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Abstract—This paper is concerned with the design and
control of actuators for machines and robots physically inter-
acting with humans, implementing criteria established in our
previous work [1] on optimal mechanical-control co-design for
intrinsically safe, yet performant machines. In our Variable
Impedance Actuation (VIA) approach, actuators control in
real-time both the reference position and the mechanical
impedance of the moving parts in the machine in such a way to
optimize performance while intrinsically guaranteeing safety.
In this paper we describe an implementation of such concepts,
consisting of a novel electromechanical Variable Stiffness
Actuation (VSA) motor. The design and the functioning
principle of the VSA are reported, along with the analysis
of its dynamic behavior. A novel scheme for feedback control
of this device is presented, along with experimental results
showing performance and safety of a one-link arm actuated
by the VSA motor.

Index Terms—Physical Human-Robot Interaction, Safety,
Performance, Variable Stiffness Mechanisms, Actuators

I. INTRODUCTION

Machines that interact with humans must be safe against
all possible accidents. Taking this for granted, the second
most important goal is their performance - which can be
often expressed in terms of velocity of motion. A machine
that moves fast is typically more dangerous than a slow-
moving machine, but slow machines are often unacceptable
in applications. Some attempts have been made in the past
to overcome this problem by using sensorization of the
moving parts of the (rigid) machines, and active control.
These solutions tend to be costly, encumbrant, and not suf-
ficiently reliable. A way to mechanically guarantee safety
for mechanisms based on passive transmission elasticity
has been considered in [2]. More recent approaches include
minimization of link and motor inertias, and the design of
new transmission mechanisms [3], [4].

A new mechanical/control co–design approach, the Vari-
able Impedance Approach (VIA), has been recently intro-
duced by authors [5] as a new way to optimally trade safety
and performance during task executions for a robot arm
relying on the possibility to vary the mechanical impedance
(i.e. stiffness, damping and/or gear–ratio parameters) of the
actuation subsystem “on the fly”. In particular, the way
in which the mechanical impedance could optimally vary
during motions can be determined as a solution of the
Safe Brachistochrone optimal control problem introduced
by authors in [1]. Results of such analysis show that

optimal control of safe VIA mechanisms imposes high
stiffness at low link velocities, while low stiffness should
be commanded at high velocities, to decouple the actuator’s
inertia from the link’s. Furthermore, the study in [1] shows
that a crucial parameter for achieving high performance
from VIA mechanism is the ratio between the maximum
and minimum achievable actuator stiffness.

It is interesting to note that purposeful variation of
impedance is also observed in motions of the human
limbs, which appear to be controlled by the cerebellum
adopting pre–computed optimal strategies [6]: however,
no direct relation has been shown so far between known
neural strategies and the strategies resulting from the safe
brachistochrone solutions.

The general VIA concept can be implemented by differ-
ent mechanisms, in particular those adopting antagonistic
arrangements emulating human limbs (see e.g. the actua-
tion systems discussed in [7], [8], [9]). However, a broader
exploitation of the VIA concept in machines and industrial
environments would largely benefit if fast, rugged, and
compact VIA actuators were available. To this purpose,
this paper discusses the realization of a compact rotary
actuator with variable and controllable joint shaft stiffness.
Another important issue left open by previous work on VIA
actuators and considered here, is their feedback control,
to guarantee safety and accuracy in positioning of the
mechanism during fast trajectory tracking tasks, in spite
of model parameter mismatches or unforeseeable distur-
bances. Experimental tracking results on both position and
stiffness, performed with a prototype of VIA, are reported.

II. DESIGN OF A VARIABLE STIFFNESS ACTUATOR

In this section we present the design of a prototype
variable-stiffness actuator (VSA). Although the VSA has
been primarily conceived for safe and performant robot
arms operating in anthropic environments, it could be also
usefully adopted to actuate mechanisms for which the
capability to vary stiffness is important during executions
of particular tasks (e.g. to better adapt legged robots to
various, and unknown conditions of the terrain [10], [11]).

The conceptual design and the appearance of the VSA
prototype are described in fig. 1, and 2, respectively . A
timing transmission belt, whose total length is L ≈ 0.35m,
is tensioned by springs of elastic constants K = 3 N/m,



Km = 4 N/m, and connects nonlinearly the main shaft qm

to the antagonistic pair of actuators pulleys q1, q2 rigidly
connected to position-controlled backdrivable DC motors.
Concordant angular variations δq1 = δq2 generate only
displacements δqm at the main shaft, while the opposite
δq1 = −δq2 generate stiffness variations δσ. Springs
of elastic constant Km on idle pulleys guarantee correct
tensioning of the belt. The primary difference between

Fig. 1. Perspective view of the Variable Stiffness Actuator. The
transmission belt 1 connects the DC Motors pulleys 2-3 to the joint shaft
4, and it is tensioned by passive elastic elements 5-6-7.

Fig. 2. Appearance of the prototype of Variable Stiffness Actuator.

the proposed transmission system, and other devices with
variable mechanical stiffness (see e.g. [12], [13], [7]), is
that this is amenable to more compact implementation, and
stiffness can be varied very rapidly and continuously during
task executions.

To calculate the mechanical stiffness σ of the VSA,
we compute the mechanical torque τ generated by the
springs of elastic constant K to the joint shaft, and its
derivative σ = − ∂τ

∂qm
with respect to a joint shaft angular

displacement qm. For simplicity, we focus our attention on
one of the three sides of the torque transmission system (see
fig. 3), calculating the overall torque acting to the joint shaft
as the sum of two (i.e. left/right) components. After some
calculations, the torque acting on the joint qb generated by

Fig. 3. Particular of the proposed nonlinear torque transmission system.
In this case, stiffness σb,a of the belt that connects the two pulleys b, a
varies during motions with the active length hb,a of the spring Ks. in
such way high/low compressions of the spring generate high/low stiffness.

the spring Ks results

φb,a = Fb,a cosαR = 2KsR
h̄b,a − hb,a

hb,a
Lb,a,

where Lb,a = L̂b,a + R(qb − qa) is the length of the belt
between the two pulleys (L̂b,a ≥ D is the length of the belt

at the equilibrium), hb,a =
√

L2
b,a

−D2

2 is the active length
of the spring (h̄b,a ≥ hb,a represents the spring’s length
at rest). For simplicity, in these calculations we assumed
it holds r ≈ 0 for the radius of the idle pulley, and that
hb,a ≈ ls, with ls is the total length of the spring.

The torque τ acting on the joint shaft of the VSA can
be easily computed as

τ = φm,1 − φ2,m =
2KR

(
h̄m,1−hm,1

hm,1
Lm,1 − h̄2,m−h2,m

h2,m
L2,m

)
,

(1)

and the related joint shaft stiffness is

σ = 2KR
(

h̄m,1−hm,1
hm,1

+ h̄2,m−h2,m

h2,m

)
−

2KR
(

h̄m,1Lm,1

4h3
m,1

+ h̄2,mL2,m

4h3
2,m

)
.

(2)

In fig. 4 are reported values for the VSA’s joint stiffness
obtained by simulations of (2). As it is highlighted, σ is a
monotonically increasing function of the relative displace-
ment qd = q1−q2

2 , and it can be shown that angular values
q1 = −q2 = π

2 imply for this model σ = +∞.
As we will argument in detail in the following, its

capability to independently vary its main shaft positions
and stiffness highlights the VSA can be usefully adopted
to actuate mechanisms for which the characteristic to guar-
antee safety is of paramount importance during motions
[5].

III. DYNAMICS AND CONTROL OF VSA SYSTEMS

In this section we discuss the dynamics and control
of a 1-DOF experimental setup constituted by a planar
link actuated by the VSA. The proposed control allows
to independently vary the position and the stiffness of the
joint shaft in a manner that comply to what reported in [1].
Stiffness references will be generated adopting an on–line
sub–optimal control algorithm discussed in section III-B.
Experimental results are reported in section IV highlighting
the effectiveness of the proposed control approach.
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Fig. 4. Values for stiffness σ at the joint shaft of VSA in a steady–state
configuration with angular positions qm = 0, and with increasing values
for displacements qd = q1−q2

2
.

A. Dynamics of the VSA

The appearance of an experimental setup, constituted by
a rigid link actuated by the VSA, is reported in fig. 5.

Fig. 5. Appearance of the planar 1-DOF experimental setup realized in
our lab.

The dynamics of the system result⎧⎨
⎩

IRq̈1 + βq̇1 = φ1,2 − φm,1 + τ1

IRq̈2 + βq̇2 = φ2,m − φ1,2 + τ2

ILq̈m + βq̇m + mgL sin qm = φm,1 − φ2,m − τm

(3)

where IR and IL are, respectively, the DC motors and link
rotary inertias, β is the (small) axial friction coefficient, m
and L are the mass and the length of the link, q1, q2, qm

are the rotors and link angular positions, φ1,2, φ2,m, φm,1

are the torques generated on the pulleys by the three springs
(see section II), τm collects external disturbances acting on
the link, and τ1,2 are the control torques acting on the two
motors.

The pursued control task is to control the transmission
stiffness σ and the joint shaft position qm by controlling
independently the displacements qs = q1+q2

2 and qd =
q1−q2

2 . This is suggested by the fact that, in a steady-state
configuration, and in presence of negligible gravitational
loads (e.g. in case of planar, or lightweight robots, such
as those proposed in [3], [14]), for the link angular dis-
placement and transmission stiffness it holds qm = qs, and

σ = σ(qd) (see also fig. 6, where transmission stiffness
increases from green to red).

Fig. 6. How stiffness σ varies in practice. Differential displacements
qd = q1−q2

2
do not affect the position qm of the joint shaft, but only

the stiffness characteristic of the transmission.

State variables (qs, qd, q̇s, q̇d) appear on (3) by simply
adding and subtracting its first and second equations⎧⎨

⎩
IRq̈s + βq̇s = Φs + τs

IRq̈d + βq̇d = Φd + τd

ILq̈m + βq̇m + mgL sin qm = τ − τm

(4)

where, in particular, Φs = φ2,m−φm,1
2 , Φd = (φ1,2 −

φ2,m+φm,1
2 ), τs = τ1+τ2

2 , and τd = τ1−τ2
2 are the respective

control torques. Note that torques Φs, Φd, and τ = φm,1−
φ2,m in (1) are now dependent on variables qm, qs, qd.

An extension of this model to a more general n-DOF
structure can be found by supposing the overall system
“decoupled” [15], i.e. with Lagrangian function

L =
1
2
q̇T Bo(qm)q̇ − Ug(qm) − UK(qs, qd, qm),

where q̇ = (q̇m, q̇1, q̇2)T , Bo(qm) = diag[B(qm), IR, IR]
is a block–diagonal inertia matrix which collects the inertia
matrix B(qm) of the rigid n-DOF structure, and the DC
motors rotary inertias IR of the VSA, U(qm) is the
potential energy of the rigid structure (we supposed to
adopt lightweight VSAs, i.e. with negligible gravitational
loads), and

UK(qs, qd, qm) = 1
2Km(h̄1,2 − h1,2)2

+ 1
2K

[
(h̄m,1 − hm,1)2 + (h̄2,m − h2,m)2

]
,

is the potential energy stored on the elastic elements of
the transmission. Adopting the Lagrange equation, it holds
after some calculations⎧⎨

⎩
IRq̈s + βq̇s = Φs + τs

IRq̈d + βq̇d = Φd + τd

B(qm)q̈m + h(qm, q̇m) = τ − JT (qm)τm

(5)

where, in particular, h(qm, q̇m) collects Coriolis and grav-
itational torques acting on the rigid structure, J(qm) is the
Jacobian of the structure, and functions Φs, Φd, τ , and τm



are intended as n-dimensional column vectors collecting
the related quantities at each joint.

B. Control of the VSA

Choosing the controls{
τs = Kv

˙̃qs + Kpq̃s − Φs

τd = Kv
˙̃qd + Kpq̃d − Φd

(6)

with position errors q̃s = q̂s − qs, q̃d = q̂d − qd (q̂d, q̂s are
desired displacements), and both KP , KV > 0, system (4)
results⎧⎪⎪⎨

⎪⎪⎩

I ¨̃qs + (β + Kv) ˙̃qs + Kpq̃s = 0
I ¨̃qd + (β + Kv) ˙̃qd + Kpq̃d = 0
Jq̈m + βq̇m + mgL sin qm =
φm,1(qm, qs, qd) − φ2,m(qm, qs, qd) − τm.

(7)

In practice an integral term could be added to torques
(6) so as to avoid steady–state disturbances, due to the
non–perfect modelling of torques φm,1, φ2,m affecting the
dynamics of variables q̃s, q̃d.

The equilibrium point for system (7), with external
torque τ̂m at the equilibrium, is

(q̃s, q̃d, qm, ˙̃qs, ˙̃qd, q̇m)T = (0, 0, q̂m, 0, 0, 0)T = X̂

with q̂m is the equilibrium point for the third equation of
system (7), i.e. it holds

mgL sin q̂m −
(
φ̂m,1 − φ̂2,m − τ̂m

)
= 0.

To inspect the asymptotical stability of the equilibrium
obtained with controls (6), it is sufficient to linearize (7)
in proximity of the equilibrium point X̂ , to obtain⎧⎪⎪⎨

⎪⎪⎩

I ¨̃qs + (β + Kv) ˙̃qs + Kpq̃s = 0
I ¨̃qd + (β + Kv) ˙̃qd + Kpq̃d = 0
J ¨̃qm + β ˙̃qm + σq̃ q̃m =
= −σsq̃s − σdq̃d − τ̃m.

(8)

with σk|k=m,s,d = −∂φm,1−φ2,m

∂qk
|X̂ , and σq̃ =

mgL cos q̂m + σm represents the joint stiffness in a steady
state configuration which consists of two spring–like con-
tributes of both gravitational torque and transmission sys-
tem. In absence of transmission (i.e. σm = 0) the link
dynamics comply with those of a pendulum, for which
the asymptotical stability of an equilibrium is guaranteed
only in a portion of the workspace q̂m ∈ (−π

2 , π
2 ), i.e.

where it holds mgL cos(qm) > 0 for the gravitational
term, or better where stiffness is positive. The presence
of a variable stiffness transmission allows to extend the
asymptotical stability to the overall workspace, by inserting
in parallel to the gravitational spring a spring of elastic
constant σm > 0. In fact, the asymptotical stability of
the equilibrium is guaranteed in the overall workspace if
stiffness σq̃ is always positive, i.e. if a transmission stiffness
σm > −mgL cos(q̂m) is chosen.

It is noteworthy to highlight that, in proximity of a steady
state equilibrium configuration, in absence of, or with

negligible, gravitational loads (i.e. mgL cos(qm) � σm),
it holds for the joint shaft angular displacement

q̃m = − τ̃m

σm(q̂s, q̂d, q̂m)
,

that implies the actuator presents a joint shaft stiffness σ =
σm(q̂s, q̂d, q̂m) (see fig. 7).

Fig. 7. A simplified working scheme of the VSA in steady–state condi-
tions. Effective qm, and desired qs joint displacements are coinciding in
case of high transmission stiffnesses σm(qd) (i.e. in case of high relative
motors displacements qd), also in presence of external disturbances τm.

The latter implies that, for “safe and fast” pick–and–
place trajectories in both joint shaft positions and stiffness,
such as those computed with the Safe Brachistochrone [1]
(see fig. 8), the entity of the position errors q̃m decreases
while transmission stiffness σ(q̂s, q̂d, q̂m) increases (i.e. po-
sition errors are negligible during the pick/place intervals).
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Fig. 8. Trajectories in both joint velocity (continuous) and stiffness
(dashed), for a 1-DOF Soft Arm performing general point–to–point
trajectory tracking tasks. Values for transmission stiffness are found as
solutions of the Safe Brachistochrone in a manner that leaves the injury
level HIC [16] under acceptable safety levels during motion.

IV. EXPERIMENTAL RESULTS

This section is devoted to verify experimentally the
performance and intrinsic safety of the controlled prototype
in 5. The setup is controlled with methods discussed in
section III-B. The capability to independently control joint



shaft position and stiffness proposes the VSA as a viable
candidate as actuation system for machines interacting with
human operators (see e.g. [5]).

A. Step Responses

The experiment concerns the capabilities of the control
approach proposed in section III-B to guarantee the asymp-
totical stability of the overall system. In particular, in fig.
9 three plots are reported, showing how the steady–state
joint shaft position qm tends to a desired step displacement
q̂s = π

2 , when joint stiffness increases (e.g. q̂d = (0, π
2 , π)).

The latter is a clear effect of the previously discussed
properties of disturbance (only gravitational, in this case)
rejection of controls (6) for high values of joint stiffness.
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Fig. 9. Step response of the planar experimental setup controlled as in
section III-B for desired joint position q̂s = π

2
with increasing values for

joint stiffness.

B. Trajectory Tracking

This experiment highlights the capabilities of the VSA
to vary joint shaft stiffness (see fig. 13) on–line, and
independently to general trajectories of the joint shaft
(see fig. 12), guaranteeing acceptable levels of HIC [16]
during the overall motion. It must be notified that the
Safe Brachistochrone is a useful optimal control tool that
is able to solve the safety/performance tradeoff in case
of point–to–point trajectories (see fig. 8), but, due to his
computational complexity, his effectiveness decreases if it
is adopted on–line and in presence of general motions.

A low–complexity, sub–optimal, on–line algorithm to
guarantee safety during fast motions of the VSA can
be conceived directly by inspecting experimental impact
results [5], where it can be found that HIC is a monotonic
(i.e. invertible) function of transmission stiffness σm for
constant shaft velocities q̇m (see fig. 10). The idea is
that high transmission stiffnesses σm − MAX can be
preserved without affecting safety during motions until
a maximum q̇m − MAX is reached for the joint shaft
velocity, corresponding to a pre–determined maximum
level HIC − MAX for injury risk (e.g., in fig. 10,
q̇m −MAX ≈ 5 m/s, and HIC −MAX = 75 m2.5/s4),
and hereafter to vary stiffness with velocity along the
relative constant–HIC curve, to allow velocity variations

without to affect safety (see fig. 11). It is noteworthy that
the choice of the “maximum allowable stiffness” which
comply with the safety bounds allows the mechanisms to be
safe while guaranteeing the maximum allowable accuracy
during movements.
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Fig. 11. Constant–HIC curve related to HIC −MAX = 75 m2.5/s4.
Transmission stiffness must vary along this curve for link velocities q̇m >
5 m/s to guarantee the safety bound HIC ≤ 75m2.5/s4. The curve has
been generated by interpolation of experimental data.

As an example, in case of sinusoidal trajectories q̂s for
the joint shaft (see fig. 12), both desired and experimental
values for joint stiffness are reported in fig. 13, where
desired trajectories are generated by the T.C.P. [1] to
guarantee during motions the safety level HIC−MAX =
75m2.5/s4. Finally, it can be noticed that, at low velocities,
joint shaft positions during the variable stiffness tracking
(continuous) are practically coincident to those of the rigid
case (dash-dotted).

This highlights the VIA approach application, in which
safety concerns prevail during fast movements, while ac-
curacy in positioning can increase in presence of slow
motions.
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Fig. 12. Trajectory tracking results for a sinusoidal reference, in case of
compliant (dotted), rigid (dash-dotted), and variable stiffness transmission
(continuous) (see fig. 13 for stiffness trajectories).
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Fig. 13. Stiffness trajectory tracking for the VSA in case of sinusoidal
reference at the joint shaft. Desired values for stiffness are computed
adopting the sub–optimal algorithm discussed in section IV-B, guarantee-
ing an HIC − MAX = 75 m2.5/s4 during the overall motion.

V. CONCLUSIONS

In this paper, a Variable Stiffness Actuator is presented
in detail, along with a control approach that allows to
independently control joint positions and stiffness, and
whose effectiveness has been shown both theoretically
and experimentally. The possibility to vary transmission
stiffness (or impedance, in general) is a useful way to
guarantee low levels of injury risk during execution of
fast trajectory tracking tasks. That implies the possibility
to adopt this actuator to realize fast and safe mechanisms
for robotics applications, in which it is involved a close
cooperation between human operators and machines.
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