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Abstract— To avoid feedback-related stiffening of articulated
soft robots, a substantive feedforward contribution is crucial.
However, obtaining reliable feedforward actions requires very
accurate models, which are not always available for soft robots.
Learning-based approaches are a promising solution to the
problem. They proved to be an effective strategy achieving good
tracking performance, while preserving the system intrinsic
compliance. Nevertheless, learning methods require rich data
sets, and issues of scalability and generalization still remain to
be solved. This paper proposes a method to generalize learned
control actions to execute a desired trajectory with different
velocities - with the ultimate goal of making these learning-
based architectures sample efficient. More specifically we prove
that the knowledge of how to execute a same trajectory at five
different speeds is necessary and sufficient to execute the same
trajectory at any velocity - without any knowledge of the model.
We also give a simple constructive way to calculate this new
feedforward action. The effectiveness of the proposed technique
is validated in extensive simulation on a Baxter robot with soft
springs playing a drum, and experimentally on a VSA double
pendulum performing swinging motions.

I. INTRODUCTION

Animals exploit the compliant characteristics of their body
to execute a wide variety of tasks with high performance and
precision [1]. Inspired by the effectiveness of the natural
example, researchers started including carefully designed
elastic components into robots, leading to the so-called
soft robotics. In this work, we focus on the vertebrate-
inspired branch of this field, namely articulated soft robotics.
Mimicking vertebrate animals, elasticity is here lumped at
the joint level [2]. Two classic examples of articulated soft
actuators are Series Elastic Actuators (SEA) [3] (Fig. 1(a))
and Variable Stiffness Actuators (VSA) [4] (Fig. 1(b)).

The advent of these novel technologies has opened up
new exciting research questions concerning their control. For
example, it has been recently recognized that classic control
algorithms that rely on (high-gain) feedback loops lead to an
actual stiffening of the robots structure [5], hindering their
deliberately compliant design. Feedforward approaches have
been proposed as a valuable solution to this problem, allow-
ing to achieve good tracking performance, while avoiding
any alteration of the system mechanical compliance.
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(a) Baxter SEA robot (b) VSA double pendulum

Fig. 1. Examples of articulated soft robots on which the proposed method
can be applied, and that we use as validation testbeds. (a) Simulation
setup: Baxter robot actuated by SEA. (b) Experimental setup: double
pendulum actuated by VSA (gbMoves Advanced). The gravity vector points
downward.

In [6] is presented a method that optimizes torque and
stiffness profile for explosive movement tasks in robot ac-
tuated by VSA. In [7] the authors propose a time-optimal
control framework for VSA robots. Both methods mostly rely
on feedfoward actions. However, model-based feedforward
techniques may be not reliable due to difficulties in obtaining
sufficiently reliable models for articulated soft robots.

Conversely, model-free feedfoward methods are able to
achieve good tracking performance through learning and
repetitions, without requiring any exact system represen-
tation. In [8], a decentralized control algorithm based on
Iterative Learning Control (ILC) is proposed. This method
merges a mostly feedforward control action with a low gain
feedback term to obtain satisfactory trajectory execution. A
norm optimal ILC is employed in [9], where is proposed a
control algorithm for a soft robotic arm during aggressive
maneuvers. In [10] the authors exploit Gaussian process
regression to obtain a model able to generate feedforward
inputs to control a soft robot, limiting the feedback action. In
[11] is proposed a solution based on recurrent neural network
for dynamic tasks with flexible joint robots. In [12], an ILC
algorithm is used for performing complex reaching motions
with a continuum soft robot.

Nevertheless, learning based approaches generally present
issues in terms of scalability and generalization of the learned
control actions. For instance, a learned input able to perfectly
execute a specific task, could be completely unsuitable to
perform slight variations of that same task, leading to a whole
new learning process. Examples of potential task variations
are the task end-point (i.e. spatial reference trajectory), task
velocity execution and carried payload. On the contrary,



observations on human beings show that they excel in the
generalization of the acquired motor skills [13]. One example
among the others is our ability to progressively refine a motor
action repeating a novel task at different speed [14]. Our
daily life is full of such examples. Think for instance of a
dancer or an athlete who learn a specific motion by first
executing it multiple times slowly and then progressively
increasing the speed of the motion.

Inspired by these natural insights, this paper proposes a
method for generalizing learned control actions to different
time scales. The time scaling property of robot trajectories
has already been studied, especially in the case of rigid
robots. In [15] this property is exploited to determine if a
planned path is feasible given the system model and actuation
torque constraints. This algorithm was then extended in [16]
to take into account the joint elasticity of articulated soft
robots. There, an uniform time scaling and robots with
fixed constant linear joint stiffness are considered. Both
works require the full knowledge of the model. The idea
of exploiting the time scale transformations to generalize the
control actions w.r.t. time was first introduced for rigid robots
in [17].

This paper takes several substantial steps further in the
direction of time generalization of learned trajectories with
articulated soft robots. First, we prove that five sample inputs
are necessary and sufficient to generalize the control action
to different velocities - when no knowledge of the model is
hypothesized. Then, we present a constructive closed form
solution to the problem in the case of time varying linear
stiffness, and we discuss the extension of the approach to the
case of non linear stiffness. We first show the effectiveness
of the method in simulation on a Baxter robot powered
by low stiffness Series Elastic Actuators (SEA) [3]. Then,
we present an experimental validation of the method on a
double pendulum actuated by Variable Stiffness Actuators
(VSA) [4]. Two configurations are tested; constant stiffness
and variable stiffness.

II. PROBLEM STATEMENT

For the sake of clarity, in the following equations we will
use round brackets to refer to functional dependency and
curly brackets to indicate term grouping. Square brackets
will instead define vectors and matrices.

A. Model

The dynamic model of an articulated soft robot with N
joints, with serial or tree topology is

M(q())4(t) + Cla(t),4(1)q(t) + F(q(t))q(t)+ (1)
+G(q(t) + K(t) {q(t) = 0()} = O,
BA(t) + D(t) — K(t) {q(t) = 0(t)} = 7(1) , 2

where ¢ € RY are the joint angles, with their time derivatives
q,q, q, q, and 0 € RY are the motor angles, with their time
derivatives 6, 6. Dependencies on time ¢ are stressed in (1)-
(2). M(q) € RVN*N ig the inertia matrix, C(g,q) € RV*N
collects Coriolis and centrifugal forces, F(q) € RV*¥ is a
configuration dependent damping matrix. G(q) = Gg(q) —
JT(q)Fext(q) € RY is the potential force field, where Gg(q)

is the gravity force, J(g) is the robot jacobian matrix, and
Fuxi(q) € RO is an external force applied at the end-effector.
We consider a linear time variant stiffness matrix K(t) €
RN*N The case of constant K can be seen as modeling the
standard serial elastic actuators (SEA) [3]. The time variance
can be regarded as a first order approximation of a variable
stiffness characteristics (VSA) [4]. On the motor side, B €
RY*N and D € RV*N are the inertia and viscous friction
matrices of the motors. Finally, 7 € RV is the actuation
torque.

We introduce the following very common hypotheses on
the model

H1 K, B, D are here assumed diagonal. These assumptions
are made for the sake of space and readability, and they
will be relaxed in future extensions of this work.

H2 Model (1) is formulated under the assumption of negli-
gible inertia coupling between link variable ¢ and motor
variable 6 [18], and non eccentric motor inertia.

B. Time scaling

We describe a change in velocity of the desired joint space
trajectory as a linear time scaling. Taken a generic trajectory
q:[0,T] — RY, an uniform time scale is defined as q(at),
t €0, T/a] ,a € RT, where a € (0,1) leads to slower
motion, while a € (1, 00) leads to faster motion. Let g and ¢
be two trajectories defined in [0, T3] and [0, T3], respectively.
To make the two time intervals coherent will be sufficient to

scale the first of @ = %, or the second of % Therefore the

two are one the time scaling of the other if ¢ (%t) = (1),
vt.

C. Goal

Consider a generic reference trajectory in joint space ¢ :
[0, T] — R, where T € R is the terminal time. The torque
7 :[0,7] — RY necessary to implement § is considered
unknown, as well as the knowledge of the model unavailable.

Suppose now that only a set of learned torque-joint evo-
lution pairs ("¢, ) is available, with

Tq:0,T.] = RN, "r:[0,T,] = RY, (3)

where the left suffix "(-), r = 1...w, refers to the r—th pair.
w € N is the total number of examples. We call "3 = Tlr
the scaling factor needed to express the r—th example in the
time scale of q.

We introduce the following working hypotheses
H3 ¢ is at least four time differentiable
H4 "q are all time scalings of ¢, i.e., "q("ft) = (t), Vt
H5 the examples are distinct, i.e., ‘8 # 73, Vi # ;.

The research questions that we aim to solve are

Gl finding which is the minimum number of examples w
providing a rich enough information on the task to allow
the execution of ¢

G2 deriving an algorithm that provides 7 given the exam-
ples (7, "7).

Remark 1. The examples are going to be the sole and only
explicit source of information about the system. We will also
know that the system is an articulated soft robot, i.e., it



is expression of some dynamics in the form (1)-(2), which
however we will consider completely unknown.

Remark 2. It is easy to see that solving GI and G2 for
q implicitly solves the problem for any of its time scalings
G(at), Ya > 0. Indeed the only effect of this scaling on the
discussed problem is to scale all the "3 of a same factor.

ITII. PROPOSED APPROACH

A. Main result

The following theorem answers to G1.

Theorem 1. Let HI-5 be fulfilled, and the time variance of
K be such that'

K("pt) = K(t), Vt,r, 4)

where " K is the evolution of K within the experiment .

Then the necessary and sufficient amount w of distinct
examples (3) necessary to analytically express 7(t) in terms
of ("1(t),"q(t)) without any knowledge of the model is 5.

Proof. System dynamics (1)-(2) can be rewritten in terms
of the Lagrangian link coordinates ¢ and their derivatives
q,4,q,q. To this end, we first rewrite individually the 2N
equations of the system as

Z MZJQJ + Z nglQle + ZFZJqJ (5)

7,0=1
+G2+Kz{q,z_9z}_07
B0, +D.0, —K,{qg.— 0.} =1, (6)

where z = 1...N, M_; and F,; are the element (z,j) of
the matrix M and F', respectively, C;; are the Christoffel
symbols [19] employed for the evaluation of the matrix C,
while GG, is the z—th element of G. The matrices K, B
and D can be assumed diagonal without loss of generality,
and we define their z—th diagonal element as K., B, and
D.. Note that we omit the dependency on time and on the
Lagrangian coordinates, for the sake of clarity.

Eq. (5) can be solved for 6, yielding

92 =q,+ Kz_l Z szQy + Z CzjquQ7 (7)
7,l=1
N
+> Fg+G.
j=1

IThis condition means that K (t) is time scaled as q.

Differentiating (5) w.r.t. time and solving for 0. leads to

GZZQZ+K;1 ZMZJq]+ Z 6 thj (8)
7,h=1
N N
+2 Z Ceiidgy + Z thm;+
jl=1 Lh=1
N
oG, .
+ZFZ]Q]+ Z Zizqh +
7,h=1 8 =1 th

+ K, 1K {QZ—G}

where 6, is equal to (7).

Differentiating (5) twice w.r.t. time and solving for 0,
leads to (9) (see next page), where 6, and 6, are equal to
(7) and (8).

Substituting (7), (8) and (9) into (6) foreach z =1... N,
we obtain the whole system dynamics written only in terms
of the Lagrangian coordinates ¢ and their derivatives. Let us
define "a £ % We can now specify the influence of a time
scaling " on the system dynamics. In particular we start
noticing that

a(t) =" Be), (10)
it =400 =" a;qf;ft), (an
q(t) = "4("pt) = ’"62%, (12)
ity ="iCpt) =52 ( étff) , (13)
it ="icon = IRy
Using (4) yields
K(t)="K("Bt) , (15)
K(t) = %W : (16)
K(t) = ’“ﬁQW . (17)

We can now write the dynamics of each of the given "¢(" 5t)
in terms of the reference trajectory ¢(t), obtaining (18)
(reported as floating object for the sake of readability).

Each different learned trajectory "g¢(t), once scaled,
presents a dynamic model in the form (18). It is possible
to note that each term of the dynamics multiplies a power of
the parameter "« ranging from "o to "a*. Collecting these
terms into four variables £V, ...¢% € R, we can rewrite (18)
as a fourth order polynomial of "«

"o (TBt) = Tl (D)4 )+ € (1) +" oL (H)+EL() -

19)

Defining ¢° £ [¢9 T, e & ed, . €x]T, we can

write the time scaled dynamics of the whole system in a
matrix form

"r(7Bt) = "ot )+l () + PP )+ al (1) +E0(t)
(20)



0. =i + K- Zszqg + Z T {Gndiy + 2dnd; } + Z quth +2 Z Cogi{ads; + ads } + ©
j.h=1 Jsh,p=1 7,l=1
L aC.
+ >0 S s + ddndids} + Z a qpqhqzqg + ZFzgqg + Z i  {dnd; +2and;} +
J,lh=1 an J,l,h,p=1 anq j,h=1
N 82G . . .
+ 3 S gnd, + Z h+ Z S5 g g+ 2K K g - oz} + KR, {g. — 0.}
= Oqngp aq W=, Oanap
J,h.p= =
. N b4 o ee . oo
rTz = Ta2quAz + BzK,;l 7‘054 Z szq] {(th]' + QQhQJ} Z 8“ 7} qpqhqj+ (18)

J,h=1

+27a" Z Czji {ql‘b + ql%} + " Z

7,l=1 =1

aA

J,h,p=1

2
9%C.;
U {Gndudy + 4dndid; | + "o Z Bas qpqhqij+ "o ZFZJQﬁ

7,L,h,p=1 Jj=1

N N
r an XA A X r a F z A r 62Gz XA
+7a’ Z = Gy + 2nds |+ 70 Y o - qpqhqj Z +"a’ Z Arlpdn ¢ +
— 0 = g — O4ndp
7,h=1 Jyh,p=1 h= h,p=1
. N . N N
r 17 =1 )r 3 % o3 Lo r 3 5o
—2"aB.K'K.K; a Zszq]' Z aA 2 G + 2" Z Coiqg; + "o’ Z s L indud; +
j=1 J,h=1 7,l=1 l,h=
N . N N
o’y Fig;+ 7o Z a;”qhw aZ 8A g ¢~ "0’ BKTURLKT T Y M+ 0 Y Cpdidst
=1 jh=1 j=1 Ji=1
N .
+To¢ZFZj(jj + GZ} + ZTOcZBnglK K " ZZMZJqJ +"a Z Coinqg; + aZFz]qJ +G.p+
j=1 ji=1 j=1
N N N N
+ 74Oé-quAz + DZK,;l TOZBZszqJ Z qhQJ + 2TOC3 Z Czjl(jl(b Z qhqlq] +
j=1 Joh= gil=1 I,h=

ZJAA

dan qn4q;

zA

94n

+TOCQZF2](I] +T052 Z

J,h=1
ey F +GZ}
j=1

+aZ

j=1 7,1=1

Note that (20) is a system of N equations, while (19)
is a single equation. Note also that the superscript of
& is not an expronentlatlon but an index. Defining ¢ =
(47 37 2T 1T ¢OT|T ¢ RSN (20) can be written also
in a matrix product form

[fo'T "6’ Ta?I Tal IE(t)="r(Bt), Q1)
where I € RN*N s the identity matrix. Each different

torque input "7(¢) linked to a trajectory "¢(t) adds a row to
(21). Stacking w control actions yields the linear application

Pué(t) = Uy(t) , (22)
where
LoAT o3I 1a?I ol T
2047 2081 2021 20l T
wot] waldl wa2l wol T
1 T 1 2 T 2 w T/ w T
Ualt) = ['77('p1) *77(p1) (1))

N
+TOLQZMZJ'(5J' +T0t2 Z Czjléléj +TQZFZjéj + G, ,VZ =1...

—TaD.K;'K.K;' Q7 22Mzgqa+ a Z Cejudud; +

7,l=1

N .

Jj=1

In order to be able to generalize the control actions w.r.t.
velocity, we need to solve (22) for £(¢). Therefore P,, must
be invertible. Since P, is a Vandermonde matrix [20], it is
always not-singular for "'« # "2, Vry,rg = 1. w,rp #
r9, which is always true given HS.

Thus 5 examples not only are sufficient to generalize to
each time scaling, but they are also the minimum amount
for achieving this goal. Indeed, if w < 5 the matrix will
not be invertible. If w > 5, w — 5 columns will be linearly
dependent from the others. O

Remark 3. The case of constant linear stiffness is a special
case of the one treated in Theorem 1. Thus, K = K =0
leads to the same result, i.e., a minimum number w equal to
5.

Corollary 1. In the case of absence of any potential term
(except for the elastic coupling between link and motors) in
the robot dynamics, the number w of input signals required
to track the desired trajectory §(t) with different velocities



is reduced from 5 to 4.

Proof. This result comes directly from inspecting (18). In-
deed, the only term of the dynamics that is multiplied by
"ol is G(q), thus €Y = G(q). Therefore, the absence of
G(q) removes the identity column from P,,. O

B. Control evaluation

The following corollary answers to G2.
Corollary 2. Each time scaling of the reference trajectory
*q(t) = G(at) is realized as open loop evolution of the

system (1)-(2) when w = 5, and the following feedforward
control action is used

S T,

&(t) = Py 'Us(1),
where Ps and Us are defined as in (23).

(24)

Proof. Since we proved Ps to be full rank, it can be inverted.
This allows to solve (22) as &(t) = P5 'Us. The thesis
follows from the direct application of (21). O

Note that this corollary implies that £(t) is the control
action needed for implementing G(¢) itself.

IV. VARIABLE STIFFNESS ACTUATORS

In the more general case of VSAs, the elastic torque
is given by a non linear function %{;1’9), where V(-) is
the elastic potential and 6 € RN, N, > N. Given the
non linearity of %(qq’m, finding an analytical closed form
solution is non trivial. For a solution to exist in closed form,
%(qq,e) should be at least invertible, twice differentiable,
homogeneous and with homogeneous inverse. Since it is
unlikely for w to possess all these qualities, we will
look instead at an approximate solution. As a trade-off
between generality and simplicity, we will consider only
VSA that present an elastic torque function such that

T
WT(Q%Q) = 9(6u(2)) f (q(t) — 6a(2)) -

04 € RN are (a combination of) the positions of the motors
moving the robot’s reference configuration, while 6, €
R =N are (a combination of) the positions of the motors
varying the stiffness of the system. Fig. 1(b) graphically
shows 64 and 6,. In [21], we discuss how to achieve such a
separation of variables for a wide class of VSAs.

Assuming that the stiffness profile is tunable by the user is
equivalent to set 6,(t). This means that the term g(0,(t)) =
K'(t) is a given non linear function of ¢. Assuming, without
loss of generality, that the elastic torque contribution is null
when the deflection ¢ £ ¢ — 6 is null, then linearizing (25)
w.r.t. the deflection ¢, leads to

V@) _ o)

dq
=0

(25)

(26)

99
=K(t){qg—0a+0(9)},

where O(-) is the function collecting the higher order terms
that become negligible when ¢ is small.

Lemma 1. Applying the method (24) to a VSA robot with
elastic torque of the type (25), leads to an error on the
identified dynamic terms £ that is proportional to the residual
O(@). In particular the error in the estimation of the control
action is equal to

5% 2 1 [0(6) + DO, ) + BO6.6.3)} . @D

Proof. The thesis comes directly by substitution. First we
split the motor dynamics into the dynamics related to 84 and
the one related to 6,. As mentioned, we can consider only
the N equations related to 6y . Let us define

TTVSA =Tr + ’I‘R(¢2) , (28)

where "7 = [--,"7,,---]|T, and "7, is defined as (19).
Then, substituting (26) into (5)-(6), and following the same
procedure described in the proof of Theorem 1 leads to

VSR =75 4 0(9) + DO(6,d) + BO(6,6,4)  (29)
— 77+ 0(¢) + 2022 ¢>¢3+2B{ 90 oi+
= d(4?) 9(¢?)

320 2592 00 '2}
+28(¢2)2¢ ¢+ 8(¢>2)¢

277 +7R(¢%) .

Then, substituting (29) into (22), and inverting P5 leads to
the thesis

VM (t) = Py UM () = P Us(t) + Py ' R(¢%) . (30)
where R(¢?) = ['RT,...°RT|". O
V. VALIDATION

In this section we present simulation and experimental
results to validate the proposed method. We define the
performance metric of the tracking error at the joints as

1 (7
L - q —
S P MCCETOL

where §. and ¢, are the reference and measured trajectory
of the z—th joint, respectively.

3D

A. Simulation results

We test the method on a Baxter robot’ simulated with
MATLAB Robotic Toolbox? (Fig.1(a)). The robot dynamics
is augmented with the series elastic actuator (SEA) dynam-
ics, whose parameters are J, = 0.001Nms?/rad, D, =
0.01Nms/rad, K, = b0Nm/rad and joint friction F, =
0.8Nms/rad. We simulate the robot in a drum playing task.
The reference trajectory is reported in the video attachment
and in Fig. 2: both 7DoF arms of the robot perform a vertical
movement in the task space to hit the instrument. During the
trajectory the robot end-effectors hit the drum, modeled as
a spring Kg = 600Nm/rad. Thus, the environmental inter-
action causes a contact force. The time scaling parameters

Zhttps://www.rethinkrobotics.com/
3https://it. mathworks.com/help/robotics/



Fig. 2. Simulation. Photo-sequence of Baxter tracking the reference
trajectory time scaled with o = 3.3333, i.e. § = 0.3. The control input
has been obtained with the proposed generalization method (24) given a
training set of 5 examples.

0.24 , , ,
== Generalized - ILC 5 examples
== Generalized - ILC 10 examples
0.15 Generalized - ILC 15 examples ||

=== Generalized - exact torque
o ILC 5 examples
0O ILC 10 examples |
X ILC 15 examples
¢{ Exact torque examples

e o

0 Iy
0.15 0.35 0.55 0.75 0.95 1.15 1.35
Time scaling factor (3)
Fig. 3. Simulation. The abscissa axis represents different values of the

time scaling parameter 8 = 1/«. The ordinate axis represents the tracking
error metric (31). The red markers indicate the tracking performance of the
input signals used as training set for the generalization method (24).

employed are chosen such that the terminal time is equal to
T € {0.25,0.5,0.75,1,1.25}s. We considered as reference
time for the generalization 7' = 1s, leading to the time
scaling factors 5 = 1/a € Ay = {0.25,0.5,0.75,1,1.25}.
Once acquired the five input torques, we generalize w.r.t. to
a new time scaling parameter v applying (24). We test the
predicted control action for all terminal times within the set
{0.15,0.20,...,1.30,1.35}s, obtained with the time scaling
factors 8 = 1/a € {0.15,0.2,...1.3,1.35}, testing a total
of 25 predictions.

Fig. 3 summarizes the results. The abscissa axis represents
different values of the time scaling parameter 3. The ordinate
axis represents the tracking error metric (31). The error
obtained in absence of any controller is e = 1.0648rad.
First, we show, as a benchmark, the result (black dashed
line in Fig. 3) obtained given a training set of five exact
torque examples, i.e., control inputs that lead to a null
tracking error. The tracking performance of these control
inputs is depicted in the figure as red diamond markers. In
this case the control actions do not introduce any noise in the
identification process, leading to a perfect tracking for each
tested generalization, i.e., for each tested value of o = 1/0.

Then, we test the method in presence of a non null tracking
error. We employ the controller presented in [21], i.e., a de-
centralized model-free method based on ILC. This algorithm
learns a feedforward torque control action necessary to track
a desired joint trajectory by iteratively attempting to perform
the tracking task. A brief description of the controller is
reported in Appendix. The performance of the five input

m==Reference === Reference
— - === Generalized = - === Generalized
& 8 2
£ =
g § 1.5
E g
5 < 1
& =
o =05
Z = \
o @ 0 N
o
~ [o¥ I Sy
-3 -0.5
0 0.1 0.2 0.3 0 0.1 0.2 0.3
Time [s] Time [s]
Fig. 4. Simulation. Tracking performance of the predicted control action

(dashed line) given a training set of 5 examples. The time scale factor is
B = 0.3. Left hand side figure refers to the left arm of the Baxter, while
right hand side figure refers to the right arm.

examples (obtained with 200 iterations) is reported in Fig.
3 as red circle markers, while the solid blue line shows the
error metric (31) evaluated for each simulated execution with
a different scaling factor § = 1/«. Results show that the
tracking performance achieved by the generalized control
inputs are similar to the one obtained through learning.
Indeed, the solid blue line approximately lies over the red
circle markers. The only exception is for the fastest motions,
i.e., smaller 5 = 1/«, where the imperfections of the input
examples do not allow to achieve good tracking performance.
Fig. 4 shows the tracking performance obtained with the
proposed method when the desired trajectory is time scaled
by a = 3.3333, i.e., T' = 0.3s, while Fig. 2 shows a photo-
sequence of the same trial.

Finally, as exploratory test to evaluate the possibility of
exploiting more than the minimum amount of data for the
generalization, we increase the number of examples used
to generalize the control action. Therefore a non-square
matrix (23) results, that we pseudo-invert - thus solving a
minimum root mean square error approximation problem.
To this end we randomly pick 10 more time scaling factors
in the available set, and we learn the associated torque. We
test two cases, the first one with 10 examples, the second
one with 15 examples. These randomly picked examples
are 0 = 1/a € Ajp = A5 U {0.3,0.4,0.65,0.9,1.15} and
B =1/a € A5 = Ao U{0.2,0.35,0.6,0.8,1.1}. Then,
we use these examples to obtain an approximation of the
necessary control action. The green and orange solid lines in
Fig. 3 show the results. In both cases, the increased number
of examples does not lead to a performance improvement
inside the bounds given by the slowest and fastest example.
Outside of these bounds we can notice how increasing the
number of examples reduces the error introduced by the
noise in the input example (fastest motion). However, there
is a slight performance degradation for the slowest motions,
probably due to overfitting. Future work will better analyze
this behavior.

B. Experimental results

We test the proposed method on a double pendulum actu-
ated by VSA (Fig. 1(b)). In particular we employ two gbmove
Advanced [22] that are agonistic-antagonistic actuators with
variable stiffness, thus they satisfy the conditions discussed



Fig. 5. Experiment: variable stiffness. Photo-sequence of the VSA double
pendulum tracking the reference trajectory time scaled with 8 = 0.9167.
The control input has been obtained with the proposed generalization
method (24).

in Sec IV. The employed controller is the one described in
the Appendix [21]. As reference trajectory we choose a five
order minimum jerk trajectory for each joint, that goes from
q.(0) = Orad to ¢.(T) = w/4rad in T seconds, i.e.,
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This choice allows to have a non linear reference that is four
time differentiable. Fig. 5 shows a photo-sequence of the
trajectory.

The terminal time of the five examples is set equal to
T € {4,6,8,10,12}s. Choosing as reference time of the
generalization 7' = 6s leads to the time scaling factors 3 =
1/a € {2/3,1,4/3,5/3,2}. Once acquired the five input
torque examples, it is possible to generalize w.r.t. to a new
time scaling parameter - applying (24). We proceed testing
the predicted control action for each terminal time ranging in
the interval {3, 3.5, ...,12.5,13}s, related to the time scaling
parameters 8 = 1/a € {0.5: 0.5/6 : 13/6}, testing a total
of 21 predictions.

We investigate two cases; constant stiffness K, =
5Nm/rad, z = 1,2 and variable stiffness. In the Ilatter
case the stiffness profile is changed with a minimum jerk
trajectory behavior (similar to (32)) from K, (0) = 5Nm/rad
to K.(T) = 20Nm/rad, z = 1, 2.

Fixed stiffness: The learning process ended after 25 it-
erations. The results for this case is reported in Fig. 6.
Red circle markers in the figure represent the tracking
performance of the five input control actions learned through
iterations. The blue solid line and the plus sign markers
represent different tested values. Similarly to the simulation
case, the tracking error obtained with the predicted control
action of the generalized method is comparable to the error
obtained with the learning process. When generalizing w.r.t.
to time scale parameters outside of the learned range, the
performance degrades. This is due to the noise introduced
by the feedforward actions. In particular, we have that for
slower trajectories, i.e., 8 > 1, the tracking performance
becomes influenced by static friction and by its combination
with the inertial and elastic effects. This results can be
noticed in Fig. 7. This figure shows the tracking performance
of the control input generalized with 5 = 1.1667 (dashed
line). After testing the proposed method, we performed an
additional learning process for the scaled trajectory, and we
compared the tracking performance after 25 iterations. Both
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Fig. 6. Experiment: constant stiffness. The abscissa axis represents different
values of the time scaling parameter 8 = 1/c. The ordinate axis represents
the tracking error metric (31). The red circles indicate the error obtained
by the five input examples at the end of the learning process. Generalizing
these control inputs using our method yields the error indicated by the blue
plus sign markers.
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Fig. 7. Experiment: constant stiffness. Comparison between tracking

performance for the predicted control action (dashed line) and for the control
action after a new learning process (solid line). The time scale factor is
B = 1.1667. Left hand side figure refers to Joint 1, while right hand side
figure refers to Joint 2.

cases present a similar behavior validating our method. The
influence of the static friction can be noticed at the end of
the tracking in joint 1.

Variable stiffness: The learning process ended after 25
iterations. The results for this case is reported in Fig. 8.
Red circle markers in the figure represent the tracking
performance of the five input control actions. The blue
solid line and the plus sign markers represent different tested
values. Also in this case we obtain similar results despite
the error committed due to linearization. As for the constant
stiffness case, the static friction influences the results for
slow trajectories. Fig. 9 reports an example of predicted
torque (dashed line). The parameter S in this experiment
is set to 8 = 1.5. After the prediction we learned (25
iterations) a new control action through ILC for the same
time scale parameter. The obtained control actions are very
similar (cf. solid and dashed lines in Fig. 9). Finally, Fig. 5
shows the robot tracking the desired trajectory time scaled
with 6 = 0.9167.

VI. CONCLUSIONS

In this paper, we proposed an in depth analysis about
the generalization of acquired control inputs to track a
desired trajectory with different velocities. This ability can
be beneficial in several applications as walking or pick-
and-place tasks. We developed a method for articulated soft
robots with time-varying linear stiffness. The derived analytic
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Fig. 8. Experiment: variable stiffness. The abscissa axis represents different
values of the time scaling parameter 8 = 1/c. The ordinate axis represents
the tracking error metric (31). The red circles indicate the error obtained
by the five input examples at the end of the learning process. Generalizing
these control inputs using our method yields the error indicated by the blue
plus sign markers.
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Fig. 9. Experiment: variable stiffness. Comparison between the predicted
control action (dashed line) and the learned control action after a new
learning process (solid line). The time scale parameter is 5 = 1.5.

solution is then extended to the case of variable stiffness
actuators. Results prove that five control inputs are necessary
and sufficient to generalize w.r.t. velocity variation. To test
the validity of the method we performed simulations on
a SEA Baxter robot and experiments on a VSA double
pendulum, with fixed and varying stiffness.

The proposed method is agnostic to the procedure em-
ployed to acquire input examples 7. However, its benefits
are maximized in case of model-free control laws, as ILC.
Indeed, in case of model-based methods, the proposed tech-
nique could be employed to avoid recomputing the robot
dynamics, that could be a time-consuming operation.

APPENDIX

The controller employed in Sec. V is a decentralized
model-free method based on Iterative Learning Control
(ILC). The control law for the z—th joint at the s—th iteration
is

Tai = Tai—1 + Lup 2Tz 5—1 + LEB, 2% (33)

where Lyp . and Lgg . are the update and feedback gains
T

for the z—th joint, and Z ; £ [cjz — 4z, (jz — q“} is the
position and velocity tracking error. Note that the subscript
i refers to the current iteration, while the subscript ¢ — 1
refers to the previous iteration. The method requires an
initial guess 7, ¢ that can be put equal to zero or estimated
on a rough approximation of the robot dynamic model.
Lgg,, is set as a linear quadratic regulator. Both Lyp , and
Lgg,, are tuned to guarantee the convergence of the iterative
algorithm. In case of VSA robots, a feedback controller is
added to independently regulate the desired stiffness profile
commanded through 6,. For the sake of space we cannot

report here the full algorithm. The interested reader can refer
to [21] for its detailed description.
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