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Abstract

In this paper, we consider the problem of e�ciently
simulating large interconnected mechanical systems.
For applications such as haptic rendering of large, com-
plex virtual environments, dynamic simulation soft-
ware and hardware is still too slow to a�ord accurate
performance in real{time. In particular, mechanisms
with closed kinematic chains necessitate solutions to a
set of di�erential equation with algebraic constraints
(DAE's), that are often too heavy and sti� to be com-
puted in real{time by present-day single-processor ma-
chines. On the other hand, the structure of most state{
of{the{art algorithms does not easily lend itself to par-
allelization. In this paper, we propose and experimen-
tally verify a technique for DAE simulation that prof-
itably uses a degree of randomization to achieve e�-
cient parallelization.

1 Introduction

As the di�usion of Virtual Reality applications be-
comes more and more pervasive in everyday's life, tech-
nical demands to VR systems are also getting more
and more challenging at a fast pace. Earlier VR soft-
ware consisted preminently of graphic environments
that could be explored by the user with limited in-
teractions. Initially, environments including moving
objects have been incorporated in VR engines using
purely kinematic descriptions. However, the realism of
movement thus obtained is not quite satisfactory for
many applications, and the need for a truly dynamic
simulation has been widely recognized. To date, many
VR applications include dynamic simulation of more or
less complex articulated structures.

The challenge in including dynamic simulation in
VR applications is clearly that computations should be
(at least) as fast as real time. The development of e�-
cient dynamic simulation algorithms for tree-structured
kinematic chains ([11], [9]) and the fast growth of
computational power in general purpose machines has
helped reaching the goal of simulating rather complex
structures in real time ([8], [2], [13], [7], etc.), such as
open chains of up to some tens of links. However im-
pressive these advancements have been, they are not
yet comparable to what has been achieved in the same
time span by graphic software and hardware accelera-
tors. Many complex dynamic systems remain beyond

real{time simulation capabilities of present{day soft-
ware and hardware.

In particular, in this paper we consider simulation of
mechanisms with constraints. Multibody systems with
constraints arise in a number of di�erent applications,
ranging from simple mechanisms with closed kinematic
chains, to parallel{actuated platforms, and to robotic
telemanipulators in contact with the environment. In
applications involving haptic displays, there is very of-
ten a closed mechanical chain comprised of the operator
and the display device, and a (virtually) closed chain
involving the operator and the simulated dynamic en-
vironment.

Mathematically, the simulation of constrained me-
chanical systems calls for the numerical integration
of a set of mixed di�erential and algebraic equations
(DAE's). Although much research has been devoted
to the study and the e�cient numerical solution of
DAE's (see e.g. [5], [1]), most such systems are of-
ten too heavy and sti� to be computed in real{time
by present{day single{processor machines. Clearly, an
alternative, cost{e�ective solution would be the use
of parallel and/or distributed computational architec-
tures. This solution is much encouraged by the re-
cently popular trend in high{performance computing,
whereby several (order of units or tens) rather sophis-
ticated processors are clustered together on fast buses
or net protocols (compare this with earlier massively{
parallel philosophies in parallel computing).

Unfortunately, the structure of most state{of{the{
art algorithms for simulation of DAE's does not easily
lend itself to parallelization or distribution of compu-
tation. In this paper, we propose and experimentally
verify a technique for DAE simulation that pro�tably
uses a degree of randomization to achieve e�cient par-
allelization. Randomization techniques have proven
useful in many domains, such as for instance optimiza-
tion problems, and, in Robotics, in motion planning
for complex systems ([12]). the paper is organized as
follows: in 2 we review some of the analytical back-
ground involved in simulation of constrained systems;
in 3 describe the proposed randomized algorithm, and
n 4 we report on some experimental results obtained
through application of our proposed algorithm to two
case{studies.



2 Background: Simulation of DAE's

Consider a constrained mechanical system com-
prised of p unconstrained systems, each described by ni
coordinates qi with a Lagrangian Li(qi; _qi) = Ti �Ui,
where

Ti =
1

2
_qTi Bi(qi) _qi

is the kinetic energy and Ui is the potential energy for
the i{th system.

Let the p systems be connected through mh holo-
nomic constraints described by C(q) = 0, and mn

nonholonomic constraints described by N(q; _q) = 0.

We assume that all m
def
= mh + mn constraints are

scleronomic (i.e., time-invariant), and that they can be
jointly written in Pfa�an form as

�
Ah(q)
An(q)

�
_q
def
= A(q) _q = 0;

with Ah 2 IRmh;n, An 2 IRmn;n, and A 2 IRm;n, or in
control form as

_q = S(q)v;

where S(q) 2 IRn�p is a matrix whose columns annihi-
late the constraints, A(q)S(q) = 0, and whose rank is
maximum (i.e., p) for almost all q.

Equations describing the system are thus obtained
as (

B�q+ h(q; _q) +AT� = Q;
C(q) = 0;
An _q = 0;

(1)

where B = diag[B1;B2; : : : ;Bp], h(q; _q) contains ap-
parent and gravity forces, and Q stands for all non
conservative forces (including external forces). The un-
known lagrangian multiplier vector � 2 IRm can be in-
terpreted as a reaction force capable of enforcing the
constraints. In (1), the mixed di�erential and alge-
braic nature of the problem is apparent. Di�erential{
Algebraic Equations (DAE's) arise in constrained me-
chanical systems as well as in many other �elds, and
have been the subject of intense research in the past two
decades (see e.g. [5, 1]). One possible approach to the
solution of (1) is to apply an implicit numerical method
such as backward di�erentiation formulae (BDF) or
implicit Runge-Kutta (IRK) methods directly to the
index-three DAE (1), as �rst suggested in [10]. How-
ever, this approach often leads to ill-conditioning prob-
lems, and is not recommended with DAE's of index
greater than 1 ([5, 1, 8]). The prevalent approach in
the literature appears to be that of reducing the index
of the DAE system by di�erentiating the constraints
once or twice. In particular, di�erentiating holonomic
constraints twice, and nonholonomic constraints once,
a classical index{one form of constrained dynamics can
be obtained as�

B AT

A 0

��
�q
�

�
=

�
Q� h(q; _q)

� _A _q

�
: (2)

Notice that (2) is perfectly equivalent, in its analytical
solutions, to the original (1). However, numerical sim-
ulation of the two systems may lead to quite di�erent
solutions.

Under a nonsingularity condition on the matrix on
the left hand side of (2), simulation can proceed by
solving the linear system (2) in the unknown accelera-
tions �q and constraint forces �. Another approach con-
sists in computing, from _q = Av, the second derivative
�q = A _v + _Av, substituting in (2) and projecting on
the constraint (i.e., multiply by ST (q)) to get

STBS _v = �z(q;v) + STQ

where �(q;v) incorporates apparent forces, gravity, and
constraint derivatives. Such a linear system is then
solved (assuming STBS to be nonsingular) to get _v,
and this is integrated along with _q = Sv. This second
approach to the solution of (2) eliminates the algebraic
variables �, and may reduce substantially the number
of equations to be solved. However, thie technique re-
lies on the evaluation of the annihilator S(q), which
may be very complex a task, both analytically and nu-
merically.

Incidentally, let us observe at this point that in both
techniqus above, nonsingularity assumptions are tanta-
mount to assuming that the constraint matrix A(q) is
full rank. When such condition is not veri�ed, con-
straints are redundant, and the system is sometimes
termed hyperstatic. Determination of lagrangian mul-
tipliers is not unique in this case: if the computation
of constraint forces is of interest in simulation (as e.g.
in the evaluation of dynamically induced mechanical
stresses), then it is necessary to use a more re�ned
model for the system. This can be done by introduc-
ing a model of compliance (and possibly damping) in
the system, modify the potential term accordingly, and
redo the analysis. However, if the actual interest in
simulation is just to derive the correct motion of the
multibody system, than hyperstaticity can be simply
resolved by simply suppressing all dependent rows in
A. We will henceforth consider the case that the rank
of A(q) (and hence of S(q)) is constant.

Practical integration of (2) will rely on di�erent
schemes to numerically approximate derivatives (for-
ward and backward Euler, Runge-Kutta, BDF, etc.).
Because at this point we want to abstract from the spe-
ci�c details of the numerical integration algorithm to
be employed, we will most simply model e�ects of nu-
merical approximation of derivatives with noise terms.
Speci�cally, we assume that the numerically approx-
imated velocity ~_q equals the analytic derivative ad-
ditively perturbed as ~_q = _q + �v, with perturbation
bounded norm as k�vk � �v . Analogously for accel-

erations, we set ~�q = �q + �a, with k�ak � �a. Be-
sides, it has to be considered that initial conditions
(q(0); _q(0)) used for simulation of (2) can not be as-
sumed in general to match perfectly the constraint con-
ditions. Let Ep and Ev be bounds on the maximum
errors in initial conditions such that kC(q(0))k � Eh,
and kAn(q0) _q(0)k � En.



It is of interest to study the dynamics of the con-
straint errors, de�ned as eh = C(q) and en = An(q) _q.
For both the above solution methods of (2), one gets

�eh = dh; eh(0) = C(q(0)); (3)

_en = dn; en(0) = A(q(0)) _q(0) (4)

where, for small errors, dh ' Ah�a + @ _Ah _q
@ _q �v and

dn ' An�a +
@ _An _q
@ _q �v . We let such perturbation terms

be bounded in norm as kdhk � Dh, kdnk � Dn. Er-
ror dynamics are thus linear, with one or two poles in
the origin for nonholonomic and holonomic constraints,
respectively, and a random forcing term of bounded in-
tensity. Observe that, for given errors of the numerical
scheme (�a; �v), the bounds on the error forcing terms
increase with the derivatives of A(q): in other words,
the larger is the curvature of the constraints, the more
dramatically numerical noise a�ects simulation.

While system (4) is barely marginally stable, (3) is
unstable. As a consequence, simulation of (2) does not
absorb initial condition mismatches, nor damps out nu-
merical perturbations. This leads to violation of con-
straints, which is more severe in the proximity of highly
curved segments of the trajectory. For holonomic con-
straints, errors in initial conditions increase linearly in
time, so that simulated trajectories will typically go
adrift with respect to the constraints.

The problems generated by index reduction tech-
niques in DAE's are well known in the literature,
and several approaches have been proposed to solve
them. These include for instance Baumgarte stabi-
lization ([3]), penalty methods ([14]), and augmented
lagrangian techniques ([4]). All these methods share
the fundamental characteristic of adding to the origi-
nal equations a (linear) combination of the constraint
errors eh, en, and derivatives thereof. A typical
such scheme for stabilizing simulation errors consists
in modifying the constrained dynamics equation by
adding the term in the box as�

B AT

A 0

� �
�q
�

�
=

"
Q� h(q; _q)

� _A _q+ f(eh; _eh; en)

#
:

(5)
Selecting for instance

f =

�
�Kv 0
0 �Kn

��
_eh
en

�
+

�
Kp

0

�
eh;

the error dynamics become

�eh +Kv _eh +Kpeh = dh
_en +Knen = dn:

Hence, by choosingKp;Kv;Kn as symmetric and posi-
tive de�nite matrices, the constraint is stable. A typical
choice for these matrices is to take them diagonal, with
Kv(i; i) = 2Kp(i; i), so that holonomic constraint er-
rors are critically damped decoupled second order sys-
tems. The larger the values of Kp(i; i) and Kn(i; i),
the faster the transients due to initial condition mis-
match converge to zero, and the more e�ective is the
attenuation of the input noise.

3 Randomized Parallel Simulation of
D.A.E.'s

The problem with real{time simulation of
large/complex constrained mechanical systems by
the stabilization methods described in the above
section is that, if gain matrices Kp;Kn are chosen
large enough to have quick convergence and good
attenuation { hence small simulation errors { system
(5) becomes very sti�. Indeed, the dynamics of the
constraint error represents in this case the fastest
dynamics in the system, and hence the simulation
bottleneck.

Although the literature on numerical integration of
ODE's abounds with techniques for solving sti� prob-
lems, in VR/Haptic applications we are confronted
with an additional problem: simulation has to be done
in real{time. Moreover, haptic interactions with the
user make it necessary to include in the simulation de-
vices to detect events such as contacts, and allow force
exchanges with the haptic probe.

Real{time simulation implies that the computa-
tional time must be smaller than the integration step
size, hence severely limits the complexity of computa-
tions that can be done in each step. Furthermore, the
computational time must be predictable, which fact
makes adaptable multistep methods with error con-
trol unapplicable. Garc��a de Jalon and Bayo [8] have
a interesting discussion on these problems, and indi-
cate that implicit, sti�y-stable or A-stable �xed mul-
tistep methods appear to adapt best to the problem
at the present state-of-the-art. Explicit linear mul-
tistep methods, on the other hand, are computation-
ally inexpensive and would have the important advan-
tage of avoiding any iterative procedure during the step
computations. Unfortunately, their stability has to be
guaranteed by the choice of small enough integration
steps, which makes these methods hardly suited to sti�
problems. We will see below how these problems can
be alleviated by the use of our proposed simulation
scheme.

Real{time simulation of complex multibody systems
represents such a challenge to current computer tech-
nology that makes exploitation of computational paral-
lelism compelling. However, how to employ parallelism
pro�tably is not a trivial question. Although parallel
computation for ODE's ([6]) and DAE's ([15]) has been
considered in the literature, these methods do not ap-
ply to real{time simulation of VR/Haptic systems be-
cause of the motivations above.

To start with, parallel computing would not be of
much help if adapted to constrained mechanical sys-
tems in the na��ve way: simulate each unconstrained
system on a processor (diastole), collect data and com-
pute reaction forces (systole), and distribute reactions.
Indeed, the systole would coincide with computations
involving the fastest dynamics in the system, and hence
the slowest compuational part.

The Randomized Parallel Simulation (RPS) algorithm
is based on a probabilistic solution of constrained sys-
tem with randomized perturbations, and on periodic
polling of solutions to choose a representative one.



Figure 1: Graphical illustration of the RPS procedure.

The basic idea is extremely simple, and applies to
any �xed{step numerical integration method (NIM).
Consider a time interval of length T larger than the
integration step � , and proceed as follows (see also �g.1:

1. Initialize N instances of simulation by a NIM of
the entire constrained system (2) on each proces-
sor, with initial conditions qj(kT

+); j = 1; : : :N
randomly distributed in a neighborhood of the cur-
rent value of coordinates q(kT�) at time kT .

2. Proceed with simulation as in the nominal case,
without introducing constraint stabilization. This
achieves much faster simulation (same order as un-
constrained simulation) on each processor (dias-
tole);

3. Stop simulation at time (k + 1)T . Get simulation

results qj;k
def
= qj(kT + T ), _qj;k

def
= _qj(kT + T ),

and residuals rj;k = kC(qj;k)k+�kAh(qj;k) _qj;kk+
�kAn(qj;k) _qj;kk from each processor. Poll them
centrally to elect the one with smallest residual
and set

q(kT + T )� = q`;k
_q(kT + T )� = _q`;k

` = argminj rj;k

4. Possibly adapt T based on current results.

The principle on which the algorithm is based is a
well known result of the theory of di�erential and dif-
ference equations:

Theorem 1 (Generalized Liouville's Theorem)
Consider the one-parameter group induced by the ODE
_x = f(x), with x 2 IRn. Take a domain D 2 IRn of
volume VD and its image D(t) under the action of the

phase 
ow. Then for the volume of D̂ it holds

d

dt
V
D̂
=

Z
D(t)

div fdx

Applying this theorem to the unperturbed con-
straint error equation,

�e = 0

i.e. setting
x1 = e
x2 = _e

and

_x =

�
0 1
0 0

�
x

def
= Mx;

because div Mx � 0, the volume of the initial do-
main in which initial conditions have been randomly
distributed is kept constant. Notice that the polling
phase of the algorithm simply consists of passing a 2n-
dimensional vector (qj;k; _qj;k) and a scalar residue from
each slave processor to the master, �nding the small-
est in a list of N numbers, evaluating N samples of a
randomized distribution of given average, and passing
back these samples to the slave processors.

The RPS algorithm above described is extremely
simple. However, there are many variants and exten-
sions that can be conceived, whose e�ects have still to
be studied in detail. Some possibilities are described
below.
1) Although the volume of the control domain re-

mains constant, its second moment (covariance) may
actually grow in time by applying NIM's to uncon-
strained equations. To correct this, it will be su�cient
to simulate the N parallel instances with a slightly sta-
bilized algorithm with small Kp;Kn, so that the eigen-
values of the error dynamics are in the left half com-
plex plane. In this case, div Mx = Trace M < 0, so
that the control volume decreases in time, contracting
on the exact solution. This also achieves attenuation of
the e�ects of numerical noise accuracy. Typically much
lower values of Kp;Kn will su�ce than necessary in a
single processor implementation, thus avoiding exces-
sive sti�ness of equations;
2) Compensation of uncertainties on initial condi-

tions by ramdomization can be extended to numeri-
cal noise e�ects on the error dynamics. This could be
achieved by intentionally adding to the right hand sides
of (3), (4), a di�erent instance of a zero{average ran-
dom function for each processor;
3) RPS can be applied in principle with any �xed

step NIM. Its advantages however are particularly evi-
dent with explicit multistep methods, whereby sti�ness
reduction is crucial. A variant would be that di�erent
processors implement di�erent NIM's (with the same
step length), thus introducing another degree of ran-
domization;
4) In the presence of kinematic singularities where

A(q) looses rank, bifurcations typically arise in simula-
tion. The randomization method appears to be inher-
ently suited to tracking multiple solutions in this case.
This can be done by setting up a simple mechanisms
for detection of near{singularities, which may trigger a
multi{hypotheses mode of RPS whereby the poll elects
more than one solution to be kept trace of.
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Figure 2: A wheeled cart on a circular rail (left) and a
�ve{bar mechanism (right) used as examples.
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Figure 3: A close-up view of a RPS run for the cart ex-
ample. Outputs from four processors are represented
by a circle, square, cross, and star, respectively. On
the the interval 20T < t < 21T , corresponding to the
bottom-right part of the diagram, the \circle" proces-
sor is elected, and its trajectory establishes the corre-
sponding segment of the RPS solution (described by
the continuous line). At time 21T a randomization
occurs and simulations are restarted (middle part of
the diagram) and, based on results at time 22T , the
\square" processor is elected.

4 Experimental results

We will describe results obtained in the simulation
of two di�erent systems, see �g.2. Consider �rst the
simulation of motion of a cart on a circular rail, as de-
picted on the right in �g.2. We �rst compare solutions
obtained by using a one{step, explicit Euler NIM with
�xed step � . Trajectories simulated by di�erent pro-
cessors, along with the �nal resulting trajectory sim-
ulated by RPS, are shown in �g.3. The stabilization
coe�cients have been chosen as Kv = 2Kp, so that
the constraint dynamics are critically damped. Figure
�g.4 shows the e�ects of increasing Kp on accuracy, for
a �xed value of � = 5 � 10�4. Results of implementa-
tions with a single processor, and of RPS with 5 and
10 processors, are reported. From �g.4, it can be ob-
served that the increase in accuracy is not uniform for
5 processors, while it tends to regularize with increas-
ing the number of processors and hence the degree of
randomization. The e�ect of increasing the number of

Figure 4: Di�erent accuracies obtained at varying the
stabilization parameter Kp with a single processor and
with RPS with 5 and 10 processors.

Figure 5: Simulation times for achieving comparable
accuracies with one, 5, and 10 processors.

processors above 10 is however rather small in simu-
lations of this example. It can be observed that, to
obtain an accuracy higher than 6 � 10�3 with a sin-
gle processor, a value of Kp = 350 is needed, while
it su�ces to take Kp = 150 with 5 processors, and
Kp = 50 with 10 processors in parallel. On the other
hand, to obtain accuracies of the order of say 1 � 10�4,
the single{processor implementation of this explicit Eu-
ler NIM would require much higher Kp, which led to
numerical instability for the chosen value of � . This
is not the case with RPS, which achieves that accu-
racy already with Kp = 250. This e�ect is stressed in
�g.5, which has been obtained by choosing, for a given
level of desired accuracy, the shortest step � compati-
ble with stability. From this experiment, it results that
the decrease in computational time obtained by RPS
is superlinear for high enough accuracies. The rather
impressive performances are partially explained by the
fact that e�ects of increasing Kp on algorithmic sta-
bility limits is nonlinear, because of the usage in this
examples of a simple �xed{step NIM. More analysis
is needed to establish performance increase in general
cases. Analogous results for the 5{bar case, depicted in



Figure 6: Di�erent accuracies at varying Kp.

Figure 7: Simulation times for �xed accuracy.

�g.2, are reported in �g.6 and �g.7, which show similar
behaviours as observed in the previous example.

5 Conclusion

In this paper, we have described a novel algorithm
for parallel (or distributed) simulation of complex me-
chanical systems. The basic idea is based on a ran-
domization technique, and on concurrent simulations
of di�erent instances of the same system. Numerical
results obtained con�rm the validity of the approach at
least when compared with �xed step, explicit numerical
integration methods, which are prevalent in real{time
problems. Some open questions remain in the theoreti-
cal assessment of performance, and in comparison with
implicit and variable{step methods. Further study is
also necessary to establish optimal choices for several
parameters used in RPS, such as e.g. the length of the
re{randomization interval, and the radius of the ran-
domization domain.
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