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Abstract—Multi-robot fleets play an important role in indus-
trial logistics, surveillance, and exploration applications. A wide
literature exists on the topic, both resorting to reactive (i.e.
collision avoidance) and to deliberative (i.e. motion planning)
techniques. In this work, Null Space Based Inverse Kinematics
(NSB-IK) methods are applied to the problem of fleet manage-
ment. Several NSB-IK approaches existing in the literature are
reviewed and compared with a Reverse Priority approach, which
originated in manipulator control and is here applied for the
first time to the considered problem. All NSB-IK approaches
are here described in a unified formalism, which allows: (i) to
encode the property of each controller into a set of seven main
key features, (ii) to study possible new control laws with an
opportune choice of these parameters. Furthermore, motivated
by the envisioned application scenario, we tackle the problem of
task switching activation. Leveraging on the iCAT TPC technique
[1], we propose a method to obtain continuity in the control in
face of activation or deactivation of tasks and subtasks by defining
suitable damped projection operators. The proposed approaches
are evaluated formally and via simulations. Performances with
respect to standard methods are compared considering a specific
case study for multi-vehicles management.

I. INTRODUCTION

In many applications multi-robot fleets are required to safely
and autonomously navigate in partially known environments,
while achieving some individual or shared objectives such as
maintaining a specific formation, moving to a desired location,
avoiding obstacles, all at the same time. Typical scenarios
arise for instance in intralogistics, service, exploration, search
and rescue, and surveillance robotics. A possible way to
manage complex objectives is to divide them into several sub-
problems (tasks); in doing so, the problem for the control
designer consists in merging such tasks to obtain a satisfactory
collective behaviour. These approaches are appealing for on-
line path planning of shared objectives: tasks are planned
directly in the task space and mapped back to the system
configuration by defining proper functions to relate these two
spaces. This reduces the complexity required by decoupling
task allocation (i.e., defining a proper goal for each agent at
each time) and motion planning (i.e., finding a feasible, pos-
sibly optimal path to the goal state while ensuring constraint
satisfaction). The resulting architecture allows the control of
heterogeneous fleets: each basic unit can accomplish different
tasks according to its characteristics, but it is supported by a
unified modular functional control architecture. Agents can be
treated as individual or cooperative ones by properly defining
their active set of tasks, which is usually context dependent.
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Task-based control strategies have been proved to be suit-
able tools to obtain feasible, locally optimal trajectories both
in centralized and decentralized control architectures [2–12].
The main difference within these approaches consists in how
behaviours are merged together. For this purpose, some tech-
niques originally developed for manipulators, e.g., the Null
Space Based Inverse Kinematics (NSB-IK), have been applied
to fleets in [5–13] to explore redundancy (i.e., accomplish
the greatest possible number of tasks) while managing the
possible conflicts between prioritized tasks. Differently from
other strategies, such as the motor schema control [3] or the
layered control system [2], in fact, NSB-IK controllers ensure
the correct task hierarchy by construction while, before being
executed, each task is projected in the null space of its higher
priority ones. As consequence, in case of competitive (linearly
dependent) tasks, the one with an higher priority will prevail
on the conflicting parts.

In this paper, we investigate the efficacy of different NSB-
IK methods, such as the Standard Approach (SA) based on
Augmented Jacobian [14], the Singularity Robust (SR) [15]
and the Reverse Priority algorithm (RP) [16], to map sets of
prioritized tasks, originated for managing multi-vehicle fleets,
into continuous robots’ velocity profiles. While the Reverse
Priority algorithm was proven to achieve better performance
in terms of task priority satisfaction with robotic manipulators
[16], to the best of authors’ knowledge, the approach has
never been used for fleet management. Motivated by the
application scenario, we tackle the problem of time-varying
task activation, which may lead to discontinuities in controls
using standard NSB-IK methods [1, 17]. In particular, a novel
task priority technique named iCAT TPC (inequality Control
objectives, Activation and Transition Task Priority Control)
was proposed in [9, 11], extending the Standard Approach to
cope with time-varying activation of multi-dimensional tasks.
Conversely, this problem was only partially addressed in the
Reverse Priority and the Singularity Robust methods1. Hereby,
we investigate how to fit the core concepts of the iCAT TPC
approach into the other NSB-IK families. Moreover, we aim
to formally define new control laws and the related properties.

In summary, the novel contributions of this paper are
threefold:
1. we propose a unified formalism for the NSB-IK approaches,

which allows to map performances into a set key features.
2. We extend the iCAT TPC [1] to the Singularity Robust

and the Reverse Priority frameworks to handle time-varying
activation of multi-dimensional tasks. To the best of the

1Specifically, only single-row tasks with time varying activation have
been integrated in the RP algorithm in [18] to model unilateral constraints
while preserving continuity. Also, inequalities control objectives have been
integrated in the Singularity Robust approach using binary activation functions
in [7] or via task scheduling in [19, 20], disregarding continuity.



authors’ knowledge, none of the existing SR- or RP-
based approaches is currently achieving this objective while
preserving good tracking, correctness of the task hierarchy
and continuity of controls1.

3. We investigate the effectiveness of different NSB-IK high-
level controllers for managing fleets of heterogeneous
robots subject to possibly coupling prioritized tasks.

We formally prove the properties and the conditions under
which the new control laws ensure the optimal execution
of tasks. For this purpose, the theory on pseudoinverse of
partitioned matrices have been extended to understand the
effect of introducing weighting matrices in null spaces.

The paper is organized as follows. The problem is for-
mally stated in Section II. Section III recalls the necessary
background on null space based approaches. Then, the iCAT
TPC control is presented in Section IV and extended for the
Singularity Robust and the Reverse Priority approaches. More-
over, Section V formalizes some useful tasks for controlling
fleets. Simulations are reported in Section VI, where all the
NSB techniques are compared. Finally, conclusion is given
in Section VII. Also, some theorems for pseudo-inverses of
partitioned matrices and iterative formulations of projectors
are formally derived in Appendix (Section VIII).

II. PROBLEM FORMULATION

Notation. Scalar values are denoted with lowercase normal
font characters (e.g., α). Bold lowercase (e.g., v) and bold
uppercase symbols (e.g., M ) are used for vectors and matrices
respectively. The identity matrix is referred as I . For reader
convenience, Table I lists the main symbols used in this paper.

The goal of this work is to design a centralized high-level
control architecture to coordinate a fleet of N heterogeneous
mobile robots {r1, . . . , rN}, which are required to accom-
plish different activities simultaneously, such as avoiding an
obstacle, tracking a reference trajectory, and maintaining a
desired formation. Hence, the objective is to determine robots
reference controls such that
• the hierarchical structure is ensured (i.e., in case of

conflict between two tasks, the one with a higher priority
will prevail);

• for each task, the best possible execution will be achieved
according to the given hierarchy (i.e., the portion of lower
priority tasks that complies with the higher priority tasks
will be preserved).

For this purpose, let qi ∈ Rni be the generalized coordinates
of a generic ni-DoF robot ri obeying to non linear control
affine dynamics q̇i = Gi(qi)νi, with νi ∈ Rpi , pi ≤ ni
being the command velocities. Let q = (q1, . . . , qN )

T ∈ Rn
be the state of the system, with n =

∑N
i=1 ni. For simplicity

of discussion and without loss of generality, we consider the
robots fully actuated, i.e., each Gi(qi) is full row rank ∀qi.
Therefore, the vector q̇ will be used as the control vector from
now on. Kinematic constraints and robot dynamics are not
taken into account and low-level controllers are assumed to
be able to opportunely track the given reference velocities.

An m-dimensional task is a control objective f(q) = xd
(i.e., bilateral task) or f(q) ≤ xM (i.e., unilateral task),

where f : Ω → Rm,Ω ⊂ Rn is the task function which
allows to compute the level of accomplishment of the control
objective and xd (or xM ) is a desired (maximal) value of
the task variables x = f(q). Examples of useful tasks for
controlling mobile robots can be found in [7, 9, 12, 23] such as
safety (e.g., ensuring a minimal distance from obstacles), con-
nectivity (e.g., constraining the maximal reciprocal distance
between agents), motion control (e.g., moving to a desired
location, tracking a reference trajectory) and fleet formation
(e.g. maintaining a rigid formation).

Tasks are ordered according to a priority list; tasks with the
same priority are collected into multi-dimensional tasks.

Two tasks are linearly independent (l.i.) if there is no
reciprocal interference between them (i.e., it possible to find
a vector of commands which reduces both the task errors
simultaneously).

The system is redundant with respect to a given m dimen-
sional task A if it is possible to define a task B such that A
and B are linearly independent.

The problem of finding reference velocities, given a set
of prioritized tasks, can be formalized as a hierarchical con-
strained optimization problem. This formulation is equivalent
to the hierarchical constrained Inverse Kinematics (IK) prob-
lem for the cartesian control of manipulators, where the com-
mands are joint velocities and the control objectives are usually
related to the pose of the end effector, collision avoidance and
joint limits. Consequently, priority-based algorithms originally
developed for manipulators are a suitable tool which can be
applied to our purpose, as it will be shown next.

III. NSB-IK FRAMEWORK

Null Space Based algorithms are a class of hierarchical,
prioritized IK solvers which exploit the kinematic redundancy
of the system for the fulfillment of a number of constraints,
while guaranteeing the correct task hierarchy with a low
computational complexity (see [14–16, 24] and the references
therein for details). The key point of these methods is the use
of projection matrices to filter out the contribution of each
task which does not comply with the given task hierarchy.
Hereby, a generalized formulation is presented to summarize
the state-of-the-art of the NSB methods while highlighting the
main differences in terms of performances and robustness to
singularities. Also, for the sake of clarity, necessary definitions
and notation are reported. .

A. Mathematical Background
Assuming task functions to be differentiable, the NSB meth-

ods solve the inverse mapping between tasks and commands
at a differential level, obtaining a locally linear map between

the vectors ẋ and q̇. Let J(q) =
∂f (q)

∂q
∈ Rm×n be the task

Jacobian such that
ẋ = J(q)q̇. (1)

Hereafter, the dependence on q is omitted for notational
convenience.

The vector ẋ can be used for the purpose of tracking a
desired reference trajectory (xd, ẋd) by setting

ẋ = ẋd +K (xd − x) , (2)



Symbol Description
{r1, . . . , rN} Robots in the fleet.

q = {q1, . . . , qN} State of the system, with qi ∈ Rni being the ni-DoF generalized coordinates of robot ri.
{x1, . . . ,xl} Set of tasks with decreasing priority (the lower the priority index, the higher the priority of the task).
xi = f i(q) i-th task with task function f i : Ω→ Rmi , Ω ∈ Rni .
Ji =

∂fi(q)
∂q

Jacobian of the i-th task.
ẋi = Jiq̇ Task rate, with q̇ being the control vector.
xM (xm) Upper (lower) bound of an inequality task x ≤ xM (x ≥ xm).

Tc Sampling time.
Ki Positive definite matrix of gains for the i-th task.
Si Task manifold at the i-th iteration.

(xd,i, ẋd,i) Task and task rate reference values of the bilateral task xi.
JT

A,i = (JT
1 , . . . ,J

T
i ) Augmented Jacobian (transposed) at the i-th iteration.

JT
RA,i = (JT

i , . . . ,J
T
l ) Reversed Augmented Jacobian (transposed) at the i-th iteration.

UΣV T , Σ = diag(σi) Singular Value Decomposition of a matrix.
�{a:b,c:d} Matrix selector operator (extracting rows with indices from a to b and columns from c to d).

�] = {�#,�#,d,�#,A,Q} Pseudoinverse operators: �# Moore-Penrose, �#,d damped [16, 21] with damping parameters (ε, λmax),
�#,A,Q regularized as defined in [1] (Equation 5).

P ∗, Ψi, Φi Projectors in a proper null space of tasks.
kf Forgetting factor [18, 22].

Ai = diag(ai,1, . . . , ai,mi ) Activation matrix of xi, with smooth sigmoidal functions ai,j ∈ [0, 1].
�̌ = {�, �̄} Rows-selection operators: � selects all the rows; �̄ selects only the rows s.t. ai,j > 0.

L = {+,−} Orders for merging tasks: {−} from higher to lower priority (i.e., in Eq. (4) i− = i− 1, 0L = 0, lL = l);
{+} from lower to higher priority (i.e., in Eq. (4) i− = i+ 1, 0L = l + 1, lL = 1).

Y i, W i Weighting matrices.
C∗ = (L, �̌, {Y i}, {W i}, {�]}, {Ψi}, {Φi}) Generalized notation for different NSB-IK control laws; {Φi} is omitted whenever Φi = Ψi for each i.

Π∗ Permutation matrix.
ei = xd,i − xi i-th task error.
ẋi − Jiq̇ i-th task error rate.

ζi Performance index of the i-th task.

TABLE I: List of the main symbols.

where K is a positive definite matrix of gains.
From now on, the vectors ẋ and ẋ− Jq̇ are referred to as

task rate and task error rate, respectively.
Let

S =

{
arg min
q̇∈Rn

‖ẋ− Jq̇‖2
}

be the task manifold containing the subspace of Rn on which
the task error rate is minimized. Also, let q̇N ∈ Rn be a
generic velocity. The vector q̇ ∈ S and closest to q̇N can be
computed by solving the optimization problem

arg min
q̇∈S

‖q̇ − q̇N ‖
2
,

and is given by

q̇ = J#ẋ+ PN q̇N = q̇N + J# (ẋ− Jq̇N ) , (3)

where PN = I − J#J ∈ Rn×n is the projector in the
Jacobian’s null space, �# is the Moore-Penrose pseudoinverse
operator2.

Notably, if the task is feasible (i.e., ẋ ∈ span(J)), then (3)
and (2) ensure x converges exponentially to xd with rate K3.
Conversely, if ẋ /∈ span(J), then ‖xd − x‖ ≥ 0.

Moreover, close to a singularity (i.e., q such that J is not
full row rank – f.r.r. from now on), the matrix J# will become
ill-conditioned and the use of a regularized pseudoinverse

2Any generalized pseudoinverse operator �† ensures JPN = 0 since
JJ†J = J . However, q̇ ∈ arg minq̇∈Rn ‖ẋ− Jq̇‖2 is ensured only if
�† = �# in (3). See [25] for details.

3Note that (3) and (2) ensure a null tracking error for any (xd, ẋd) ∈ R2m

and for any temporal evolution of q iff J full row rank for each q. However,
the task error may be null for some (xd, ẋd) and q(t) even if span(J) ⊂ Rm.

J#,d is required to prevent high values of q̇. The task manifold
is modified as follows

S =

{
arg min
q̇∈Rn

‖ẋ− Jq̇‖2 + ‖q̇‖2R

}
,

where R ≥ 0 is a regularization matrix which allows to
weight the trade-off between performances and control effort.
As in [15, 16], we consider the Singular Value Oriented
Regularization (SVO) with a variable damping factor [21],
that is here briefly reported for reader convenience.

Let J = UΣV T be the Singular Value Decomposition of
J , where U ∈ Rm×m and V ∈ Rn×n are unitary matrices
with columns ui and vi respectively, and Σ is a block diagonal
m×n matrix of rank ρ, composed by a leading ρ×ρ diagonal
matrix, containing the singular values σi ≥ 0 (i = 1, . . . , ρ) of
J in decreasing order (σi ≤ σj for i > j), and a m− ρ zero
matrix. Letting R = V ΛV T , where Λii = λ2

i and Λij = 0
for i 6= j, the damped pseudoinverse is computed as

J#,d =

ρ∑
i=1

(
σi

σ2
i + λ2

i

viu
T
i

)
.

Specifically, as in [15, 16], each λi is computed as

λ2
i =


(

1−
(σm
ε

)2
)
λ2

max if σi < ε,

0 otherwise

where σm is the smallest singular value and the parameters
ε > 0 and λmax are used, respectively, to define the range
of the damping action and the largest damping factor used
near singularities. Accordingly, only the directions of the task
that require high speed values, corresponding to small σi, are



penalized. Note that when the damping is used, the projector
J#,d is deformed, and the a correct formulation of PN is
given by PN = I −

∑ρ
j=1 vjv

T
j .

B. Merging different tasks: a unified formalism.

Let x =
(
xT1 , . . . ,x

T
l

)T
be an ordered list of multi-

dimensional tasks, where i < j when xi has a higher priority
than xj , ẋi = J iq̇ ∈ Rmi and

∑l
i=1mi ≤ n. Also, let

Ai = diag(ai,1, . . . , ai,mi) be the activation matrix of xi,
where each ai,j ∈ [0, 1] is a smooth sigmoidal function used
as weight of the related control objective in the optimization
problem (Fig. 1). Each subtask xi,j is active when ai,j = 1,
inactive if ai,j = 0, or in transition when 0 < ai,j < 1. The
matrices {Ai} allow to integrate inequality and time-varying
constraints in the NSB framework in a sub-optimal but less
computational-demanding way [1, 17, 18] when compared to
state-of-art QP solvers (e.g., active sets based). In particular,
inequality constraints will be transformed in equality ones (by
introducing slack variables) and will be smoothly activated/de-
activated when necessary.

Fig. 1: Example of activation function ai,j for an inequality
constraints ‖x‖ ≥ xm, x ∈ R2, with βm ≥ 0 being the related
slack variable.

Different NSB-IK methods have been proposed in the litera-
ture [1, 14–18] and are here defined by a unified notation with
the tuple C∗ = (L, �̌, {Y i}, {W i}, {�]}, {Ψi}, {Φi}) en-
coding the key features of each approach, where L ∈ {+,−}
is the order (+ ascendant, − descendent) of going through
the list of tasks (where, according to L, i− is the predecessor
of i, 0L refers to initial values, and 1L, lL are the first and
the last elements of the task list respectively), �̌ is a rows
selector operator, Y i and W i are weighting matrices, �] is
a pseudo inverse operator, Ψi and Φi are projection matrices.
Consequently, the general iterative step can be written as4

q̇i = q̇i− + Ψi

(
Y̌ iJ̌ iΦi

)]
W̌ i ( ˙̌xi − J̌ iq̇i−)

for i ∈ {1L, . . . , lL} s.t. W̌ iJ̌ i 6= 0,
(4)

with Ψ0L
= I , Φ0L

= I . Also, according to [22], at each
discrete time k, q̇0L

= kf q̇lL(k − 1), with kf ∈ [0, 1]
acting as a tunable forgetting factor. We denote as Si(k) the
search space at the i-th step and S(k) the manifold of the
solution at time k. Selected C∗ relevant for this paper are
reported in Table II; for convenience, a simplified tuple C∗ =
(L, �̌, {Y i}, {W i}, {�]}, {Ψi}) is used whenever Φi = Ψi

for all i. In particular: (i) the tuple (L, {Ψi}, {Φi}) selects
between the three families of NSB-IK controllers, resulting in

4If Φi = Ψi for all i, then the term Ψi(Y̌ iJ̌iΦi)
] of (4) is sometimes

written as (Y̌ iJ̌iΨi)
]. Note that the equivalence holds only if �] is a

generalized pseudoinverse and Ψi is idempotent and Hermitian [26].

different performances in terms of optimality, correctness of
the hierarchy and robustness with respect to both kinematic
and algorithmic singularities (see definitions in Table II); (ii)
the tuple (�̌, {Y i}, {W i}, {�]}) allows to explore different
solutions to handle time-varying tasks, where key metrics
are orthogonality of projectors (correctness), stability and
smoothness of the vector q̇.

One main concern in the introduction of task activation
is that it may exists i ∈ {1, . . . , l} and a discrete time k
s.t. Si(k) changes discontinuously with respect to Si(k − 1).
Therefore, projectors

(
Y̌ iJ̌ iΦi

)]
, Ψi, Φi and controls may

be discontinuous (see Fig. 2 for an example). Specifically,
with reference to the notation given in Table II, single-row
time-varying tasks can be smoothly activated/deactivated by
the use of C∗ =

(
L, �̄, {I}, {Ai}, {�#}, {Ψi}, {Φi}

)
(e.g.,

[17, 18]), but extensions to the multi-dimensional case are not
straightforward [1, 17].

Fig. 2: Discontinuity of (Ψi,Φi): Let CRP =
({+}, �̄, {I}, {Ai}, {�#}, {P̃ i+1}), with P̃ i+1 defined
as shown in Table II. P̃ i+1 does not preserve the continuity if
a1 = 1, a2,2 = 1 and a2,1 changes from 0 to ε > 0 (provable
by computation). As we will see in Section V, J1 and J2,1

formalize a task of collision avoidance, while J2,2 requires
to maintain the centroid of the fleet on a reference trajectory
xc,ref .

Remark 1. Extensions C∗ =
(
L, �̄, {I}, {Ai}, {�#}, {Ψi}

)
of the methods in Table II with smooth activation functions
and continuous references ensure the continuity of q̇(k) by
construction only if subtasks/tasks are perfectly decoupled [30]
(orthogonal in [27]), i.e., only if:
a. J i is f.r.r. ∧ J i,jJTi,k = 0, ∀i, j 6= k. [SA, SR [15], RP]
b. J iJTj = 0 ∀i, j 6= i. [SA, RP]
Proof. See Appendix VIII-B. In short: (a) ensures the con-
tinuity of J#

i [30], while (b) prevents jumps of the optimal
solutions due to changes of S(k) [17, 18]. Notably, the l.i. of
tasks and subtasks is not sufficient to prevent discontinuities
for all {(xd,i, ẋd,i),Ai}.

Smoother solutions can be obtained by choosing �] = �#,d

and high damping values [15, 31, 32]. However, the higher the
damping factor, the lower the accuracy in tracking references
[30]. Remarkably, the trade-off between performance and

5A coupled yet still suboptimal formulation of the SR approach with Φi =
I , Ψi = I − J#

A,i−1JA,i−1 is given in [24], with the stability analysis
in [27] and the extension for set-based scalar inequality constraints in [19, 20].
To remark differences between coupled/decoupled methods, in this paper we
opt for the decoupled formulation as also in [7, 16, 27, 29].



Terminology:
a. Kinematic singularity: Ji is not full row rank (f.r.r.).
b. Algorithmic singularity: ∃i, j 6= i ∈ {1, . . . , l} s.t. (JT

i ,J
T
j )T is not f.r.r. (tasks are not linearly independent).

Summary of issues:
a. If L = {−}, then the method is optimal only with f.r.r. linearly independent tasks (projectors may be deformed due to the damping action, so high

priority tasks may not be executed at their best due to linearly dependent tasks with a lower priority).
b. When Φi = I for all i, the solution is searched in Rn and then projected in the null space of the higher priority tasks. Consequently, all the task errors

will converge to zero only if the conditions in [27] are verified.
Computational complexity: The computational complexity of all of CSA, CSR and CRP (s.t. �] = �#) is O(mn2), with x ∈ Rm and q ∈ Rn. Proofs are
trivial and are omitted for brevity. Remarkably, the complexity of each control law C∗ mostly depends on the complexity of computing pseudo inverses of
matrices (and hence by the definition of �] – see also [1, 17] for further details).

NON TIME-VARYING APPROACHES (1)

Standard Approach
(SA) [14]

CSA = ({−},�, {I}, {I}, {�#}, {PA,i−1}),

where J̌A,0 = J̌i, J̌A,i =

(
J̌A,i−1,
J̌i

)
,

PA,0 = I,

PA,i = I − J̌#
A,iJ̌A,i =

= PA,i−1 − (J̌iPA,i−1)#(J̌iPA,i−1).

Si−1 = {q̇i−1 + PA,i−1νi−1,νi−1 ∈ Rn}, S0 = Rn,

Si = {arg min
q̇∈Si−1

‖ẋi − Jiq̇‖2}.

• Optimal only with f.r.r. and linearly independent tasks.
• In case of singularities, the hierarchy is corrupted.
• Extended to handle multi-dimensional unilateral tasks in [17].
• Extended to handle multi-dimensional time-varying tasks in

[1] (iCAT TPC Approach).

Singularity Robust
Approach (SR) [15]5 CSR = ({+},�, {I}, {I}, {�#}, {I}).

Si = {arg min
q̇∈Rn

‖ẋi − Jiq̇‖2}

is projected in the null space of the tasks j < i.

• Optimal only under strict conditions [27].
• Algorithmic singularities are avoided by design.
• Damping parameters can be specifically tuned for each task.
• Unilateral tasks are handled through scheduling in [7].
• Extension to handle multi-dimensional time-varying tasks is

one of the contribution of this paper (see Section IV-A).

Reverse Priority
Approach (RP) [16] (2)

CRP = ({+},�, {I}, {I}, {�#}, {P̃ i+1}),
where(3) P̃ i+1 is the null space of those
elements of the l − i − 1 lower priority tasks
that are linearly independent from the i-th.
Since (J̌iP̃ i+1)

#
= Ť i

(
J̌iŤ i

)# [16],
practically, we should compute the matrix
Ť i = (J̌

#
RA,i){:,1:m̌1} ∈ Rn×m̌i , where

J̌RA,i is the Reverse Augmented Jacobian,
recursively computed as J̌RA,l = J̌i,
J̌

T
RA,i = (J̌

T
i , J̌

T
RA,i+1).

Si+1 = {q̇i+1 + P̃ i+1νi+1,νi+1 ∈ Rn}, Sl+1 = Rn,

Si = {arg min
q̇∈Si+1

‖ẋi − Jiq̇‖2}.

• Optimal with f.r.r. and linearly independent tasks.
• The hierarchy is never corrupted in case of singularities. In

particular, even if �#,d is required to compute Ť i when
J̌RA,i is not f.r.r., the resulting task deformation is negligible
[16].

• Extended to handle single-row unilateral tasks in [18].
• Extension to handle multi-dimensional time-varying tasks is

one of the contribution of this paper (see Section IV-B).

(1) Original formulation of each control law. Use �#,d instead of �# to handle singularities.
(2) The mathematical support is based on the Greville’s formula for partitioned matrices [25, 28] (see also Appendix VIII-A and [16] for details.
(3) Differently from �̌ and �̄ that are operators, �̃ is just a superscript, and is here maintained to be consistent with the notation in [16, 18].

TABLE II: Null Space Based Approaches - a generalized formulation.

smoothness of controls is actually limiting the use of NSB
controllers (which ensure to execute tasks correctly according
to the hierarchy) to time-varying 1-dimensional tasks [18, 30].
An exception is given for the SA in [11, 17], where generic
m-dimensional tasks have been successfully integrated in the
framework while maintaining both optimality and continuity.
Therefore, leveraging on the approach of [11] (namely, the
iCAT TPC), we aim to overcome this limitation also in the
SR and the RP methods, as shown in the following sections.

IV. ICAT TPC
To prevent discontinuities in the vector q̇ when the manifold

S(k) is changing, two conditions need to be fulfilled [18]:
C1. smooth changes of the manifold S(k) are required, i.e.,

the projectors Ψi, Φi and (Y̌ iJ̌ iΦi)
] should be contin-

uous with activations;

C2. the solution should move with continuity inside S(k), that
is, jumps of the optimal solution should be avoided.

To address both C1 and C2 and to extend the SA approach
for with time-varying tasks activation, the solution proposed
in [11] exploits the regularized operator of [1], defined as

X#,A,Q ,
(
XTAX + V TΛV + γCTC

)#

XTAA (5)

where A is the diagonal activation matrix, Q is a projection
matrix, C = I − Q, V is the right orthonormal matrix of
the SVD decomposition of XTAX + γCTC, Λ is the SVO
damping matrix described in Section III, and γ is a weighting
factor.

Specifically, Equation (5) results from solving the following



optimization problem

argmin
q̇∈Rn

{‖A (ẋ− Jq̇)‖2 + ‖Jq̇‖2A(I−A)︸ ︷︷ ︸
task oriented regularization

+

+
∥∥∥V T q̇

∥∥∥2

︸ ︷︷ ︸
SVO

+ γ ‖Cq̇‖2︸ ︷︷ ︸
minim. controls

},

which allows to cope with discontinuities and chattering
phenomena caused by insertion and deletion of subtasks at
the same priority level [C1]. Then, to prevent discontinuities
which may arise between tasks at different priority levels
[C1+C2], a bi-level optimization problem is posed. Consid-
ering L = {−} and Ψi = PA,i−1, the auxiliary problem

argmin
νi∈Rn

{‖Ai [ẋi − J i (q̇i− + Ψiνi)]‖2 + ‖J iΨiνi‖2Ai(I−Ai)
+

+
∥∥∥V T

i νi

∥∥∥2

Λi

+ γ‖(I −Ψi)νi‖2} (6)

seeks for the lowest possible task error rate which also
minimize the use of control directions of the higher priority
tasks with transient components. V i is the right orthonormal
matrix of the SVD decomposition of

ΨT
i J

T
i AiJ iΨi + γ (I −Ψi)

T (I −Ψi) ,

and Λi is the related SVO damping matrix. Therefore, the task
reference rate is modified to ensure the best possible execution
of the current task while accounting that the null space of the
higher priority tasks is only partially exploitable.

As a result of the bi-level optimization, Equation (4) is
formalized as follows:

CiCAT TPC = ({−},�, {I}, {W i}, {�#,Ai,I}, {PA,i−1}),
W i = J iPA,i−1 (J iPA,i−1)

#,Ai,PA,i−1 ,

PA,i = PA,i−1

(
I − (J iPA,i−1)

#,Ai,I J iPA,i−1

)
,

kf = 0, PA,0 = I.

To address C2, the algorithm also requires the introduction of
an additional task J l+1 = I to saturate the residual degrees
of freedom to minimize ‖q̇‖.

As opposed to other techniques such as [17], (5) ensures a
polynomial complexity in the number of tasks [1]. However,
since L = {−}, the method still suffers from both kinematic
and algorithmic singularities, so the task hierarchy may be
corrupted due to the damping action. This issue may be
solved with reverse methods. For this purpose, an extension
of the iCAT approach is formalized in the following to
properly handle time-varying multi-dimensional tasks within
the Singularity Robust and the Reverse Priority control laws.

A. iCAT SR.

As shown in Remark 1 (see also Appendix VIII-B), the main
source of discontinuities of the method of [15] is related to
the projector J̌

]
i . To achieve C1, the regularized pseudoinverse

operator of [1] is applied to the method of [15], leading to a

control law CiCAT SR = ({+},�, {I}, {I}, {�#,Ai,I}, {I}).
Therefore, at each time k, the vector q is given by

q̇ = J#,A1,I
1 ẋ1 +

l∑
i=2

(
P iJ

#,Ai,I
i ẋi

)
+ P l+1q̇l+1,

P i = (I − J#,A1,I
1 J1) . . . (I − J#,Ai−1,I

i−1 J i−1),

so the operator �#,Ai,I ensures the continuity of projectors
J#,Ai,I and P i.

Moreover, since L = {+}, results of [18, 22] can be
exploited to achieve C2. According to [18, 22], in fact, a
forgetting factor kf close to 1 may prevents jumps between
pareto-optimal solutions at different time k, forcing the solu-
tion at time k to be searched as closest as possible to the one
computed at time k− 1 (see [18, 22] for details).

However, the method may be still sub-optimal with respect
to minimizing all the task errors of subtasks with ai,j = 1 (e.g.,
note that if Ai = I , then CiCAT SR ≡ CSR, so the hypotheses
of [27] are required to ensure that all the task errors converge
to 0).

B. iCAT RP

To to achieve C1 and according to Remark 1, we now
exploit (5) to ensure the continuity projectors (J iP̃ i+1)#

(Section IV-B1) and P̃ i+1 (Section IV-B2) with respect to
activation of tasks. Section IV-B3 leverages on the results of
[18] to also ensure C2. See Fig. 3 for a guide to theorems.
Similarly to [1], formal properties will be proved considering
just the task oriented contribution in (5), that is, for each matrix
J with activation matrix A, then

J#,A,I =
(√
AJ

)#√
AA =

(
J̄

#
0
)(
Ā 0
0 0

)
.6 (7)

1) Continuity of
(
J iP̃ i+1

)#

: Choosing �] = �#,Ai,I ,
we ensure continuity with respect to activation and deac-
tivation of tasks at the same level of priority [1]. Hence,
in the following, we analyze the requirements for en-
suring null task errors with the method defined by the
tuple CiCAT RP = ({+},�, {I}, {I}, {�#,Ai,I}, {P̃ i+1}) and
related to the set of optimization problems in (6), with γ = 0.

Consider a control objective xi,j corresponding to the j-th
row of the task xi. Given a desired value xdi,j , let ei,j =
xdi,j − xi,j be the task error, so that ėi,j = ẋdi,j − J i,j q̇. By
using (2), we have that ėi,j = −Ki,jei,j + εi,j , with Ki,j > 0
and εi,j = ẋi,j −J i,j q̇. At each discrete time k, according to
CiCAT-RP, the control q̇ that can be written as

q̇ = q̇i +

i∑
k=2

P̃ k+1νk, where

νk =
(
JkP̃ k+1

)#,Ak,I (
ẋk − Jkq̇k+1

)
,

6see Equations (32) and (41) of [1]. Also, note that (7) is equivalent to (5)
whenQ = I and

√
AJ is not singular. WhileQ = I is verified (the auxiliary

problem is not used in the proposed formulation), the SVO contribution will be
exploited to preserve the continuity of pseudoinverses when exists ai,j → 0.
However, if Λ is correctly tuned and tasks are regular, then errors caused by
this approximation are relevant only for small values ai,j .



Fig. 3: iCAT Reverse Priority control laws: a guide to Theorems.

so εi,j can be split as εi,j = ε
(i)
i,j + δi,j , with

• ε
(i)
i,j = ẋi,j − J i,j q̇i (i.e., the value of εi,j at iteration i)

defining the dynamics of ei,j due to subtasks at the same
priority level and tasks with lower priority.

• δi,j = −J i,j
∑i
k=2 P̃ k+1νk collecting the dynamics of ei,j

due to the higher priority tasks.
Consequently, ėi,j = −Ki,jei,j ensures ei,j → 0 whenever
εij → 0. We show how the task error has a stable, expo-
nentially decreasing dynamics, whenever it is fully active, i.e.
ai,j = 1, and it is not affected by higher priority tasks, i.e.
δi,j = 0.

Theorem IV.1. Consider the CiCAT RP method, with activation
matrices {Ah}, h ∈ {1, . . . , l} and �] defined according to
(7). Let (xdi,j , ẋdi,j ) ∈ R2 be a generic task reference. The
error ei,j for the i-th task and its j-th components, with δi,j =
0, converges exponentially to zero if and only if ai,j = 1 and
J̄ i is f.r.r..

Proof. According to (4), we have that

ε
(i)
i,j = ẋi,j − J i,j q̇i+1+

+ J i,jP̃ i+1

(
J iP̃ i+1

)#,Ai,I (
ẋi − J iq̇i+1

)
. (8)

Sufficiency: ai,j = 1 and J̄ i f.r.r. =⇒ ∀(xdi,j , ẋdi,j ),
ε

(i)
i,j = 0. Since rank(J̄ i) = rank(J̄ iP̃ i+1) [16], Eq. (8) can

be simplified as follows. Assume J i be f.r.r. and let m̄i ≤ mi

be the rank of Ai (m̄i < mi if and only if some rows are
inactive). Also, let Πi ∈ Rmi×mi be a permutation matrix
such that ΠiAiΠ

T
i = diag(Āi,0). Then, according to (7),

we have that(
J iP̃ i+1

)#,Ai,I

=

[(
J̄ iP̃ i+1

)#

0

](
Āi 0
0 0

)
Πi.

Since J̄ i is f.r.r., then

J i,jP̃ i+1

[(
J̄ iP̃ i+1

)#

0

]
=
[
eTς 0

]
,

where ς is defined by J i,j =
(
J̄ i
)
{ς,:} and eς ∈ Rm̄i is the

vector of the canonical base of Rm̄i with the 1 in the ς-th row
(let we use this notation from now on). Consequently,

J i,jP̃ i+1

(
J iP̃ i+1

)#,Ai,I

=

(
eTς Āi 0

0 0

)
Πi,

and, since J i = ΠT
i

(
J̄ i
∗

)
and ẋi = ΠT

i

(
˙̄xi
∗

)
, (8) is

equivalent to:

ε
(i)
i,j = ẋi,j − J i,j q̇i+1 + eTς Āi

(
˙̄xi − J̄ iq̇i+1

)
=

= (1− ai,j)
(
ẋi,j − J i,j q̇i+1

)
,

so ai,j = 1 =⇒ ε
(i)
i,j = 0.

Necessity: ai,j = 1 and J̄ i f.r.r. ⇐= ∀(xdi,j , ẋdi,j ), ε(i)
i,j =

0. Let us drop the assumption of J̄ i f.r.r.. Let J̄ i be partitioned

as J̄ i =

(
R
S

)
, whereR ∈ Rmr×n is f.r.r., S = χR ∈ Rms×n

and m̄i = mr + ms. According to Corollary VIII.1.1 (see
Appendix), ∃W ∈ Rmr×m̄i such that[(

J̄ iP̃ i+1

)#

0

]
=

[(
RP̃ i+1

)#

W 0

]
.

Let the matrices Āi and W to be partitioned as Āi =
diag(Ār,i, Ās,i) and W =

[
W r W s

]
, where W r ∈

Rmr×mr and W s ∈ Rmr×ms are defined as

W r = I − ηχ = I − χT
[
I + χχT

]−1
;

W s = η = χT
[
I + χχT

]−1
.

Since the matrix RP̃ i+1 is f.r.r., we have that

J i,jP̃ i+1

(
RP̃ i+1

)#

=

{
eTς′ if J i,j = R{ς′,:};

χi,j if J i,j ⊆ S;

where eς′ ∈ Rmr , and χi,j is the row of the matrix χ
corresponding to J i,j . Consider the following two cases:
a. J i,j ⊆ R. The portion of the task error rate related to ẋi,j

depends on the value of

eTς′WĀiẋi = eTς′
[
W rĀr,i W sĀs,i

]( ˙̄xr,i
˙̄xs,i

)
.

Hence, since ˙̄xs,i is an arbitrary vector, then

eTς′WĀi ˙̄xi = ẋi,j ∀ẋi,j ⇐⇒

{
eTς′W rĀr,i = eTς′

eTς′W sĀs,i = 0

that holds only if W s = 0 ⇐⇒ χ = 0, so if and only if
W r = I (due to the definition of W ) and ai,j = 1. The
same conclusion is obtained when the portion of the task
error rate related to q̇i+1 is considered.



b. J i,j ⊆ S. If R is f.r.r., then ‖χη‖ ≤ 1 and χTi,jWĀi ˙̄xi <
ẋi,j (i.e., the task error rate related to rows which are linear
dependent is never null). Consequently, the optimality can
be ensured only if J̄ i is f.r.r..

It is worth noting that J i f.r.r. ⇒ J̄ i f.r.r. , while
J̄ i f.r.r. ; J i f.r.r. . Hence, mi > n is allowed if we ensure
the set of active tasks to be always full row rank.

Theorem IV.1 gives us conditions for a good task tracking
performance neglecting the effect of higher priority tasks. We
now show under which conditions task error is not affected by
linearly independent higher priority tasks, which both leads to
δi,j = 0 and ensures the correct task hierarchy execution.

Theorem IV.2. Given the i-th task, consider higher priority k-
th tasks which are not inactive, {(x̄dk , ˙̄xdk), Āk}, 2 ≤ k ≤ i.
Then δi,j = 0 if and only if J i,jP̃ k = 0.

Proof. Sufficiency. It holds due to the definition of δi,j .
Necessity. Since {(x̄dk , ˙̄xdk), Āk} are arbitrary, then

J i,j
∑i
k=2 P̃ kνk = 0 only if J i,jP̃ k = 0 for each k. The

proof can be given by contradiction. Note that P̃ kνk =
q̇k − q̇k+1 is not null whenever q̇k+1 does not minimize the
cost function of the iCAT RP optimization problem at the k-th
step. Also, by using (2) and (7) each νk can be computed as[

(J̄kP̃ k+1)# 0
]
Ak

(
ẋdk +Kk (xd,k − xk)− Jkq̇k+1

)
,

so activation/deactivation and transient dynamics of high pri-
ority tasks affect ėi,j whenever J i,jP̃ k 6= 0 and Āk 6= 0.

Remarkably, Theorems IV.1 and IV.2 give the conditions for
exponential stability of the error dynamics.

2) Continuity of P̃ i+1: Leveraging upon the solution pro-
posed in [1], our objective is to shape the null space of
J̃ i+1 (i.e., the matrix P̃ i+1) by taking into account the
activation matrix (i.e., Ãi+1), to obtain smooth transitions of
tasks. For this purpose, we propose two methods called iCAT
Conservative RP and iCAT RP.

a) iCAT Conservative RP: The conservative approach
computes the matrix J̃ i+1 considering all the tasks as active. In
doing so, the continuity of the pseudoinverse is granted, and
the resulting projection matrix induces the i-th tasks to live
(if possible) in the portion of the null space which minimally
interfere with the lower priority tasks. Then, the contribution
of the activation is added to weight the directions of the null
space as follows:

P̃ i+1 = I − J̃#

i+1Ãi+1J̃ i+1 . (9)

This leads to a suboptimal but continuous control law, with
a recursive formulation given as shown in Appendix VIII-D.
Continuity and optimality are analyzed in the following theo-
rem.

Theorem IV.3. Given any {(xdh , ẋd,h),Ah}, the projector
P̃ i+1 = I − J̃#

i+1Ãi+1J̃ i+1

a. is continuous with respect to the matrix Ai;
b. ensures εi,j = 0 for each xi,j such that ai,j = 1, xi,j l.i.

from the set {xk : k < i, tr(Ak) > 0}, if and only if J i
is f.r.r. and l.i. to all the other Jh.

Proof. a. Continuity. Since the matrix J̃ i+1 is independent
from the activation values, the use of continuous activation
functions ensures the matrix P̃ i+1 to be continuous with
respect to task activation.

b. Optimality. Sufficiency: Theorem IV.1 ensures ε
(i)
i,j = 0

since ai,j = 1 and J i f.r.r. =⇒ J̄ i f.r.r.. Also, J i f.r.r.
and for each (i, h), h 6= i, span(JTi ) ∩ span(JTh ) = {0}
implies that J̃ i+1 is f.r.r. for each i. Consequently, since
J i,j is l.i. to {Jk}, k < i, then J i,j ⊆ J̃k+1 for each
k ∈ [2, i]. Hence, according to Corollary VIII.1.2, J̃k+1

f.r.r. and ai,j = 1 ensures Theorem IV.2 to hold, so
δi,j = 0 =⇒ εi,j = 0.
Necessity: Theorem IV.1 requires ai,j = 1 and J̄ i f.r.r.
to ensure εi,j = 0 whenever δi,j = 0. Also, linearly
independence between all the tasks and subtasks is required
since inactive rows affect the computation of matrices
{J̃k+1}, k ∈ [2, i]. The proof is given considering the effect
of: (a) inactive rows of J i (SP subtasks) and inactive low
priority (LP) tasks; (b) inactive higher priority (HP) tasks.
(a) J̃k+1 may not be f.r.r. if J i is not f.r.r. or it exists h > i

such that span(JTi ) ∩ span(JTh ) 6= {0}. Consequently,
according to Corollary VIII.1.2, J i,jP̃ k+1 = 0 if J i,j
l.i. to Jk and ai,j = 1 only if all the l.d. LP tasks and
SP subtasks are active.

(b) It may be δi,j > 0 if J i,j l.i. to {J̄k} and ai,j =
1, but J i,j l.d. to {Jk}, k ∈ [2, i]. In such case,
J i,j 6⊆ J̃k+1 =⇒ JTi,j /∈ span(J̃

T

k+1). Consequently,
J i,jP̃ k+1|Ãk+1=I 6= 0 =⇒ δi,j 6= 0 in some cases.

Remark 2. Note that:
• �#,d is still required to preserve the continuity of {P̃ i+1}

when relaxing the hypothesis of f.r.r. and l.i. of Jacobians.
• If

∑l
i=1mi > n, then ∃h ∈ {l, . . . , 1} such that i <

h =⇒ P̃ i+1 = I . Consequently, tasks {xi}h−1
i=1 are as

in the CiCAT SR approach.

b) iCAT RP: The tight constraints imposed by the in-
active tasks, which have been recognized as the source of
suboptimality of the iCAT RP conservative method, can be
relaxed by the use of the following projection matrix:

P̃ i+1 := I −
(
J̃ i+1

)#,Ãi+1,I

J̃ i+1, (10)

where the operator of (5) automatically removes the contri-
bution of the inactive rows from the computation of J̃

#

i+1

while preserving the continuity. A recursive formulation of
the projector is given in Section VIII-E.

With the projector proposed in (10), continuity of the
CiCAT RP method is ensured by the definition of the regularized
pseudoinverse operator in (7). As for the optimality of the
method, we want to guarantee that the new projector exploits
the results of the previous theorems, in particular that it still
holds that active lower priority tasks linearly independent from
higher priority ones are guaranteed to achieve stable tracking.

Theorem IV.4. Given a set {xdh , ẋdh ,Ah}, consider a task
xi,j which is: active, ai,j = 1, and linearly independent from
higher priority tasks which are not inactive, hence in the
set {xk : k < i, tr(Ak) > 0}. Projector (10) guarantees



exponential convergence of task error εi,j if and only if, at
each time k, J̄ i is f.r.r. and l.i. to all the other J̄ j .

Proof. The proof can be derived from Theorem IV.3.b consid-
ering that the contribution of inactive subtasks is automatically
removed by using the regularized pseudoinverse operator.

Remark 3. P̃ i+1 = I − J̃#

i+1J̃ i+1 =⇒ δi,j = 0 whenever
ai,j > 0 if tasks are f.r.r. and l.i. Differently, (9) and (10)
ensure δi,j = 0 only if ai,j = 1. If 0 < ai,j < 1, then ei,j
is partially affected by each νk, k < i s.t. tr(Ak) > 0. As in
[1], in fact, the non orthogonality of P̃ i+1 during transitions
is exploited to achieve continuity.

3) Moving with continuity inside S(k): Similarly to Section
IV-A and according to [18, 22], a forgetting factor close to
1 can be used to account for C2. Thus, at each time k the
optimal solution is searched as closest as possible to the one
computed at time k− 1. Also, thanks to the reverse order, the
role of the auxiliary problem is now automatically played by
the projector P̃ i+1.

Collecting all the pieces together, and considering the for-
mulation of the projector given in VIII-E, the iterative control
law of the iCAT RP is formalized as follows:

CiCAT RP = (+,�, {I}, {I}, {�#,Ai,I}, {P̃ i+1}), (11)

P̃ i+1 =
(
I −BiBi

#
)
Qr

i +BiB
#
i ,

Bi =
(
J#,Ai,I

RA,i A#
i

)
{:,1:mi}

,

Qr
i = I − J#,Ai,I

RA,i JRA,i,

and, thanks to (5), inherits a polynomial complexity in
the number of tasks. Note that, similarly to the original
approach [16], the computation of P̃ i+i requires the pseudoin-
version of the Reverse Augmented Jacobian JRA,i. Therefore,
P̃ i+i may be deformed by the damping action in case of kine-
matic or algorithmic singularities. Experiments in [16] show
that errors are practically negligible with small damping (and
consequently for each time k such that CRP ≡ CiCAT RP at time
k – i.e., if Ai(k) ∈ {0; I} for each i ∈ {1, . . . , l}). However,
the questions of how enforcing robustness to singularities of
iCAT approaches based on Augmented Jacobians and how to
determine optimal damping parameters is still open and left
for deeper investigations. In other words,

Remark 4. The use of weighted projectors couples perfor-
mances to the activation of linearly dependent subtasks (see
Corollary VIII.1.1 in Section VIII). Dropping the assumptions
of f.r.r. and l.i. of Jacobians may prevent correctness and
optimality guarantees of all iCAT methods based on Aug-
mented Jacobians (i.e., the iCAT TPC [1, 11] and the iCAT
RPs approaches proposed in this paper).

As a result of the theoretical analysis, the properties of the
iCAT RP approach defined in (11) can be summarized as
follows:
• The regularized pseudoinverse operator of [1] with smooth

activation functions ensures the continuity of pseudoin-
verses.

• Projectors P̃ i+1 defined as in (10) ensure smooth changes
of the manifold S(k).

• Each active tasks is optimally executed if it is f.r.r. and l.i.
from all its higher priority ones.

• Whenever CiCAT RP ≡ CRP, correctness and optimality are
ensured even in case of kinematic or algorithmic singular-
ities and with small damping action [16].

V. FLEET MANAGEMENT TASKS

Some examples of NSB-based controllers (centralized or
decentralized) have already been applied to multi-robot fleets
in [5–9, 13, 33]. For convenience, we recall the mathematical
definition of some common tasks (according to the aforemen-
tioned literature). In particular, considering our scenario, the
generalized coordinates of the i-th robot are defined by the
vector qi =

(
pi θi

)T
=
(
xi yi θi

)T
(i.e., the Cartesian

position and orientation of the mobile robot with respect to a
fixed reference frame).

A. Collision avoidance

As in [4, 5, 7, 8, 23], we use a discrete bounded-shaped
representation of obstacles O = (o1, . . . , op), where obstacles
are gathered together in circle-shaped clusters. Let dm be the
safety distance to obstacles; each constraint∥∥∥pi − poj∥∥∥ ≥ dm, for i = 1, . . . , N , j = 1, . . . , p,

is formalized by the following unilateral task:

xi,j =
∥∥∥pi − poj∥∥∥ , xdi,j = dm + βm

7, ẋdi,j = 0,

where βm is a positive slack variable that transforms the
inequality constraint into an equality one. Note that, xi,j ∈
[0, dm + βm] is the activation region, with ai,j = 1 if
xi,j ≤ dm, ai,j = 0 if xi,j ≥ dm+βm and ai,j ∈ (0, 1) being
a smooth decreasing sigmoid in (dm, dm+βm). As in [1], we
use ai,j = 0.5 (cos (απ) + 1), with α = β−1

m (xi,j−dm)8. The
collective Np× n Jacobian is computed from differentiation,
and task errors are defined according to (2). This task is set
as the one with highest priority [8, 12, 23], so that when a
robot may hit an obstacle, safety issues locally prevail on
tracking performances. Even if simple, this formulation allows
to prevent collisions only if the following assumptions are
verified:
A1. Each robot should never be engaged in avoiding more

than two obstacles, and obstacles are not collinear, oth-
erwise the Jacobian will be singular. This requires to
opportunely select the subtasks to be activated at each
time.

A2. The slack variable βm should be greater than the mini-
mum braking distance.

Remarkably, the approach may suffer of local minima with
symmetric configurations of obstacles. In this case, the issue

7The task is here formalized according to [8]. Better results (e.g. avoiding
local minima, or chattering phenomena) can be obtained using different
planning techniques, such that xdi,j will drive the robot to an arbitrary point
where the inequality constraint is satisfied.

8Similar expressions can be derived for control objectives xi,j ≤ xMi,j and
xmi,j ≤ xi,j ≤ xMi,j , see [1, 16, 17] for details. Also, velocity considerations
can be included with reverse controllers to avoid useless activations of
unilateral constraints as described in [18].



can be tackled by adding a small random noise or with
an opportune goal selection, as common in the literature
of reactive approaches (e.g., [34]). Note that more complex
strategies could be implemented [35], specially when the NSB
method is moved to the dynamic level [36].

B. Keeping the centroid of the formation along a desired
trajectory

The task of maintaining the centroid of the fleet along a
desired trajectory [5, 7] is formalized as

x = pc,d =
1

N

N∑
i=1

pi ∈ R2 , so that

ẋ = ṗc,d +K

(
pc,d −

1

N

N∑
i=1

pi

)
∈ R2,

where K > 0 is a suitable positive gain9, pc,d and ṗc,d are
the reference position and velocity of the centroid respectively.
The resulting 2× n Jacobian is f.r.r. and independent from q,
with singular values σ1 = σ2 = 1√

N
. However, to increase the

robustness with respect to damping, a scaled task
√
Nx is here

considered. Small singular values related to f.r.r. Jacobians, in
fact, may unnecessarily constraint the damping threshold ε.

C. Radial distance from the centroid (platoon on a circle)

Let pm =
1

N

∑N
j=1 pj be the current position of the

centroid. Each robot i may be asked to lay on a circle of
radius r by imposing the following task [27]

xi =
1

2
‖pi − pm‖

2 ∈ R, and

ẋi = K

(
r2

2
− xi

)
∈ R.

(12)

Consequently, the collective task rate is written as ẋ =(
ẋT1 , . . . , ẋ

T
N

)T ∈ RN and J ∈ RN×n can be computed by
differentiation. In particular, the resulting Jacobian is singular
for some configurations (e.g., ∃pi = pm, all the vehicles are
along a line, or N = 2).

D. Escape space minimization (perimeter)

In an escorting mission, the fleet may be required to main-
tain a target in the centroid of the formation, while minimizing
the intruding/escaping space. For this purpose, the fleet should
lay on a N -vertex polygon, and the task can be formalized as
in [7, 27] as

x =
1

2

[
‖p1 − pN‖

2
+

N∑
i=2

∥∥pi − pi−1

∥∥2

]
,

J =
(
. . .
((
pi − pi+1

)T
+
(
pi − pi−1

)T)
. . .
)
,

ẋ = K

(
Nl2

2
− x
)
,

(13)

9For simplicity a constant gain has been used. However, many strategies
can be used to obtain numerically stable execution and/or good tracking of
the desired trajectory.

where l = 2 r cos
(π

2
− π

N

)
is the distance between consec-

utive vertices of the polygon and r is the radius of the circle
circumscribed about it.

E. Remarks.
1) iCAT RP conservative + collision avoidance as primary

task: All the collision avoidance constraints are assumed to
be active when i = 1 and the projector P̃ 2 is computed. Since
the hypotheses required by Theorem IV.3.b. may not satisfied,
a further analysis is required. Low priority tasks are merged
in an optimal way according to the task hierarchy as in the
original Reverse Priority controller. Then, if Np ≥ n⇒ P̃ 2 =
I . Hence, the resulting control law is suboptimal, but under
A1, x1 is never corrupted by algorithmic singularities (see
Section VI-C for further details).

2) Circular + perimeter: An algorithmic singularity occurs
when the tasks defined in (12) and (13) are jointly satisfied.
However, a similar behaviour is obtained replacing the circular
task with an appropriate convex cost function H(q) to min-
imize applying, for example, the Projected Gradient method.
In particular, we consider

H(q) =

N∑
i=1

∥∥∥r2 − ‖pi − pm‖
2
∥∥∥2

(14)

q̇0L
= α∇qH(q) (15)

where α is the optimization step updated with a backtracking
line search.

VI. SIMULATIONS

The nine homogeneous holonomic vehicles10 scenario pro-
posed in [7] is used as a common test case and it is reproduced
for reader convenience in Fig. 4. The centroid of the formation
is required to follow a linear trajectory from a starting position
pc,d(0) = (0 0) to a final position pc,d(180) = (200 0).
The trajectory is computed using a fifth-order interpolating
polynomial law, considering ṗc,d(t) = 0, p̈c,d(t) = 0 when
t = 0 or t > 180 sec. During the mission, the vehicles may
be required to stay on a circle, to minimize the escape space
and/or to avoid some static obstacles, which poses are assumed
to be known (see Section V). Two concentric red circles are
used in Figs. 4, 6 and 9 to display each obstacle, with the
internal and the external circle representing the obstacle itself
and the activation disk respectively.

All the experiments are implemented in Matlab R2018a and
have been run on an Intel Core i7-5500U CPU @ 2.40GHz
× 4 processor. Different control laws C∗ are compared11 by
defining scalar performance indices {ζi} (see Table III) so that
for each xi, ζi → 0 iff xi → xd,i. Statistical indices reported
in Tables V, IV, VI and VII are evaluated over the time horizon
t ∈ [0, 200].

10We remark that the approach is general with respect to the fleet compo-
sition since it only requires control affine kinematics (see Section II).

11As in [16], we use a common set of parameters, that is, we fix task errors
characteristics (e.g., the speed in which they converge to 0 and the maximum
error rates due to damping actions) when tasks are separately executed. The
question of how to compute the optimal parameters (e.g., see [37] for SR
controllers) when tasks are merged together is interesting, but beyond the
scope of this work which, indeed, focuses on comparing structural properties
– specifically, γ and kf are set according to [11, 22] respectively.



Collision avoidance (m): ζi =
∑N

i=1 max
{

0, dm −
∥∥∥pi − poj∥∥∥}.

Centroid (m): ζi =
∥∥pc,d − pm∥∥.

Circular (m2): ζi = 1
2

∑N
i=1

∥∥∥r2 − ‖pi − pm‖
2
∥∥∥.

Perimeter (m2): ζi = 1
2

∥∥∥Nl2 − ‖p1 − pN‖
2 −

∑N
i=2

∥∥pi − pi−1

∥∥2
∥∥∥.

TABLE III: Performance indices.

A. Non time-varying mission (without obstacles): CENTROID
+ CIRCULAR + PERIMETER

The controllers are first compared considering non time-
varying activations. The set of tasks satisfies the hypotheses
for the simultaneous asymptotic stability of the three task’s
error [27], i.e., for each i ∈ {1, 2, 3} ei → 0 (exponentially)
with a speed depending on gains {Ki}. Small damping values
are required for the Augmented Jacobian based controllers
to handle the algorithmic singularity that may arise when
the desired formation is reached. Performance when starting
from an optimal and a not optimal configuration are shown
in Table IV and Fig. 5, respectively.

TABLE IV: CENTROID + CIRCULAR + PERIMETER.

Order of tasks: 1. centroid, 2. circular, 3. perimeter.
Initial configuration: optimal (i.e., ei(t = 0) = 0 for all the tasks).
Parameters: K1 = diag(0.8), K2 = diag(0.4), K3 = 0.5, Tc = 0.05

sec, ε = 0.1, λ2
max = 0.1, r = 10 m, γ = 1, kf = 0.

Method ζ1 ζ2 ζ3

All the controllers
max 1.10e-3 6.00 1.25e-12
mean 6.51e-4 2.88 1.78e-13
std 3.84e-2 2.21 1.51e-13

B. A simple time-varying mission: COLLISION AVOIDANCE +
CENTROID

With reference to the scenario reported in Fig. 4, the fleet is
now required to maintain its centroid along a desired trajectory
while avoiding some obstacles. Parameters and results of the
test are listed in Table V. For simplicity, results are clustered
in 3 groups with similar performance. It is worth noting that
even though the SA performs well, it does not always provide
a feasible solution as reported next.

To show an interesting case, input parameters are se-
lected so that at least one robot will be subject to two

Fig. 4: Tracking the reference trajectory pc,d while maintain-
ing a desired formation and avoiding obstacles (red circles).
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Fig. 5: CENTROID + CIRCULAR + PERIMETER Performance
indices ζ1, ζ2, ζ3 when starting from the not optimal configuration
displayed in Fig. 4. Parameters are listed in Table IV.

safety constraints at the same time, that is J1 does not
satisfy Remark 1.(a). As expected, the controllers C∗ =
(L, �̄, {I}, {Ai}, {�#,d}, {Ψi}) are not able to preserve the
continuity of the vector q̇ when small damping values are used
(see Fig. 6 and 7). Specifically, discontinuities may happen:
• [SA] whenever a robot enters/exits a safety disc (e.g., at
t = 107 sec in Fig. 7). At such times, in fact, the projector
PA,1 = I − J̄#

1 J̄1 is not continuous. As shown in Fig. 6,
SA does not preserve continuity even if J1 verifies Remark
1.(a), i.e., when each robot is subject to at most one safety
constraint at the same time.

• [SR, RP] when a robot, which was previously avoiding
two obstacles, exits one safety disc (e.g., at t = 134 sec
in Fig. 7). At such times, in fact, the task manifold S(k)
may change without continuity, since the robot can now
account for the lower priority task (tracking the centroid).
However, in this specific case, reverse approaches preserve
the continuity when Remark 1.(a) holds (see Fig. 6).
On the contrary, iCAT based extensions provide continuous

smoother solutions as it can be seen from Fig. 7. When in-
creasing the damping parameters discontinuities are smoothed,
as it can be appreciated in Fig. 8, but task errors may increase
and collisions may happen since high damping may corrupt
the solution. Results with kf set as suggested in [18, 22] are
shown in Fig. 9 (high damping) and Fig. 10 (small damping).
However, even if continuity of velocities is preserved, the
minimum norm solution (kf = 0) seems to provide better
results in this case.

TABLE V: COLLISION AVOIDANCE + CENTROID

Order of tasks: 1. collision avoidance, 2. centroid.
Initial configuration: optimal (i.e., ei(t = 0) = 0 for all the active tasks).
Parameters: K1 = diag(0.8), K2 = diag(0.8), dm = 1 m, βm = 1 m,
Tc = 0.05 sec, ε = 0.1, λ2

max = 0.1, r = 10 m, γ = 1, kf = 0.

Method ζ1 ζ2

Standard Approach,
iCAT TPC, iCAT RP

max 0 1.10e-3
mean 0 6.51e-4
std 0 3.87e-4

Singularity Robust
max 0 8.97e-2
mean 0 3.00e-3
std 0 9.90e-3

iCAT SR,
iCAT RP conservative

max 0 5.92e-2
mean 0 2.70e-3
std 0 7.90e-3

Results are practically comparable when ε = 1, λ2
max = 1.



Fig. 6: COLL. AVOIDANCE + CENTROID. Detail on the two bottom obstacles in Fig. 4. Trajectories with kf = 0 (minimum norm solution)
and small damping (ε = 0.1, λ2

max = 0.1).

Fig. 7: COLL. AVOIDANCE + CENTROID. Velocities with kf = 0 (minimum norm solution) and small damping (ε = 0.1, λ2
max = 0.1).

Fig. 8: COLL. AVOIDANCE + CENTROID. Velocities with kf = 0 (minimum norm solution) and high damping (ε = 1, λ2
max = 1).

C. A complex time-varying mission: COLLISION AVOIDANCE
+ CENTROID + PERIMETER + CIRCULAR

The aim of this test is to show how the tasks’ modeling
may jeopardize performance of different approaches. This may
occur in case of the Jacobian full row rankness loss even in
case of high damping parameters (see Remark 4). For this
purpose, the fleet is now simultaneously subject to all the tasks
presented on Section V. First, in Table VI, the requirement of
laying on a circle is not specified as a task, while the cost
function in (14) and the Projected Gradient method is used
for this purpose. All the controllers (with the exception of

SA, which is not able to find a feasible solution) do not violate
the collision avoidance constraints (Fig. 11). Note that, also
in this case, iCAT based controllers are able to remove the
discontinuities due to multiple activation (see Fig. 12 at t =
124 sec).

On the contrary, in Table VII, the requirement of laying on a
circle is now considered as a task and the mission is performed
using (12) instead of (14). It is worth noting that, in this case,
the Augmented Jacobian is not f.r.r. when the fleet is laying
on the regular polygon (see Section V-E2). Consequently,
high damping values are required to tackle with the related



Fig. 9: COLL. AVOIDANCE + CENTROID. Detail on the two bottom obstacles in Fig. 4. Trajectories with kf = 1− Tc
2

[18] and high damping
(ε = 1, λ2

max = 1).

Fig. 10: COLL. AVOIDANCE + CENTROID. Velocities with kf = 1− Tc
2

and low damping (ε = 0.1, λ2
max = 0.1).

TABLE VI: COLLISION AVOIDANCE + CENTROID + PERIME-
TER + COST FUNCTION FOR CIRCULAR

Order of tasks: 1. collision avoidance, 2. centroid, 3. perimeter.
Initial configuration: not optimal (see Fig. 4); however the initial transient

has not been considered when performance indices have been computed.
Parameters: K1 = diag(0.8), K2 = diag(0.8), K3 = 0.5, dm = 1 m,
βm = 1 m, Tc = 0.05 sec, ε = 0.1, λ2

max = 0.1, r = 6 m, γ = 1,
kf = 0.

The cost function (14) is used to specify the requirement of laying on a circle.
Let ζ4 be the corresponding performance index def. according to Table III.
Results of the Standard Approach, which is not able to find a feasible solution
(see also Figs. 11 and 12), are not displayed. All the other controllers satisfy
the safety constraints in this simulation.

Method ζ2 ζ3 ζ4

Singularity
Robust

max 5.68e-1 31.2 51.4
mean 4.00e-2 2.14 7.58
std 1.00e-1 5.52 8.90

Reverse
Priority

max 1.10e-3 3.71e-1 22.9
mean 5.92e-4 3.16e-2 6.23
std 4.13e-4 6.85e-2 4.35

iCAT TPC
max 1.10e-3 3.72e-1 20.9
mean 5.87e-4 2.98e-2 5.79
std 4.10e-4 6.74e-2 3.75

iCAT SR,
iCAT RP conserv.

max 5.66e-1 27.3 45.7
mean 3.55e-2 1.82 6.73
std 9.17e-2 4.66 7.08

iCAT RP
max 1.10e-3 3.69e-1 22.8
mean 5.92e.4 3.00e-2 6.13
std 4.13-4 6.66e-2 4.25

algorithmic singularity and this may lead to a corruption of
higher priority tasks (e.g, collisions).

VII. CONCLUSION

We have investigated the efficacy of using Null Space
Based Inverse Kinematic techniques, such as the Standard

TABLE VII: COLLISION AVOIDANCE + CENTROID + CIRCU-
LAR + PERIMETER

Order of tasks: 1. collision avoidance, 2. centroid, 3. circular. 4. perimeter.
Initial configuration: not optimal to show differences between the iCAT RP

conservative approach and the iCAT SR (the initial transient has not been
considered for computing performance indices).

Parameters: K1 = diag(0.8), K2 = diag(0.8), K2 = diag(0.4), K4 =
0.5, dm = 1 m, βm = 1 m, Tc = 0.05 sec, ε = 1, λ2

max = 1, r = 6 m,
γ = 1, kf = 0.

High damping is required to handle singularities. Results of the Standard
Approach, which is not able to find a feasible solution, are not displayed.

Method ζ2 ζ3 ζ4

Singularity
Robust

max 4.67e-1 44.1 31.2
mean 3.03e-2 4.69 1.15
std 7.92e-2 8.21 5.29

Reverse
Priority

max 9.84e-2 8.14 1.92
mean 5.7e-3 1.82 1.47e-1
std 1.38e-2 1.69 2.91e-1

iCAT TPC
max 1.10e-3 59.8 179.2
mean 5.88e-4 4.89 9.56
std 4.11e-4 9.89 28.3

iCAT SR
max 4.67e.1 44.1 31.2
mean 3.03e-2 4.69 3.15
std 7.92e-3 8.21 5.29

iCAT RP cons.
max 4.74e.1 33.8 22.2
mean 2.05e-2 3.63 1.20
std 6.11e-3 5.79 3.21

iCAT RP
max 4.49e-2 7.03 1.55
mean 2.1e-3 1.73 9.32e-2
std 5.5e-3 1.57 2.24e-1

Approach, the Singularity Robust Method, the Reverse Priority
Algorithm. We proposed an iCAT extension to deal with
time-varying activation of tasks, for the kinematic control of
multi-vehicle systems subject to prioritized cartesian tasks.
These methods exploit null space projectors to ensure the



Fig. 11: COLL. AVOIDANCE + CENTROID + PERIMETER + MINIM. H(q). Detail on the two bottom obstacles in Fig. 4. Trajectories for the
case described in Table VI.

Fig. 12: COLL. AVOIDANCE + CENTROID + CIRCULAR + MINIM. H(q). Velocities.

Fig. 13: COLL. AVOIDANCE + CENTROID + CIRCULAR + PERIMETER. Detail on the two bottom obstacles in Fig. 4. Trajectories for the
case described in Table VII. The set of tasks is not f.r.r.. SA and iCAT TPC methods are not able to deal with singularities, even with
high damping parameters. Collisions may happen when using the RP and the iCAT RP, since high damping parameters may corrupt the
computation of matrices {T i}.

correct task hierarchy (i.e., high priority tasks never being
corrupted by lower priority ones). All the NSB controllers
have been here integrated in a novel unified formulation,
which allows to easily relate their properties to the choice
of a minimal set of key features. The set of features is given
by: (i) the priority order (ascendant or descendent) to merge
tasks; (ii) a rows selector defined according to activations;
(iii) weighting matrices for both projectors and task error
rates; (iv) the pseudoinverse operator, and (v) the null space
projection matrices. Eliciting strengths and weakness of each
NSB approach via formal analysis or from the literature,

we have analyzed how different feature choices may impact
on optimality, correctness of the hierarchy, robustness with
respect to both kinematic and algorithmic singularities and
continuity of controls. In this paper, we showed how dif-
ferent feature combinations produce different control laws
with different performance on tasks. Moreover, leveraging
upon the regularized pseudoinverse operator of the iCAT TPC
technique, we proposed extensions to handle time varying
activation of multi-dimensional tasks while ensuring continuity
of controls within the Singularity Robust (i.e., the iCAT SR
approach) and the Reverse Priority approaches (i.e., the iCAT



RP approaches). A theoretical analysis of iCAT RP methods
formally proved the following properties. Active tasks are
optimally executed if linearly independent to all the other tasks
which are active or in activation. In such cases, the continuity
in controls and the correct task hierarchy are also preserved.
However, when tasks are linearly dependent, weighted null
spaces (which are a key tool to ensure continuity) couple
performances of linearly dependent tasks to activations (i.e.,
the error due to the higher priority constraint is null only if
all the same or lower dependent constraints are active). As
a result, dependent tasks and high damping parameters may
prevent high priority linearly dependent tasks to be correctly
executed. The questions of how to enforce robustness to
singularities while ensuring continuity and how to determine
optimal damping parameters is still open and left for future
work. Remarkably, this is a current limitation of all Jacobian
Augmented based methods with time-varying activations (i.e.,
[1, 11, 19] and the iCAT RPs approaches proposed in this
paper). Simulations confirm the effectiveness of the proposed
approaches when the aforementioned conditions are satisfied,
but also their limitations when relaxing these assumptions,
enforcing the importance not only of a correct modeling of
tasks, but also of supervising the set of active tasks which are
concurrently executed. Further extensions of this work will
be also devoted to apply the theoretical results of this paper
for designing a more specific NSB-based control architecture
for multi-robot fleet management. The focus has been on a
centralized control design, to illustrate the key points of the
method. A decentralized architecture for efficient control of
large fleets and second order dynamics to deal with kinody-
namic constraints and force inputs will be investigated as a
generalization of this work.

VIII. APPENDIX

A. Greville’s formula for partitioned matrices

For convenience, Corollary 1 of [28] pag. 51 is here recalled
in Theorem VIII.1 and it will be extended in Corollaries
VIII.1.1 and VIII.1.2 for providing general properties of
pseudoinverses of not f.r.r. matrices.

Theorem VIII.1 (from [28] pag. 51). Let J be any real m×n
matrix, partitioned as J =

[
RT ,ST

]T
, where R ∈ Rmr×n,

S ∈ Rms×n and m = mr +ms; then

J# =
[
H T

]
(16)

where

H = R# − TSR#;

T = E# + (I −E#S)R#R#,TSTK(I −EE#);

E = S(I −R#R);

K = [I + (I −EE#)SR#R#,TST (I −EE#)]−1;

If ∃χ : S = χR, then we can state the following results.

Corollary VIII.1.1. ∃W 6= 0 : J# = R#W and

W =
[
I − ηχRR# η

]
, (17)

η = χTK. (18)

Proof. From Theorem VIII.1 we have that
E = χR(I −R#R) =⇒ E = 0. Consequently,

K = [I + SR#R#,TST ]−1 = [I + χRR#χT ]−1;

T = R#R#,TSTK = R#χTK = R#η

since RR# is symmetric and idempotent and R#RR# =
R#. Hence, (16) can be computed as

J# =
[
R# −R#ηχRR# R#η

]
=

= R#
[
I − ηχRR# η

]
.

Corollary VIII.1.2. Let A = diag(AR,AS) ∈ Rm×n, where
AR ∈ Rmr×mr and AS ∈ Rms×ms , are diagonal matrices
whose elements are defined in the interval [0, 1]. If R is f.r.r.,
then

J(I − J#AJ) = 0 ⇐⇒
A = I or
(AR = I and χ = 0)

. (19)

Proof. Sufficiency. It can be easily verified since J = JJ#J .
Necessity. Let W be partitioned as

[
WR W S

]
=[

I − ηχ χ
]
. Then, left hand side of (19) can be rewritten

as

J(I − J#AJ) =

(
I
χ

)[
I −W

(
AR

ASχ

)]
R,

so

(19) holds ⇐⇒
{

(I −WRAR −W SASχ)R = 0;
χ (I −WRAR −W SASχ)R = 0.

which is verified only if

I −WRAR −W SASχ = 0 (20)
⇐⇒ (I − ηχ)AR = I − ηASχ.

since R 6= 0. Also, we have that χTχ =
(
I + χTχ

)
ηχ, so

(20) can be rewritten as AR = I + χT (I −AS)χ.
Since AR and AS are diagonal matrices with values in

[0, 1], then χT (I −AS)χ is a positive matrix. Hence, (19)
admits only the set of solutions (AR = I and AS = I) or
(χ = 0 and AR = I).

B. Discontinuities of C∗ =
(
L, �̄, {I}, {Ai}, {�#}, {Ψi}

)
Proof sketch of Remark 1
(a) Required to ensure the continuity of J#

i (see [30]).
(b) Required to prevent jumps of the optimal solutions due to
changes of S(k) [17, 18]. In particular, assuming (a):

• SA: PA,i−1 = I − J̄#
A,i−1J̄A,i−1, so discontinuities are

prevented for all {(xd,i, ẋd,i),Ai} only if J̄ iPA,i−1 = J̄ i,
that is, if J iJTj = 0 for each i, j < i, i.e., if (b) holds.

• SR: Each
[
Πi−1
j=1(I − J̄#

j ĀjJ̄ j)
]
J̄

#
i Āiẋi is continuous

with activation, so (b) is not required.
• RP: P̃ i+1 = I − J̃#

i+1J̃ i+1, with J̃ i+1 computed from
J̄RA,i (see Table II). Thus, discontinuities are removed by
construction only if J iP̃ i+1 = J i, i.e., if J iJTj = 0 for
each i, j > i, i.e., if (b) holds.



C. iCAT RP

Assumptions. As highlighted in Section IV-B, formal prop-
erties of this section are proved considering the definition of
regularized pseudoinverse �I,A,Q according to (7) (without
the SVO contribution).

Preliminaries. According to [16], the matrix J̃ i+1 collects
the rows of JRA,i+1 that are linearly independent from J i,
so let Πi+1 be an appropriate permutation matrix such that

Πi+1JRA,i+1 =

(
J̃ i+1

∗

)
. Also, as introduced to Section

IV-B, let Ai = diag(Ai,Ai+1) be a recursive formulation of
the Augmented Activation Matrix, i.e., the activation matrix
related to the Reverse Augmented Jacobian JRA,i. Specifi-
cally, we define

AΠi+1 := diag(Ãi+1, ∗) = Πi+1Ai+1Πi+1
T , (21)

so that

Πi+1Ai+1JRA,i+1 = AΠi+1

(
J̃ i+1

Ĵ i+1

)
. (22)

Moreover, according to the Greville’s Formula (Appendix
VIII-A), the pseudoinverse of the matrix JRA,i can be
written as J#

RA,i =
[
T i Hi

]
, where Hi = J#

RA,i+1 −
T iJ iJ

#
RA,i+1. From [28], p. 19 the following equality holds(

J̃
#
i+1 0

)
=
(
I − T iT

#
i

)
HiΠ

T
i+1. (23)

D. Iterative formulation of the projector in Equation (9)

Let Qi be the projector in the weighted null space of the
Reverse Jacobian JRA,i, defined as:

Qi = I − J#
RA,iAiJRA,i.

Proposition VIII.1.1. A recursive formulation for (9) is given
by

P̃ i+1 =
(
I − T iT i#

)
Qi+1 + T iT i

# , (24)

Qi = (I − T iJ i)Qi+1 + T i (I −Ai)J i . (25)

Proof. Considering (22) and (23), (24) is proven as follows:

P̃ i+1 = I −
[
J̃

#
i+1 0

]
AΠi+1

(
J̃i+1

∗

)
=

= I −
(
I − T iT i

#
)
HiAi+1JRA,i+1 =

= I −
(
I − T iT i

#
)

(I − T iJi)J
#
RA,i+1Ai+1JRA,i+1 =

=
(
I − T iT i

#
)(
I − J#

RA,i+1Ai+1JRA,i+1

)
+ T iT i

# =

=
(
I − T iT i

#
)
Qi+1 + T iT i

# .

Using the Greville’s formula and a bit of math, it is possible
to prove the iterative formulation of the projector given in (25)
as follows:

Qi = I − J#
RA,iAiJRA,i =

= I −
[
T i, (I − T iJ i)J#

RA,i+1

]
Ai

(
J i

JRA,i+1

)
=

= (I − T iJ i)Qi+1 + T i (I −Ai)J i .

E. Iterative formulation of the projector in Equation (10)

Let Qr
i be the regularized projector in the weighted null

space of the Reverse Augmented Jacobian, defined as

Qr
i = I − J#,Ai,I

RA,i JRA,i.

Proposition VIII.1.2. A recursive formulation for (10) is
given by

P̃ i+1 =
(
I − T iT i#

)
Qr
i + T iT

#
i , (26)

where T i =
(√

AiJRA,i

)#

{:,1:mi}

Proof. The proof is based on the definition of the regular-
ized operator given in (7), which automatically removes the
contribution of the inactive rows from the computation of the
pseudoinverse. However, the original formulation of the Gre-
ville’s formula should be modified opportunely to care with the
weighting matrix

√
A. Without loosing generality, the reverse

ordering of indices is maintained. Let A = diag (Ai,Ai+1),

J =

(
J i
J i+1

)
, so that

(√
AJ

)#

=

( √
AiJ i√

Ai+1J i+1

)#

=

=
[
T i

(
I − T i

√
AiJ i

)
Hi

]
, (27)

where Hi =
(√
Ai+1J i+1

)#
. Hence, (7) is equivalent to

J#,A,I =
(√
AJ

)#√
AA =

=
[
T i
√
Ai

(
I − T i

√
AiJ i

)
Hi

√
Ai+1

]
A .

Then, comparing the matrices

J#AJ =
[
T i (I − T iJ i)J

#
i+1

]
AJ , (28)

J#,A,IJ =
[
T i

√
Ai

(
I − T i

√
AiJ i

)
Hi

√
Ai+1

]
AJ , (29)

it can be noticed that they have a similar structure, but the
role of the matrix T i in the first equation is played by the
matrix Bi = T i

√
Ai in the second one. The application of

the previous result to (10) is then straightforward, leading to
the following formulation of projector

P̃ i+1 =
(
I −BiBi

#
)
Qr
i+1 +BiB

#
i =

=
(
I − T iT i#

)
Qr
i+1 + T iT

#
i

where Bi = T i
√
Ai =

(
J#,Ai,I
RA,i A#

i

)
{:,1:mi}

and equiva-

lence holds since the factor
√
Ai get simplified in the product

BiB
#
i .

However, for the sake of completeness, the proof is given in
the following:

P̃ i+1 = I − J̃#,Ai+1,I

i+1 J̃ i+1 =

= I −
(
Ã

1
2

i+1J̃ i+1

)# (
Ãi+1

) 3
2

J̃ i+1 =

= I −

[(
Ã

1
2

i+1J̃ i+1

)#

0

] (
AΠi+1

) 3
2

(
J̃ i+1

Ĵ i+1

)
;



then, using the (21) and (22), we have that

P̃ i+1 = I −

[(
Ã

1
2

i+1J̃ i+1

)#

0

]
Πi+1 (Ai+1)

3
2 JRA,i+1

Then, (23) is applied to the matrix
(√

AiJRA,i
)
, leading to

Hi =
(√

Ai+1JRA,i+1

)#
and T i =

(√
AiJRA,i

)#
{:,1:mi}

.
Considering that[(

Ã
1
2

i+1J̃ i+1

)#

0

]
=
(
I − T iT#

i

)
HiΠ

T
i+1,

the following formulation of the projector is obtained:

P̃ i+1 = I −
(
I − T iT

#
i

)(
A

1
2
i+1JRA,i+1

)#

A
3
2
i+1JRA,i+1 =

= I −
(
I − T iT

#
i

)
J

#,Ai+1,I

RA,i+1 JRA,i+1 =

=
(
I − T iT

#
i

)
Qr

i+1 + T iT
#
i . (30)

Finally, similarly to (25), a recursive formulation of the
regularized null space of the Reverse Augmented Jacobian can
be computed as follows (pedices have been omitted for the
purpose of readability):

Qr
i = I −

[
BiAi (I −BiJ i)J

#,Ai+1,I
i+1

](
J i
J i+1

)
=

= (I −BiJ i)Q
r
i+1 +Bi (I −Ai)J i ,

which applied to (30) leads to the formulation of P̃ i+1 given
in (26), since(

I −BiBi
#
)

(I −BiJ i) =
(
I −BiBi

#
)

;(
I −BiBi

#
)
Bi = 0.
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