R]

Table 1: Su�cient family of extremal paths connecting to a rectilinear route.

S =
n
(s; ~y; ~�) : ~y = 0; ~� = 0

o
. Equivalently, we will refer to convergence to (0; 0) of the two variables

(~y; ~�) 2 IR� S1 of the reduced state space, which obey the dynamic relationship

_~y = sin(~�) V
R

_~� = !
(13)

For each path type contained in the su�cient family we compute, in the reduced space, the domains
of possible initial points for paths ending at the origin(0; 0).

The construction is done by integrating system (13) backwards for values of ! corresponding to
segment types (! = V

R
for l{arcs, ! = �V

R
for r{arcs, ! = 0 for s{arcs) and for time intervals

corresponding to arclengths as speci�ed in table 1. Explicit integration of dynamics (13) gives:

� For ! = 0, 8><
>:

~y(t) = ~y(0) + V
R
t; ~�(t) = +�

2 ; if ~y < �1 ^ ~� = +�
2

~y(t) = ~y(0)� V
R
t; ~�(t) = ��

2 ; if ~y > �1 ^ ~� = ��
2

~y(t) = 0; ~�(t) = 0; if ~y = 0 ^ ~� = 0

(14)

� For ! = V
R
, (

~y(t) = ~y(0) + cos(~�(0))� cos(~�(0) + V
R
t);

~�(t) = ~�(0) + V
R
t;

(15)
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∼θ

~y  

y  ^

x̂ 

θ

y 

x 

α

T

Figure 9: Path{based coordinates.

� For ! = �V
R
, (

~y(t) = ~y(0)� cos(~�(0)) + cos(~�(0)� V
R
t);

~�(t) = ~�(0)� V
R
t;

(16)

This construction reveals that the mapped domains are adjacents to each other i.e. they just share
part of their boundaries. Furthermore, when two di�erent path are de�ned on the boundary of two
adjacent domains, both path have the same length. Hence, an optimal synthesis in the (~y; ~�) space is
derived from table 1 choosing, when more than one solution exists, a particular one to obtain at the
end a region which, modulo 2� on ~�, covers the whole reduced state space. We obtain a partition of
the reduced state space whose cells are described by the table (17).

Path Type State Space Subset

r f(~y; ~�)j~� 2 (0; 32�); �R(~y;
~�) = 0g

l f(~y; ~�)j~� 2 (�3
2�; 0); �L(~y;

~�) = 0g

rl(1) f(~y; ~�)j~� 2 [0; �); �R(~y; ~�) > 0; �P (~y; ~�) � 0g

[f(~y; ~�)j~� 2 (��
2 ; 0); �L(~y;

~�) > 0; �P (~y; ~�) � 0g
[f(0; �)g

rl(2) f(~y; ~�)j~� 2 (�3
2�;��]; �P(~y;

~�) > 0; �L(~y; ~�) < 0g

lr(1) f(~y; ~�)j~� 2 (0; �2 ); �N(~y;
~�) � 0; �R(~y; ~�) < 0g

[f(~y; ~�)j~� 2 (��; 0]; �N(~y; ~�) � 0; �L(~y; ~�) < 0g

lr(2) f(~y; ~�)j~� 2 [�; 32�); �R(~y;
~�) > 0; �N(~y; ~�) < 0g

rsr f(~y; ~�)j~� 2 (�2 ;
3
2�); �R(~y;

~�) < 0g

lsr f(~y; ~�)j~� 2 [��
2 ;

�
2 ); �N(~y;

~�) < 0g

rsl f(~y; ~�)j~� 2 (��
2 ;

�
2 ]; �P (~y;

~�) > 0g

lsl f(~y; ~�)j~� 2 (�3
2�;�

�
2); �L(~y;

~�) > 0g

sr f(~y; ~�)j~y < �1; ~� = �
2g

sl f(~y; ~�)j~y > +1; ~� = ��
2 g

s f(~y = 0; ~� = 0)g

(17)

where

�R(~y; ~�) = ~y + 1� cos(~�); (18)
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�L(~y; ~�) = ~y � 1 + cos(~�); (19)

�N (~y; ~�) = ~y + 1 + cos(~�); (20)

�P (~y; ~�) = ~y � 1� cos(~�): (21)

Here, for each path type, arc lengths are as speci�ed in the third column of table 1. Notice that, for
notational convenience, each state space subset are denoted by the corresponding path type: when two
subsets have the same corresponding path type, we a�xed indices to the path type to allow distinction
of the two subsets. The synthesis (17) in the reduced state space is described in �gure (10). The
boundaries between subsets are represented by dotted lines, and the direction of motion is represented
by directed curves.

42−2−4 0

σ

σN

R

L

P

π

π−

. rsl

..

lsl

.
lsr

.

rsr

.
lr

.

σ
σ

.

θ

~

~

y

other boundaries

rl 

lr

rl (2)

(1)

(2)

(1)

sr

sl

Figure 10: shortest paths synthesis in the (~y; ~�) - plane

By setting ~y(t) = ~�(t) = 0, and solving (15{16), one obtains that the subsets of the reduced state
space r; l in (17) are connected to the origin by extremal paths of type r and l, respectively, in table 1.
Notice that points (~y; ~�) = (�1; 3�2 ) and (~y; ~�) = (1;�3�

2 ), which correspond to arcs r 3�
2
R and l 3�

2
R in

table 1, have been excluded from r; l, as they can be steered to the origin by a di�erent path of the
same length.

We proceeded analogously to solve the concatenation of a left and right arc (15{16), and viceversa,
so as to obtain that initial points (~y0; ~�0) in the subsets rl(1); rl(2); lr(1); lr(2) of (17) that reach the
origin by, respectively, rl and lr optimal paths. Solving concatenations of arcs of type rsr, lsr, rsl,
and lsl in table 1, for a > 0, one gets the corresponding subsets of initial points in the reduced state
space rsr; lsr; rsl; lsl in (17). In the particular case that a = 0, concatenations of arcs of type sr and sl
must be solved, yielding initial points (~y0; ~�0) in the subsets sr; sl of (17), respectively. Finally, solving
arcs of type s backward from the origin one obtains the origin of the reduced state space s = f(0; 0)g.
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Therefore, as this partition de�nes a unique optimal path for linking each point to the origin, the
optimal control problem is completely solved. We have the following proposition:

Proposition 1 The twelve subsets l, r, rl(1), lr(1), rl(2), rl(2), rsr, lsr, rsl, lsl, sr, sl, plus the origin

~o = f(0; 0)g determine a partition of the reduced state space, (modulo 2� on ~�) de�ning a synthesis of

optimal paths.

2.4 Regularity of the synthesis

The optimality of the synthesis can be con�rmed a posteriori by using a veri�cation theorem based on
the notion of regular synthesis [14]. We consider the the classi�cation of optimal feedbacks provided
by Bressan and Piccoli [3]. This result provides su�cient optimality conditions under the hypotheses
that the synthesis veri�es some regularity conditions. Consider the construction de�ned by (17).
Every trajectory de�ned by the synthesis is extremal as it veri�es the necessary conditions of PMP.
Furtheremore, the synthesis is total as the thirteen subsets l, r, rl(1), lr(1), rl(2), rl(2), rsr, lsr, rsl,
lsl, sr, sl and s have void mutual intersections, and their union corresponds to the whole reduced
state space IR�S1. Moreover, the cost function of our optimal control problem, namely the length, is
continuous and the synthesis function is di�erentiable almost everywhere (as it is piecewise constant
and takes its values in f�1; 0;+1g). Hence, the synthesis veri�es the required regularity conditions
and the optimality of paths follows.

3 Optimal feedback control

In this section, we consider the stability and convergence properties of a feedback control law !(~y; ~�)
that is piecewise constant over the thirteen non{overlapping regions of the synthesis (17). Switchings
of the control signal will occur as the continuous evolution of the system state leaves a subset of the
partition and enters a di�erent one. Due to such coupling of continuous and discrete phenomena,
a proper framework to describe and study the resulting closed{loop system is the hybrid systems
framework (see e.g. [12]).

The hybrid optimal feedback control is characterized by three modes:

� go straight; where ! = 0;

� turn right; where ! = �
V

R
; (22)

� turn left; where ! = +
V

R
:

selected, according to Proposition 1, as follows

� go straight;

if (~y; ~�) 2 
0 = sr [ sl [ s;

� turn right; (23)

if (~y; ~�) 2 
� = r [ rsr[ rsl [ rl(1) [ rl(2);

� turn left;

if (~y; ~�) 2 
+ = l [ lsr [ lsl [ lr(1) [ lr(2);
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Figure 11: Hybrid model of the closed-loop system.

In �gure 11 the model of the closed{loop hybrid system obtained applying feedback control (22{
23) to dynamics (13) is reported using the hybrid automaton formalism (see [13]). The semantic
of the closed{loop hybrid model is very simple: the hybrid system remains in a given mode q 2
fgo straight; turn left; turn rightg as long as all the guard conditions (~y; ~�) 2 
 located on the outgoing
arcs are false; when one of them becomes true, the hybrid system switches to the corresponding new
mode. For, by construction, sets 
0,
+ and 
� are a partition of the domain D(~y;~�), the hybrid
automaton is deterministic.

We have thus far established that the discontinuous control law control (22{23) is an optimal
feedback for system (13). It should be noticed that optimality of feedback does not imply Lyapunov
stability: for instance, the synthesis of Dubins' paths for a vehicle (3) to reach a �xed con�guration,
does not yield a stabilizing law (such system is not small time locally controllable). However, in our
case, the following applies.

Proposition 2 System (13) under feedback control (22{23), is globally asymptotically stable.

Proof: The proof of convergence is implied by the previous discussion (actually, a stronger statement
is true, that the equilibrium con�guration is reached in �nite time). The proof of stability is based on

a direct application of Lyapunov's de�nition in the reduced space of con�gurations �
def
= (~y; ~�)T

8�; 9� : k�0k < � ) k��0(t)k < �; 8t; (24)

where ��0(t) is the solution of (13) with �(0) = �0 at time t.
LetW (�) = ~y2+~�2, and consider its derivatives along the trajectories of the system _W = 2V

R
~y sin ~�+
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~�!. In particular, in the unit disk W (�) < 1, by applying the control (22{23), we have

_W (~y; ~�) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(~yj sin(~�)j � j~�j)2V
R
< 0;h

(~y; ~�) 2 rl(1) ^ ~� > 0
i
_ (~y; ~�) 2 r

(�~yj sin(~�j) + j~�j)2V
R
� 0;

(~y; ~�) 2 rl(1) ^ ~� � 0

(�~yj sin(~�j)� j~�j)2V
R
< 0;h

(~y; ~�) 2 lr(1) ^ ~� < 0
i
_ (~y; ~�) 2 l

(~yj sin(~�)j+ j~�j)2V
R
� 0;

(~y; ~�) 2 lr(1) ^ ~� � 0

(25)

Integrating (25) for any � < 1
2 , we obtain

supk�0k�� supt2IR+ W (��0(t)) = sup
t2IR+ W (�(��;0)(t))

= �2

4 + arccos2(1� �
2 ) =

�W (�) < 1

Hence, 8� > 0, choosing either � = 1
2 if � � [ �W (12)]

1

2 , or � = �W�1(�2) otherwise, for any �0 with
k�0k < � we obtain k��0(t))k < � < 1. 2

4 Experimental results

To check the practical feasibility of the feedback control strategy above illustrated, experimental tests
have been conducted with a wheeled vehicle (TRC's \Labmate"). The vehicle does not have an
inherent limitation on its turning radius: however, to practical purposes, too high curvatures should
be avoided not to introduce signi�cant nonlinearities in the system (due to slippage of the wheels). We
chose to set the minimum turning radius to 25 cm. in our experiments, and set the forward velocity
to 5 cm/sec. Information on the vehicle position and orientation is obtained by processing odometric
information (encoder measurement of wheel rotations) along with angular measurements given by a
ladar sensor (Siman's \Robosense") mounted on the vehicle. Computations are performed on a remote
PC, linked to an on{board processor through a radio modem link. In order to simulate a situation
where computational resources for the control system are shared with other processes, and are scarce,
we set the sampling frequency to a low 10 Hz.

The main causes of non{ideality of the experimental setup, w.r.t. to the model used in the
theoretical development above are thus three: i) the vehicle possesses nonnegligible dynamics; ii) state
measurements are a�ected by errors, and iii) low sampling time.

Implementations of switching control signals such as that proposed in (23), on physical plants with
such nonidealities, are doomed to produce vibratory phenomena known as \chattering". An example
of this behaviour is reported in �gure 12, referring to an experiment where raw data from the ladar
sensor where fed directly to the control law (23). The optimal connecting path is in this case of type
rl, but its execution is rather imprecise.

The chattering problem has been extensively studied in relation to sliding{mode control (see e.g.
[25, 20]), and solutions have been proposed that modify abrupt steps in the control with a saturation{
like e�ect. The e�ect of such smoothing of the control is to introduce a thin \boundary layer" around
the curves in state space where discontinuity of the control arises, wherein the system dynamics
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behave di�erently from what expected with perfect switching control. As a net e�ect on the global
performance, we have that asymptotic stability claims reduce to uniform ultimate boundedness of
trajectories. The claim of optimality of trajectories also fails in this case, but a reasonably good
approximation of the optimum can be obtained, as shown in the experimental results below. A
detailed analysis of the behaviour of the proposed technique with boundary layers is currently under
investigation, but goes beyond the scope of this paper. Furthermore, a re�nement of localization
accuracy can be obtained by proper fusion of the two information sources (odometry and triangulation)
in an extended Kalman �lter algorithm.

Results of a typical experiment with boundary layer and �ltered measurements are reported in
�gures 12 and 13. In this case, the shortest connecting path to the rectilinear route is of lsr type.

5 Conclusions

We presented a feedback control technique for connecting the kinematic model of unidirectional non-
holonomic vehicles to rectilinear routes. The proposed solution, besides being of practical relevance
to many application domains (automated vehicles, aircraft cruise control), has the interesting theo-
retical property of being an optimal, globally asymptotic stabilizing law for a nontrivial system. We
reported on an experimental implementation of the technique, which exhibits some problems related
to nonidealities of the physical plant. However, these problems can be overcome by application of
suitable smoothing and �ltering techniques, as documented by experimental validation.

Our results could be extended in several directions. The feedback control law can be applied
to following more general routes, provided that the route curvature is moderate and continuous, by
applying it to the tangent line to the route at the point instantaneously closest to the vehicle position.
More generally, the optimality of the synthesis seems to indicate some degree of robustness of the
proposed controller with respect to modeling errors and measurement noise: these aspects however
should be studied further. Current work is being devoted to investigation of such extensions.

References

[1] M. Aicardi, G. Casalino, A. Bicchi and A. Balestrino: \Closed Loop Steering of Unicycle{like Vehicles via

Lyapunov Techniques", IEEE Robotics and Automation Magazine, pp. 27{35, March 1995.

[2] A. Astol�: \Exponential Stabilization of a Car{like Vehicle", in Proc. 1995 IEEE International Conference

on Robotics and Automation, pp. 1391{1396, 1995.

[3] A. Bressan and B. Piccoli, \A generic classi�cation of time optimal planar stabilizing feedbacks", SIAM

Journal on Control and Optimization 36, (1998), pp.12{32.

[4] J.D. Boissonnat, A. Cerezo and J. Leblong, \Shortest paths of bounded curvature in the plane," in IEEE

Int. Conf. on Robotics and Automation, Nice, France, 1992.

[5] R.W. Brockett: \Asymptotic Stability and Feedback Stabilization", in Di�erential Geometric Control

Theory, Brockett, Millmann and Sussmann, eds., pp. 181{191, Boston, U.S., 1983.

15



[6] X-N. Bui, P. Sou�eres, J-D. Boissonnat, and J-P. Laumond, \The shortest paths synthesis for nonholonomic

robots moving forwards," Proc. of the IEEE Int. conf. on Robotics and Automation, San Diego, California,

USA, 1993.

[7] R.T. M'Closkey and R.M. Murray: \Exponential Stabilization of Driftless Nonlinear Control Systems via

Time{Varying, Homogeneous Feedback", 33rd IEEE Conference on Decision and Control, 1994.

[8] B. d'Andr�ea{Novel, G. Bastin and G. Campion: \Dynamic Feedback Linearization of Nonholonomic

Wheeled Mobile Robots", in Proc. 1992 IEEE International Conference on Robotics and Automation,

pp. 2527{2532, Nice, France, 1992.

[9] A. De Luca and M.D. Di Benedetto: \Control of Nonholonomic Systems via Dynamic Compensation",

Kybernetika, vol. 29, no. 6, pp. 593{608, 1993.

[10] L. E. Dubins: \On curves of minimal length with a constraint on average curvature and with prescribed

initial and terminal positions and tangents", American Journal of Mathematics, vol.79, pp.497{516, 1957.

[11] J. Guldner and V.I. Utkin: \Sliding Mode Control of Mobile Robots", in Proc. IEEE Workshop on Robust

Control via Variable Structure and Lyapunov Techniques, pp. 4{11, Benevento, Italy, 1994.

[12] T. A. Henzinger and S. S. Sastry (eds.), HSCC98, Hybrid Systems: Computation and Control, vol. 1386

of Lecture Notes in Computer Science, Springer, 1998.

[13] T. A. Henzinger, The theory of hybrid automata, in Proc. 11th Annual Symposioum on Logic in Computer

Science, pp. 278{292, IEEE Computer Society Press, 1996.

[14] B. Piccoli and H. J. Sussmann, Regular Synthesis and Su�ciency Conditions for Optimality, SISSA-ISAS

(Int. School of Advanced Studies), Trieste, Italy, 1998.

[15] L.S Pontryagin, V.G. Boltianskii, R.V. Gamkrelidze, and E.F. Mishenko. "The mathematical Theory of

Optimal Processes," Interscience Publishers, 1962.

[16] J. A. Reeds, R. A. Shepp: \Optimal Paths for a Car that Goes both Forward and Backward", Paci�c

Journal of Mathematics, vol. 145(2), 1990.

[17] M. Sampei, T. Tamura, T. Kobayashi and N. Shibui: \Arbitray Path Tracking Control of Articulated

Vehicles Using Nonlinear Control Theory", IEEE Transactions on Control Systems Technology, vol. 3, no.

1, pp. 125{131, 1995.

[18] C. Samson: \Control of Chained Systems Application to Path Following and Time{Varying Point{

Stabilization of Mobile Robots", IEEE Transactions on Automatic Control, vol. 40, no. 1, pp. 64{77,

1995.

16



[19] N. Sarkar, X. Yun and V. Kumar: \Control of Mechanical Systems with Rolling Constraints: Application

to Dynamic Control of Mobile Robots", International Journal of Robotics Research, vol. 13, no. 1, pp.

55{69, 1994.

[20] J.J.E Slotine, and S. S. Sastry: \Tracking control of nonlinear systems using sliding surfaces with applica-

tions to robot manipulators", Int. J. Control, vol 38, pp.465{492, 1983.

[21] O.J. Sordalen and C. Canudas de Wit: \Exponential Control Law for a Mobile Robot: Extension to Path

Following", IEEE Transactions on Robotics and Automation, vol. 9, no. 6, pp. 837{842, 1993.

[22] O.J. Sordalen and O. Egeland: \Exponential Stabilization of Nonholonomic Chained Systems", IEEE

Transactions on Automatic Control, vol. 40, no. 1, pp. 35{49, 1995.

[23] P. Sou�eres, J-P. Laumond \Shortest Paths Synthesis for a Car-Like Robot," IEEE Transaction on Auto-

matic Control, Vol. 41, NO. 5, May 1996.

[24] H.J. Sussmann and W. Tang, \Shortest paths for the Reeds-Shepp car : a worked out example of the use

of geometric techniques in nonlinear optimal control," Report SYCON-91-10, Rutgers University, 1991.

[25] Utkin, V.I.: \Sliding Modes and their Application in Variable Structure Systems", Mir Publishers, Moscov,

1978.

[26] G. Walsh, D. Tilbury, S. Sastry, R. Murray and J.P. Laumond: \Stabilization of Trajectories for Systems

with Nonholonomic Constraints", memorandum no. UCB/ERL M92/11, Electronics Research Laboratory,

College of Engineering, University of California, Berkeley, U.S., 28 January 1992.

17



0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

0 5 10 15 20 25 30

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 12: Experiment 1: (Chattering control) From top to down: reference route and vehicle

position as measured during execution of the feedback control law; the same positional data in the

reduced state space; control input vs. time.
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Figure 13: Experiment 2: Same sequence as before with smoothed control.
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