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Abstract— increasing interest thanks to their simplicity and
robustness, combined with good performances. Another key
aspect of these hands is that humans can use them very
effectively thanks to the similarity of their behavior with natural
ones. Nevertheless, controlling more than a degree of actuation
remains a challenging task.

In this paper we move a first step in taking advantage
of such characteristics in a multi-synergistic prosthesis. We
propose an integrated setup comprehending Pisa/IIT SoftHand
2 robotic hand and a control strategy which simultaneously and
proportionally maps the human hand movements to the robotic
hand. The control technique is based on a combination of non-
negative matrix factorization and linear regression algorithms.
It also features a real-time continuous posture compensation of
the electromyographic signals based on an IMU. The algorithm
is tested on five healthy subjects through a virtual reality
experiment. In a separate experiment, the efficacy of the posture
compensation strategy is evaluated on five subjects and, finally,
the whole setup is successfully tested in performing realistic
daily life activities.

I. INTRODUCTION

State of the art robotic and prosthetic hands are still far
from bridging the gap with the human hand. The biome-
chanical complexity together with the advanced skills of
the human sensory-motor system represent a big challenge
for the development of new mechatronic solutions capable
of the simultaneous, proportional and fluid movements and
interactions that the human hand is capable of. To try filling
this gap, two main trends of research animate robotic hand
design. On one side many hands are designed trying to match
the many functions of human hands through a complex de-
sign, including sophisticated combinations of several motors
and sensors. Noteworthy examples are [1][2]. Typically these
hands have the drawbacks of being expensive and fragile.
Furthermore the problem of controlling them is in general
very complex because of the large number of inputs that
have to be regulated. This makes them very hard to control
for a human operator [3][4].

To overcome these limitations, other hands proposed in
literature aim at embedding some functional principles into
their mechanics [5][6]. Among the main tools of this research

*This work was supported by the European Commission projects (Hori-
zon 2020 research program) SOFTPRO (no. 688857) and by the European
Research Council under the Advanced Grant SoftHands “A Theory of Soft
Synergies for a New Generation of Artificial Hands” (no. ERC-291166)

1Department of Advanced Robotics, Istituto Italiano di Tecnologia,
Genoa, Italy

2Centro di Ricerca “E. Piaggio”, Universita di Pisa, Largo L. Lazzarino,
1, 56126 Pisa, Italy.

Correspond to: matteo.rossi at iit.it

Fig. 1. Pisa/IIT SoftHand 2 controlled though MYO armband.

approach are under-actuation [7], compliant mechanics [8],
and a human-aware approach to the system design [9].
Thanks to this approach, it is possible to design hands able
to cope with part of the problem complexity directly at the
mechanical level. It results in a strong simplification of their
design, such as of the associated control interface.

Pisa/IIT SoftHand+ is an heavily under-actuated robotic
hand [10], and it is an evolution of the Pisa/IIT SoftHand
[11]. It implements two degrees of actuation, inspired by
the most common human hand postures (namely postural
hand synergies) as found in [12] and [13]. It is the authors
opinion that the reduced dimension of the actuation space,
combined with the human inspiration, should make this class
of under-actuated and soft hands valuable candidate not
only for use on autonomous robotic manipulators (as e.g.
[14], [15]) but also for applications where a human user
is active part of the planning and control loop, spanning
from tele-operation, to prosthetics, to human grasp studies
and rehabilitation robotics. Preliminary results in this sense
with Pisa/IIT SoftHand are provided in [16] [17].

Here we discuss the application of Pisa/IIT SoftHand 2
(Fig. 1), an evolution of Pisa/IIT SoftHand+ [10], to the
previously discussed fields. To moving a first step in the
direction of advancing Pisa/IIT SoftHand 2 into a prosthetic
hand, it would be very useful to simplify as much as possible
the interface it presents to a human operator, making it
intuitive to use.

In this paper we face this problem by proposing and
implementing a novel control algorithm that takes advantages
from the most recent trends in myo-electric control (state of
the art is discussed in Sec. II). The controller implemented



in this work is a combination of linear regression (LR) and
non-negative matrix factorization (NMF). Furthermore we
propose to use the arm posture acquired through an IMU, to
compensate the artifacts found in electromyographic (EMG)
signals due to limb position [18]. While other works have
investigated the use of IMU data to increase the accuracy of
classifiers [19] [20], to the best of the our knowledge this is
the first study that investigates the use of an IMU to directly
compensate the EMG signals. The algorithm is implemented
so as to function with a low cost myo-electric off-the-shelf
input device, the Myo Armband, from Thalmic Labs [21].

Various experimental results are provided in order to
demonstrate the effectiveness of the whole system, including
a quantitative study of the algorithm in a real-time virtual
environment with five subjects, and a qualitative study where
an operator intuitively executes a set of realistic daily life
activities.

The paper is organized as follows: Sec. III introduces
Pisa/IIT SoftHand 2 and the problem of its control, while
Sec. IV presents the control algorithm. In Sec. V the ex-
periments are described, provided and discussed. Sec. VI
presents the results. Finally conclusions are drawn in Sec.
VII.

II. STATE OF THE ART

Myoelectric interfaces have in fact been widely used
to control assistive devices, in particular for the control
of upper-limb prostheses. However, myoelectric control of
multiple degrees of freedom in a simultaneous way remains
an open problem. The control strategy typically implemented
in multi-DOF prostheses consists in the proportional control
of a single DOF at a time with the possibility of switching
between DOFs by a co-contraction signal. In the attempt
to control multiple DOFs without the need for switching,
a vast variety of classification-based approaches have been
proposed [22].

Despite the good performances in classifying and control
reached by these methods, they have the strong limitation in
terms of naturalness of control. In fact natural movements
that involve two or more DOFs should be obtained by
controlling the joints simultaneously and proportionally, but
a classifier can only detect one function at time. By enriching
the training set, it was shown that it is possible to achieve
the simultaneous activation of multiple classes [23]; however,
this approach can lead to a deterioration of classification
accuracy and more complicated training sessions. For this
reason we focus our attention on a different class of control
algorithms.

The use of regression techniques is an interesting alterna-
tive to the classification approach. These methods have been
successfully applied to the simultaneous and proportional
control of multiple DOFs, e.g. artificial neural networks
(ANN) in [24], linear regression (LR) in [25] and non-
negative matrix factorization (NMF) in [26].

Among the regression methods for EMG control, NMF
presents several advantages. Besides being computationally
efficient and requiring little user training, the non-negativity

of the NMF approaches is in agreement with the fact that the
firing rates of motor neurons can either increase or decrease
but must always remain positive [27]. Also, it has been
shown that the online performance of NMF is generally
comparable or better than ANN and LR [28].

During preliminary tests with NMF, however, the authors
noticed that when a subject had to perform movements
characterized by a high intensity of the muscular activity
in the attempt of activating one DOF in a certain direction,
the component related to the same DOF, but with opposite
direction, was often activated as well, thus limiting the range
of the control signals. In the attempt of solving this issue,
a new control algorithm, based on the union of NMF and
LR, was developed. The proposed algorithm also encompass
a mechanism of real-time compensation of the EMG signals
through posture information.

III. PROBLEM DEFINITION & SETUP

Following the principle introduced in [10], SoftHand 2 is
actuated with a transmission system encompassing just one
tendon, pulleys and two motors, each end of the actuation
tendon is pulled by one of the two motors. Fig. 2(a) presents
a sketch of SoftHand 2 , with the two motors underlined.
SoftHand 2 inherits good grasping skills from Pisa/IIT
SoftHand with which share the first degree of actuation.
Furthermore thanks to the novel degree of actuation Pisa/IIT
SoftHand 2 can reach particularly useful postures, Fig. 2(b)
shows some of them. In the center of the figure is reported
the hand rest position, and along the two axis are presented
the postures resulting from the application of the two degrees
of actuation. For further details on SoftHand 2 structure we
refer to future works.

If adopted on a robot manipulator the SoftHand 2 can be
controlled simply through an external digital input by com-
puter, anyway if the goal is to use the hand in applications
such as ones described in Sec. I the problem of controlling
the hand becomes much more complex. To test the Pisa/IIT
SoftHand the operator interface was a dedicated handle, as
shown in Fig. 3 (a), maneuvered by the operator by strapping
it to their arm and controlled via the clenching of the user fist
around a hand-lever 3(b). This interface demonstrated to be
very easy and intuitive. We observe that this could be due to
the fact that the user operates the handle lever with a motion
that is somehow similar to the first grasp synergy that the
SoftHand implements as its degree of actuation. The problem
of controlling the SoftHand 2 is more complex because of
the device nature, in fact in order to operate two synergies,
two different commands have to be generated. A similar
approach, with a mechanical handle could be implemented
with the Pisa/IIT SoftHand 2, as shown in Fig.3(c), but the
intuitiveness of the system is lower w.r.t. the solution adopted
for the Pisa/IIT SoftHand. The ideal, most intuitive control
interface should, in principle, extract the projection of the
user hand motion along the two synergies corresponding to
those actuated by the SoftHand 2 and then map these two
values into actual commands to the robot hand (as it was
explored in [17] for the control of the first synergy of the
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Fig. 3. CAD model of Pisa/IIT SoftHand (a) and of Pisa/IIT SoftHand2 (c)
mounted on their handles. Note that the handle (a) is operated by clenching
a hand-lever (b), with a movement similar to that of the first synergy, while
(c) is controlled using a joystick (d).

SoftHand). This mapping does not need to be very strict,
as operator’s brain plasticity is likely to compensate minor
deviations, but a substantial amount of similarity eases the
operator task of controlling a system [29], [30].

Fig. 4 presents the whole setup, composed by the robotic
hand Pisa/IIT SoftHand 2 , the EMG system Myo armband,
and a mechanical interface used to connect the robotic hand
to the operator’s arm. Myo armband, by Thalmic Labs, is
a wearable device that features eight stainless steel EMG
sensors and a nine-axis IMU, which consists of a three-
axis accelerometer, a three-axis gyroscope, and a three-axis
magnetometer. The EMG signals are sampled at a frequency
of 200Hz, while the sampling frequency for the IMU data
is 50Hz. The acquired data is streamed to a computer via
Bluetooth communication. The choice of this device was
driven by (i) the portability of the device and (ii) the on-
board inclusion of an IMU, taking also in consideration its
relatively low cost. The device embeds also a vibro-tactile
feedback device that the authors aim to integrate in the
testing framework in the near future.

In this work, the Myo armband is wore by each subject
around the thickest part of the right forearm (approximately
in the first proximal third of the forearm) where the elec-
trodes can sense the activity of the main extrinsic hand
muscles.

Fig. 4. Considered setup, composed by the Pisa/IIT SoftHand 2 , the
mechanical interface to connect it to the user arm, and the Myo armband.

IV. CONTROL ALGORITHM

A. EMG Filtering and Posture Compensation

We will consider in the following 8 normalized EMG
signals qi, i ∈ {1 . . .8} acquired at 200Hz from the operator
forearm, as depicted in Fig. 4 and described in Sec. III. The
mean absolute value (MAV) of such signals is defined as

q f ,i(t) =
1
N

t

∑
k=t−N+1

|qi(k)| , (1)

where N is number of samples in the moving window and
q f ,i(t) is the MAV of qi at time t. In this work, a moving
window with N = 40 (200ms) is used.

In order to avoid undesired movement of the robotic hand
when changing forearm posture with respect to gravity, a
posture compensation technique was applied to the EMG
signals. Note that along with the normalized EMG signals,
Myo Armband also provides the asset, in the form of
quaternions, of the sensor frame F ′ with respect to an
inertial reference frame F . The angle γ between the Z axis
of F ′ (forearm longitudinal axis, pointing proximally) and
the Z axis of F (vertical axis with opposite direction with
respect to gravity) is computed from the quaternion readings.

From the training data, an average µi of each filtered
EMG signal q f ,i is computed in 2 different postures: γ = 0
and γ = π

2 , only for the values that correspond to a resting
phase. Thus we propose here the following simple real-time
compensation rule for the signals q f ,i

qc,i(t) =

{
xi(t), if xi(t)≥ 0
0, if xi(t)< 0

i = 1, . . . ,8 , (2)

where xi(t) is

xi(t) = q f ,i(t)+(cosγ(t)−1)
µi,γ=0

µi,γ=1
. (3)

Two examples of compensated signals are shown in Fig.
5. The compensated (in red) and non compensated (in blue)
EMG signals from two different sensors are relative to the
repetition of the same gesture in different orientations of the
forearm. While the EMG activity detected by sensor 1 is not



(a) Pisa/IIT SoftHand 2 (b) DoA

Fig. 2. (a) presents a sketch of Pisa/IIT SoftHand 2 with its two motors. (b) shows a representation of Pisa/IIT SoftHand 2 closures correspondent to
the two degree of actuations (DoA). In the middle of the figure we report the hand rest position. The other four configurations are the extreme postures
obtainable through one of the two degrees of actuations. All the linear combinations of these two degrees are achievable by the hand.

Fig. 5. Compensated (qc) and non compensated (q f ) EMG signals acquired
from two sensors during the repetition of the same hand gesture in different
postures (increasing values of γ).

affected by the changes in posture, and thus the compensated
and non compensated signals coincide, when cosγ (shown
in green) is close to 0, sensor 2 is detecting EMG activity
during rest phases that may cause unwanted activations of
the robotic hand, thus the compensation is desirable.

B. NMF

Non-negative matrix factorization (NMF) is a method for
the factorization of a matrix A ∈ IRm×T , into two matrices
S∈ IRm×n and U∈ IRn×T , with the requirement that the three
matrices, A, S and U, can only have non-negative entries, i.e.
A≈ SU.

The elements of S and U can be determined by optimizing
an error function J between A and SU. The most commonly
used cost function J is

J = ||A−SU||2, (4)

where || · ||2 denotes the 2-norm.
This optimization problem can be solved using a supervised
approach [27] that exploits information on the intended
movement during the training phase allows more robust and
repeatable results. The matrix A is defined as

A =

 a1(0) · · · a1(T )
...

. . .
...

am(0) · · · am(T )

 , (5)

where the activation level for each movement, ak(t) with
k ∈ {1 . . .m}, is described by a value comprised between 0
(relaxed state) and 1 (maximum intensity), and represents
the activation intensity of movement k that is requested to
the user during the training phase at the time instant t.
Four different control movements (m = 4) are used, which
correspond to two different directions for each degree of
freedom.

The matrix S can be used to find an estimate of the
activation intensity â(t) by computing the product with the
MAV of the filtered EMG signals (vector u(t))

â(t) =

 s1,1 · · · s1,8
...

. . .
...

s4,1 · · · s4,8

u(t) = Su(t) (6)

To obtain the two control signals needed, y1(t) and y2(t),
it is then sufficient to find, for each degree of freedom,
the difference of the activation intensities that correspond
to opposite directions

y(t) =
[

y1(t)
y2(t)

]
=

[
1 0 −1 0
0 1 0 −1

]
Su(t) (7)



C. NMF + LR

The NMF method previously described was compared to a
cascade of NMF and LR. In particular, two regression models
were trained for each DOF, for a total of four models. The
models were trained on the output of the NMF algorithm

â′(t) = BTSu(t)+A0 , (8)

where â′(t) is the vector of the estimated activation levels
for the four movements at the instant t, B ∈ IRmxm contains
the weight vectors and A0 is the constant offset that was set
to zero. Given a training-set composed of T time instances,
the entries of B were found by solving the equation

B = (SUUTST)−1SUAT . (9)

Once the elements of B are found, the product BTS can
be calculated offline during the training phase and the
new estimate â′(t) can be computed in real-time with no
additional computational cost with respect to â(t).
Similarly to the previous case, to obtain the two control
signals needed it is sufficient to find, for each degree of
freedom, the difference of the activation intensities that
correspond to opposite directions

y(t) =
[

y1(t)
y2(t)

]
=

[
1 0 −1 0
0 1 0 −1

]
BTSu(t). (10)

V. EXPERIMENTS

To test the effectiveness of the implemented algorithm,
three different test were performed by naive subjects. The
first test is the target acquisition experiment, to assess and
compare NMF and the here proposed NMF+LR. Then the
balance experiment was execute, for the posture compensa-
tion. Finally, a qualitative test was purpose to investigate
the method performing daily activity tasks. Each subject
provided written informed consent.

A. Target Acquisition Experiment

To compare NMF and NMF+LR performances within
the here proposed setup, five subjects performed a target
acquisition task in a virtual reality environment. The control
signals extracted by the EMGs were used to control the
position of a cursor (a blue sphere) on the screen (see
Fig. 6). The subjects were asked to reach a fixed target,
represented by a red sphere, as quickly as possible, and
to keep the blue sphere on the target until disappearance.
After 500 consecutive milliseconds in which the two spheres
overlapped, the target was considered acquired and the red
sphere disappeared. If the target was not acquired during
the first 10s, the attempt was regarded as a failure and the
red sphere disappeared. After a target disappeared, another
target appeared after 4s of rest. The targets were placed at
0, π

8 ,
2π

8 , . . . , 15π

8 and presented in random order. The distance
of the targets from the center was set respectively to 50%,
75% and 100% of the total range during three different
trials for each algorithm. The six trials were scattered and
presented in a different order to each subject. To assess
the performance of the subjects, four outcome measures

Fig. 6. Setup used for target acquisition experiment. The virtual interface
consists of four hand posture representation and a target (represented by a
blue sphere) that moves randomly between the hand postures. Each subject
was asked to follow the moving target. During the experiment the subject
was wearing a MYO armband.

as described in [24][31] were used: acquisition rate, path
efficiency, completion time and overshoot.

B. Balance Experiment

A balance experiment was also performed by five subjects
to assess the performance of the EMG compensation strategy.
The whole setup was wore on the subjects’ right forearm
using the wearable mechanical interface of Fig. 4. The
subjects were asked to perform the training procedure for the
control algorithm two times, keeping the forearm horizontal
(γ = π

2 ) and vertical (γ = 0) respectively. The parameters for
the compensation were then extracted as described in IV-A.
Using the virtual reality environment previously described,
the control signals extracted by the EMGs were again
mapped to the position of the cursor. The control range was
mapped to a circular area of radius 1 on the screen.
Prior to the test, it was verified that the subjects were able
to perform the main movements at full range (positions
(0,1), (1,0), (0,−1) and (−1,0) on the screen), keeping
the forearm in three different orientations (γ ≈ 0, γ ≈ π

4 and
γ ≈ π

2 ), and both with posture compensation ON and OFF.
The test consisted in keeping the cursor in the origin

(relaxed state) for 5 consecutive seconds, with the forearm
respectively in γ ≈ 0, γ ≈ π

4 and γ ≈ π

2 conditions, and
without the aid of visual feedback. As a performance metric,
the average distance of the cursor from the origin was used,
being 0 the ideal result, and 1 the worst case.

C. Qualitative Test

One subject participated in the qualitative test. The sub-
ject had prior experience with myo-electric control. The
experiment consisted of three phases: training, practice and
test. During the first phase, the NMF+LR algorithm was
trained and the parameters for the EMG compensation were
extracted.
During the second phase, the subject was given some time to
practice with the control interface and with the SoftHand 2.
During the test, the subject was presented with some realistic



TABLE I
RESULTS OF THE TARGET ACQUISITION EXPERIMENT AVERAGED

ACROSS ALL SUBJECTS.

NMF NMF + LR p-Value

Acquisition rate (%) 77.08±0.13 92.08±5.39 0.02
Path efficiency (%) 43.16±6.54 44.63±5.99 > 0.1
Completion time (s) 2.68±0.30 2.17±0.10 0.04
Overshoot 0.55±0.28 0.61±0.10 > 0.1

Fig. 7. Graphical representation of the average acquisition rate for each
target. Each dot represents a target and its color represents the number of
times that the target was acquired, from 0% of the times (dark red) to 100%
of the times (dark green).

tasks and was let free to accomplish them in the way he
considered the most efficient. The tasks were focused on
activity of daily living and bi-manual coordination. The tasks
included grasping a banknote, switching the lights off, firmly
grasping a hammer, placing an egg in an egg carton, grasping
an apple and extracting a credit card from a wallet.

VI. RESULTS

A. Target Acquisition Experiment

Table I summarizes the performance of the control
schemes during the target acquisition task, for the vari-
ous performance metrics, averaged across all users. The
NMF+LR method outperformed the NMF method in terms of
acquisition rate (p = 0.02), and produced significantly lower
completion time (p = 0.04). No significant difference was
found in terms of path efficiency and NMF performed slightly
better in terms of overshoot with respect to NMF+LR,
although the difference was not statistically significant (p >
0.1).
Fig. 7 illustrates the average acquisition rate for each target.
Each dot represents a target and its color represents the
number of times that the target was acquired, from 0 (dark
red) to 5 (dark green). All of the targets that were at a
distance of 50% of the total range from the origin were
acquired by all subjects for both conditions (NMF and
NMF+LR). For further targets (with a distance of 75% and
100% of the total range from the origin), the NMF+LR
method had better performance for almost all directions.

B. Balance Experiment

The results of the balance experiment are shown in Table
II. When the forearm was kept in a vertical position (γ ≈ 0),
the average distance between the cursor and the origin was
kept low (< 10% of the total range) for both the compensated

TABLE II
RESULTS OF THE BALANCE EXPERIMENT AVERAGED ACROSS ALL

SUBJECTS.

Compensation OFF Compensation ON p-Value

case γ ≈ 0 0.06±0.03 0.05±0.03 > 0.1
case γ ≈ π

4 0.15±0.05 0.05±0.02 0.03
case γ ≈ π

2 0.25±0.05 0.03±0.02 0.01

Fig. 8. Representation of Pisa/IIT SoftHand 2 closures correspondent to
the two DoA.

and the non-compensated conditions. No statistical difference
between the two conditions was found in this case (p > 0.1).
In the other conditions, i.e. when the forearm was kept
respectively at a 45◦ angle (γ ≈ π

4 ) and 0◦ angle (γ ≈ π

2 ) from
the horizontal plane, the non-compensated condition resulted
in higher distances of the cursor from the origin (respectively
> 10% and > 20% of the total range), while the compensated
condition resulted in low distances (10% of the total range)
for all cases, outperforming the non-compensated condition.

C. Qualitative Test

Fig. 8 shows how the proposed strategy achieve the goal
stated in Sec. III: the operator hand posture is naturally
mapped into the robotic hand on the four postures of
Fig. 2(b). Fig. 9 and 10 show the execution of some of
the tasks during the qualitative test. In particular, in Fig.
9 are displayed two different closures to accomplish the
same task in different ways: grasping a banknote. After
experimenting two different grasps, a power grasp and a
pinch grasp, the subject chose the latter as best suited for
picking up thin and deformable objects such as banknotes.
As shown in Fig.10, during the test the subject was able
to successfully switch buttons (a), grasp heavy objects (b),
manipulate fragile objects (c) and grasp objects and moving
the arm without dropping them (d). Also complete bi-manual
tasks (an examples is shown in Fig. 11) were successfully
performed. Additional examples can be found on the video
attachment.



(a) (b) (c) (d)

Fig. 10. Some examples of grasps using different postures of the Pisa/IIT Softhand 2: switch buttons (a), grasp heavy objects (b), manipulate fragile
objects (c) and grasp objects and moving the arm without dropping them (d).

Fig. 11. Bi-manual task consist of open a wallet and grasp a credit card performed by switching between different postures of the hand.

Fig. 9. An example of power and pinch grasp of a banknote. The similarity
between the posture of an operator’s hand and the Pisa/IIT SoftHand 2
highlights the simplicity of this control strategy.

VII. DISCUSSION & CONCLUSIONS

In this paper, the online performance of two control algo-
rithms based respectively on NMF and NMF+LR regression
techniques, were compared in order to choose a suitable can-
didate for the control of the SoftHand 2. The choice of using
online vs offline performance was motivated by the literature:
it has been in fact shown that the offline performance of a
myoelectric control algorithm has little predictive value with
respect to its online control performance [24] [28]. A target
acquisition test, widely employed in myoelectric control, was
chosen for the performance assessment in order to facilitate
comparative analyses with similar studies. Four performance
metrics were computed for the evaluation of the control
quality: acquisition rate, path efficiency, completion time
and overshoot.

The acquisition rate obtained with the NMF algorithm
was significantly lower than some results presented in the
literature [27][32][33]. A difference in performance could
be due to the hardware used to acquire the EMG signals;
the cheap and off-the-shelf sensors used in this paper are
of course less precise than far more expensive acquisition
systems normally used in laboratories. Also, the choice of
the movements was motivated by the control intuitiveness of

the SoftHand 2 instead of opting for more recognizable and
less intuitive movements such as wrist movements [27][32]
[33]. However, the same conditions applied to the NMF+LR
algorithm, which performed significantly better. It is the
opinion of the authors that this difference was partially due
to the difficulties encountered by the subjects when using
the NMF algorithm to control the cursor at the range limits.
This hypothesis is supported by the results shown in Fig. 7,
where it can be seen that the major difference in performance
between the NMF and the NMF+LR concerns the targets
positioned at a distance equal to 100% of the motion range.
Given its superior performance in the target acquisition
task, the NMF+LR algorithm was selected for the following
experiments.

While most research concerning myoelectric control algo-
rithms is done in a laboratory, with stable conditions, the
ultimate goal for these interfaces is to be used in a real
environment for activities of daily living, with far less stable
conditions. One of the factors that is for instance seldom
taken into account is the variability of the EMG signals
due to changes in arm posture [34] [35]. In this paper, a
strategy to compensate for the influence of static postures on
EMG signals was implemented. The results of the balance
experiment showed that when the compensation strategy was
active, it allowed the subjects to maintain a rest command to
the robotic hand while keeping their hand at rest in different
positions. On the other hand, when the compensation strategy
was not active, on average, unwanted commands as big as
25% of the total control range were generated by the subjects
while keeping their hand at rest.

Finally the whole setup was also successfully tested by a
healthy subject for the control of the SoftHand 2 in a realistic
scenario to perform daily life activities. This new system
will enable exploring the possibility of using the SoftHand
2 in various fields as tele-operation, assistive robotics and
prosthetics. The investigation of all these possibilities is



ongoing work carried on by the authors.
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