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Rolling Bodies with Regular Surface: Controllability
Theory and Applications

Alessia Marigo and Antonio Bicchenior Member, IEEE

Abstract—Pairs of bodies with regular rigid surfaces rolling system, and is usually regarded as an annoying accident in-
onto each other in space form a nonholonomic system of a rather hibiting simplicity in steering and control. This is in the atti-
general type, posing several interesting control problems of which ,qe of most drivers toward the nonholonomy of the automobile

not much is known. The nonholonomy of such systems can be i ti h llel Ki .
exploited in practical devices, which is very useful in robotic Inématics when a parallel parking maneuver Is necessary.

applications. In order to achieve all potential benefits, a deeper  In this paper, we take a different perspective. A convenient
understanding of these types of systems and more practical algo- “control” form describing the constrained system can easily be
rithms for planning and controlling their motions are necessary. optained from the differential constraints (1). In fact, if we let
In this paper, we study the controllability aspect of this problem, G(q) denote a x (n — m) matrix whose columng, (q), i =
giving a complete description of the reachable manifold for general ; L TS

pairs of bodies, and a constructive controllability algorithm for )T, M form a.baSIS for _th? annlhllzitlng distribution of
planning rolling motions for dexterous robot hands. A(g), then all admissible velocitiape A(g)~ C Ty M can be

written as linear combinations of the columnsCéfy),

[y

Index Terms—Nonholonomic systems, nonlinear controllability
theory, robotic manipulation.

n—m

q=G@w= Y g(@w @)

I. INTRODUCTION i=1

N ON-HOLONOMIC systems have been attracting much afgnereqy is a vector ofquasivelocitiegaking values irR™—.
tention in control literature recently, due to both their re'When quasivelocities can be assigned values at will in time,
evance to practical applications (to Robotics in particular), aRGhctionsw: R+ — R ™.  r— w(?) can be regarded aon-
to the challenges involved in their planning and control [1] arg, inputs of the driftless, linear-in-control, nonlinear system

[2]- (2). A physicalactuatoris associated to each control inpuf,

Let us recall a few classical definitions from rational meé_g_ a motor for electromechanical systems. Nonholonomy of

chanics. Consider a mechanical system whose configuratiQs original system, i.e. nonintegrability of (1), is reflected
q evolve in a smoott-dimensional manifold\1, and whose hrq,gh Frobenius’ theorem in the fact that the distribution
velo'cme.sq € TyM are subject tan locally independent con- span{g,(q)---g,_..(q)}in (2)is not involutive. In fact, let the
straints in the Pfaffian form smallest involutive distributiom which contains the columns
A(Q)qg=0 1) of G(q) have dimensioni: if ¢ > n — m the system is non-
holonomic; ifd = n, the system is maximally nonholonomic.
whereA is anm x n, m < n matrix of real-valued analytic Hence, it can be steered through any two configurations of its
functions. Constraints are said tof@onomidf their differen- n-dimensional manifold along the flows af— m vector fields.
tial form (1) is integrable. In this case, there exists a family dbserve that the whole manifoltt is an equilibrium manifold
integral submanifolde’ C A of dimensionn — m that are for the system withw = 0. Controllability to an equilibrium

invariant. manifold of higher dimension than the control space is not
If the constraints are not holonomic at sompethen there possible for any linear system, and is in fact a peculiarity of
will exist an integral submanifold throughof dimensionn —  nonholonomic systems.

m + k, 0 < k < m. The numbel is referred to as degree of From an utilitarian engineer’s viewpoint, the latter definition
nonholonomy. Ifk = m, the constraints, and by extension thenay be rephrased as “andimensional nonholonomic system
system, are said to be maximally nonholonomic. can be steered at will using less thamctuators.” This formu-

According to the viewpoint expressed by this definition, norlation underscores the appealing fact that devices with reduced
holonomy is a property pertinent to constraints imposed onhardware complexity can be used to perform nontrivial tasks, if

nonholonomy is introduced on purpose, and cleverly exploited,
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demonstrated with a fairly wide variety of objects and tasks.
These grippers were dubbed “dexterous” based on what was
actually a “generic controllability” conjecture ([7]):

Conjecture. A pair of bodies can be brought from any initial
to any final relative configuration by rolling in contact with each
other, except at most for nongeneric pairs.

In this paper, we prove the above conjecture, characterize pre-
cisely what pairs of surfaces are not controllable, and describe
the structure of the reachable manifolds in all cases. Further-
more, we consider the constructive controllability problem, and
provide an algorithm to steer a system of rolling bodies through
two arbitrary reachable configurations.

A. Related Work

Introducing nonholonomy on purpose in the design of robotic
mechanisms can be regarded as a means of lifting complexity
from hardware to the software and control level of design. In fact,
planning and controlling nonholonomic systems is in general a
considerably more difficult task than for holonomic systems. The

) ) ) ) ) very fact that there are fewer degrees-of-freedom available than
Fig. 1. The first dexterous gripper (DxGrip-1), designed at Centro “E, ) . . . . .
Piaggio.” University of Pisa. The gripper has two planar parallel jaws: tHi'€r€ are configurations implies that standard motion planning
upper applies a suitable grasping force on the object, while the lower transld@ehniques can not be directly adapted to nonholonomic systems.
in the pl'c_lne imposing a de_sired roIIing_ motion to the object. A_rbitrarFrom the control viewpoint, nonholonomic systems are intrin-
cor_lflgyratlons of_thg obje(_:t in contact with the_ plates can be achieved bYCaII nonlinear svstems. in the sense that thev are not exactl
rolling: full dexterity is obtained by adding a vertical translation of the whole y Yy ! Yy y
gripper, by an actuator not shown in the picture. feedback linearizable, nor does their linear approximation retain
the fundamental characteristics of the system, such as controlla-
bility. Simple, continuous, time-invariant feedback control laws,
onthe otherhand, can notbe appliedto stabilizing nonholonomic,
nonsingular systems[9].

An important class of nonholonomic systems for which a rea-
sonably satisfactory understanding has recently been reached is
the class of two-input nilpotentizable systems that can be put,
by feedback transformation, in the so-called “chained” form. A
complete characterization of such systems (i.e., necessary and
sufficient conditions for the existence of a feedback transforma-
tion to chained-form) has been provided by Murray [10], while
an algorithm for finding the necessary coordinate transform has
Fig. 2. The second generation dexterous gripper (DxGrip-l). The grippleen presented by Tilbury, Murray, and Sastry [11]. For ex-

has two parallel jaws translating independently, and two turning disks Wig}‘npk? a car puIIing an arbitrary number of trailers has been
direct-drive motors on each jaw, endowed also with force/torque, tacti '

t . .
sensors. The hand can arbitrarily relocate and reorient any convex body vﬁiﬂow_n to be a Cha'_ned'form system bY_ Sordalen [12]. Planning
regular surface by rolling it among the fingers. The design represents atgorithms for chained-form systems in free space have been

industry-oriented version of DxGrip-I. described by several authors: in his early work, Brockett [13]
used sinusoidal inputs, which were subsequently investigated
orient it arbitrarily, the so-calledexterityproperty. Dexterous in more detail by Murray and Sastry [14]. The methods of Laf-
robotic hands developed so far according to an anthropomterriere and Sussmann [15], Monaco and Normand-Cyrot [16],
phic paradigm employ far too many joints and actuators (a miand Jacobs [17], using piecewise constant inputs in different
imum of nine) to be a viable industrial solution. Nonholonomgrrangements, are particularly well-suited to chained systems,
of rolling can be used to alleviate this limitation. In fact, whilevhere they achieve exact planning. Only approximate, iterative
rolling between the surfaces of the manipulated object and th@gd&nning schemes are obtained in the general case. Furthermore,
of fingers has been previously regarded as a complication todfeined systems awifferentially flat and therefore the tech-
neglected, or compensated for, work of Celal.[8] and Bicchi niques of Rouchomt al.[18] can be profitably applied.
et al.[7] tried to exploit rolling for achieving dexterity with sim-  Unfortunately, the system of rolling bodies considered in
pler mechanical hardware. this paper differs substantially from the class of chained form
In particular, several prototype dexterous grippers have begrstems. Consider, for example, the case such gbltte-ball
developed at Centro “E. Piaggio” of University of Pisa, using ag/stem, which is a classical problem in rational mechanics,
few as 4 actuators (see Figs. 1 and 2). brought to the attention of the control community by Brockett
These grippers are able to perform manipulation of graspadd Dai [13]. The plate-ball system is a 5-dimensional, 2-input
objects by rolling them in between their fingers, and have beannholonomic system, which is not differentially flat [19],
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and can be regarded as an instance of the famous 5-varial ;,
problem of Cartan. Montana [20] derived a differential-gec
metric model of the rolling constraint between general bodie
and discussed applications to robotic manipulation. Li ar
Canny [21] showed that the plate-ball system is controllabl
and that the same holds for two rolling spheres, provided tt
their radius is different. Jurdjevic [22] studied the problem ¢
finding the path that minimizes the length of the curve trace
out by the sphere on the fixed plane. It turns out that optim
paths also minimize the integral of their geodesic curvature,
that solutions are those of Euledasticaproblem. Levi [23]
gave explicit formulas for evaluating the final configuration o
the ball after a circular motion of the plate.

This paper is organized into four main sections. In Section
we derive a complete mathematical model of rolling betwee
arbitrary surfaces. Section Il explains our main theorer ¥
concerning the proof of the conjecture above and the study
the structure of the reachable manifold for a system of rollir
bodies. Finally in Section IV, we describe a planning algorithi..
I\cl)vron;)?ggsglatmg an object of arbitrary shape by rolling betweegllg_ 3. A pair of smooth rolling surfaces,

X h(x»Y)

At the contact pointpy = —ny, while the first axes of the

) ) o ~ two Gauss frames form an angle
In this section, we report the derivation of a mathematical

model of rolling between regular geometric surfaces (lI-A), 1) = — arccos fz:hm ()
and on the restrictions imposed by the impenetrability of rigid

bodies on admissible contacts (II-B). The kinematic mod¥&Ve locally describe the configuration space of the system
obtained in II-A is not completely new in the literature whems the 5-dimensional manifoldAM with coordinates
compared with [20], [24], but is derived here in a differendg = [v v =z y ]*. This choice of parameterization
way, which is useful to report for the rest of our developmemlirectly eliminates the obviously holonomic constraint of zero
(specifically, breaking up Montana’s equations in (12) angenetration-detachment velocity between the two surfaces.
(18), allows the analysis of admissibility of rolling reported in Let two smooth directed curves on the surfacescbe=

Il. KINEMATIC MODEL OF ROLLING BODIES

Section 1I-B-2). Flu(s1), v(s1), t), e2 = h{x(s2), y(s2), t) (see Fig. 3), and
_ _ . let the two curves be parametrized by the arc lengths., re-
A. Kinematics of Rolling Surfaces spectively. Consider the family of rigid motions 8 relative to

Consider two arbitrary regular surfacés, S, in touch at Sz, the latter assumed fixed in space, such that the contact point
a pointc as represented in Fig. 3. Let the two surfaces be d&aces out the curves on the two surfaces in the given directions
scribed, in a neighborhood of the contact point, by two orthogt different velocities. Rolling without slipping between the two

onal parameterizations as surfaces imposes the constraint that the length of the paths cov-
) 5 ered by the image of the contact point on the two curves in a
J: R — R, f(u, v) = (fi(w, v), 2w, v), fa(u, v)) corresponding time are equak(t) = s2(t) < s(¢). Further-
h:R? — R3, h(z, v) = (hi(z, y), ha(z, y), ha(z, v)) more, points of the surfaces which are in contact at the time of

. o . concern have zero relative velocity,
respectively. These parameterizations induce Gauss frames

Gi(u, v) and Ga(z, y), defined at every point in the con- . de;  Oep, deo  Jeo
tact neighborhood with axe§, = (f2/|f.l). f. = G=prtgi=t="5t 5 % )
(Fo/lful)sm = (Fu A F/IFIFD and b, =
(B /lbell), by = (B /lIyll), m2 = (he A By /Bl ],
respe_cnvely_We will use here and henceforth the shorthavelocity of S1, t1(£) = (9f (u, v, £)/9t), must be zero, hence
notationf, = (8f/0u), etc.

To take the rigid-body motions of our surfaces into accoun(t‘?cl/at) = (9¢2/0t) = 0. From (4) one gets
we introduce time dependencies of the geometric quantities in-  g¢, des
troduced above by defining new ma@s R x R — SE(3) x 5y = Juts +fvs) = 5= = (hews +hyys) . (5)
By a slight abuse of notation, we will indicate thit:, v, t) = Multiplying both sides of (5) byfX one has
a1(t) o f(u, v), andh(z, y, t) = g2(t) o h(x, y). We also in- ) - -
troduce the notation = (¢, w) € sc(3) for the elements of the  [1full” s = fi hots + fi hyys
tangent space of £(3). = [IFull ezl cos(¥)azs = [IF I [Pyl sin(e)ys

This equation must hold in particular fér= 0, and from the
ﬁasumptioryg(t) = Id it easily follows that the translational
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while, multiplying by £, the constraint of rolling without spinning (10) can be rewritten,
together with constraint (6), in Pfaffian form as
£l 0s = = 1 Foll el sin()as — [1Fll 11y]] cos(sh)ys
M, —R,M, 0\, _, (11)
Dividing the results byl|f,|| and||f,||, respectively, and by ™M, T:M, -1 |

letting M, = diag(||f.ll, If.[]), M2 = diag([lh], [lhyl]),

these equations can be rewritten more compactly as Rolling motions subject to (11) will be called “pure” rolling

motions.
Us Ts The control form of the kinematic model of rolling bodies
M ve | RyM: Us = (6) under constraint of no sliding is obtained by calculating the an-

nihilating distribution of the constraint (7) as
where matrix

-1

R,=| os(¥) —si() M0 T .

=[] S P |
0 1] Lws

takes into account the relative orientation of the axes of the ) o

Gauss frames on the tangent plane. Notice Rat = R;ll while for pure rolling, by annihilating (11) one has
Also observe that matrice; are the symmetric, positive def- M1
inite square roots of the first fundamental form of the surfaces, , 1 wy

i.e. MY M; = I;, i.e., the Riemannian metric forms of thié §=Glgw=| M; R, wy | (13)
surface. The Pfaffian form of the rolling-without-sliding con- T, +T2Ry

straint (6) is therefore The relationship of the pseudo-velocity inpuisto the phys-

[M: —Ry,M> 0]¢g=0 @) ically accessible variables, i.e. to the relative angular velocity
of the bodiesw, can be calculated as follows. For a unit vector

It should be noticed that a “spinning” rotation of the twez fixed on a rigid body moving withy = (0, w) € se(3), it
bodies about the common normal direction is still allowed [10ldsz = w A z. Solving forw one getsv = z A z + Az, with
only constraint (6) is enforced. This type of “spinning” motion® € R undetermined. Applying this formula to vectass, f,,
is actually difficult to actuate in most practical cases of manipdixed onS1, andn,, k., fixed onS;, and expressing the motion
lation, and very often friction and micro-deformations near tHef the bodies with respect to an observer fixed on the moving
contact point constrain spinning velocity to be zero. Therefor@ngent plane at the contact point, one gets the relationships
in these cases a further constraint is to be considered in which

the relative angular velocity has zero component along the w1 :7}1 M}l + )‘1?1 (14)
common normal direction at the contact point, that =fuANfut1nf. (15)
8 wr =n2 Ao + doma (16)

nfw=-"1=0. (8) 2 2 2
ot =hy A by + vohs. (17)

As the contact points move an(s), c2(s), by derivation of The components of; andw, along the axes of the Gauss

(3), noticing that, for any unit vector, ((d/ds)z)"z = 0, and  framesg;, G, respectively, are computed using (14)—(17) as
using the facts

o A Wi, [T

}:, :j:u cos 1 — {"f sin 1) w = w?}v _ },5711
fu=hg cos —hy sin 9) - .

Loyl | fif,

one gets rwlh, ] [—hEw
. o

L d .\ /. d-\" /. N\ . wy=|wlh, | = | hing
== - = — 1T, v —h, h, . .

Y= s T o <<dsf“> (7o) +(Ghe) ()5 i, | i,

(10) The relative angular velocity expressedinis
Expanding the derivatives and introducing Cartan’s notation of

: R, | O
torsion forms w=w + —’— ws.
0 1
1= T ||2 TR ||2 By expanding the derivatives ef;, n2, f, andh, and com-
LI w v wltlidv paring with equation (12), one gets

and

TQ w=S

T T
hlh,. hl k., ]

M 7T, M — R M, TT,M; 'R, | 0]
w
B 1 1Ry | (1Bl 1y

_T, —T,R, | 1
o5
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whereZZ; is the second fundamental form of surfa€e and Considering the second-order developmenf(ef, v) about the
point of contact, the signed distance to the tangent plane is given

010 by
S=|-1 0 0
00 1 nf f(u, v) nf f(@, 0) + 5 [nf,f.(6u0)* +nl,f,(6u)(6v)
+ni, f.(60)(6v) +ni, £, (6v)?],
Observing that rofu(Bu)(év) wofo(00) ] 5
=nlf(w, ) — L6u Su]M K M, [ ﬂ
[ fz’n'lu fz"l'v v
CMIT M — (Fls LM K whereéu = (u — @) andév = (v — 7), and the relation of
L = Ty, ., -t orthogonality between,, f,, andf, have been used. Similarly
I ”“ ||J: I ||} ”5 we obtain the expression for the second surface as
T hlng, hgf:.Q, _ 6
~M;'IT.M; = T T =K, . .
hy,no. h,ns, Pointsf(u, v), h(x, y) such thatf(u, v) — h(z, ¥) is parallel
L ||| || ey || ||hy||2 ton, share the same projectign ¢ on the tangent plane. Their

coordinates relative to the contact point can hence be evaluated
whereK; andK, are thecurvature formsor the two surfaces, as
and introducing theelative curvature form
bu _ M_1 6C B bx _ M_lRu', 6C
. Sv| L s by T2 6|
Kr=K |+ RUL,KQRU’,
Hence we obtain

a more compact equation is obtained as

n3 h(z, y)
w1 bu
K 0 ~nlh(z. 7)) - L TR, ;
w=S 7, —};BRZD . 52 . (18) ~ny,h(T,7) — 5[0u 6v]M] R KR M, [61}} i
3

o _ ~ The contact admissibility condition (19) in a neighborhood of
When the no-spinning model of (11) and (13) is used, it withe contact point can therefore be written
suffice to setws = 0in (18) [see (8)].
o . %[(511, 6U]M1KRM1 |:(5U,:| 20
B. Admissibility of Rolling Contacts bv
Rolling contacts of impenetrable solid objects imposes sorae necessity thak  is nonnegative definite follows directly.
additional constraints than those studied in the previous stk  is positive definite, on the other hand, then there exists
tion for geometric surfaces. We will model henceforth objects 88me a neighborhoo®. where contact is admissible, which
closed subsets &>, whose boundary is a surface on which thgroves the sufficiency claim. Furthermore, the contact point is
normal direction is conventionally taken to be directed outwargolated in that neighborhood. A pair of surfaces in a configura-
In the sequel, we will deal with conditions for admissibility oftion with K » positive definite is callecelatively strictly convex
contactper s¢ and of rolling motions, separately. If rank(K ) = 1 with K r nonnegative definite, contact may
1) an’gé}Ct Admissibility: . o . not be admissible. If it is, there exists a one-dimensional mani-
Definition 1: A contact is locally admissible if the inter- fold of contact points [the tangent bundle to this manifold being
section of the interior parts of the objects in a neighborhBed ker(K r)]. A pair of surfaces in such configuration are called

of the contact poinff(w, 7) = h(z, ) is void. relatively weakly convexf rank(K ) = 0, contact may not
Simple conditions for admissibility of contact can be stateise admissible. If it is, there exists a two-dimensional manifold
as follows: of contact points. Such a pair of surfaces is calieltively

Lemma 1:If the contact between two surfaces at a poirffat, or conformal. Note that these concepts are strictly local.
Jf(w, v) = h(z, ¥), with relative orientation, is locally ad- If K5 is not definite, or nonpositive definite, the contact is not

missible, then the relative curvature forlg is nonnegative admissible. u
definite. If K r is positive definite, then the contact is locally 2) Admissibility of Rolling:
admissible. Definition 2: A rolling motion between two surfaces in an

Proof: Local admissibility is equivalent to the following admissible contact configuration is admissible with respect to
statement: for any two point§(u, v), h(z, y) onSy N B. and  constraints (7), [resp., (11)] if there exist some nonzero relative
S2N B, for which the vectorf (u, v) —h(x, y) is parallel to the angular velocity such that (7) [(11)] are satisfied at each point
contact normal, it holds of contact. An admissible rolling motion is said to hagvele-

grees-of-freedom, DOFs, if there existg-@limensional linear
(f(u, v)=h(z, y))Tny =T flu, v)+nlh(z, y) < 0. (19) space of angular velocities satisfying (7) [(11)].
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Lemma 2: Locally around an admissible contact configu- TABLE |
ration, the DOFs of admissible rolling motions are as reported Dors oF Aﬁgﬁg‘ﬁf ROLLING
in Table I.
The caserank(Kgr) = 1, p = 1 holds if and only if the Constr. (7) | Constr. (11)
contact manifold is linear. rank (Kp) =2 [[p=3 p=2
Proof: Recall the relation (18) between the relative an- rank (Kgp)=1]p<1 p<1
gular velocityw and the velocity along the unconstrained direc- rank (Kp)=0[p=0 p=0

tionsw, and the fact that, under constraints (L&), = 0. The
two cases withrank (K r) = 2, and the case withank(K g) =
0 under constraints (11) follow directly. ' '
When the contact manifold is not an isolated point, condiV@ys Perpendicular to the line of contact. _

tion (7) must hold at every point in the contact manifold. Be- T Othérwiserank(K'r) = 1 in a submanifold ofAM in-
cause only one axis of fixed points may exist under a rotatiGhding the contact configuratiap the control system (13) has
ws = ws, and this axis is normal to the surfaces, must be a singularity ing. Due to an_alytlcny qf the.mamfold and oflthe
zero to avoid slippage at some points of the contact manifofb‘?erI equations, there will be maximal mtegral sgbmamfolds
hence condition (6) alone is equivalent to (6) and (10). The c49% the system motion [25]. However, the dimension of these
rank(K ) = 0 under constraint (7) follows. submanifolds may vary from one (as in the case of two cylin-

If rank(K g) = 1, using the fact that the left upper 2-by-2der5 rolling on each other with aligned axes), to five. An ex-
block of § is antisymmetric, and tha = K%, one gets ample of the latter extreme is provided by a cone rolling on
' B a cylinder, starting with aligned axes: all infinitesimal rolling

0 -11Tw w motions take the relative configuration out of the singularity
[ } [ 1} € range (Kr) = [ 1} € ker (Kpg). [whererank(K ) = 1], and make the bodies relatively convex
1 0 wo Wwo . .
(20 [rank(K ) = 2]. Maximal nonholonomy will follow from
Theorem 1 in the next section.

rolling on a plane, for which the allowed angular velocity is al-

From the fact thads is the same for all points of the rolling
bodies, and thaker(Kg) is the tangent bundle to the con-
tact manifold and is one-dimensional, it follows that the corB. Relatively Convex Bodies
tact manifold must be a line segment. Rolling will be possible \we consider now the “genuine” 3D rolling case where the
around an axis including the segment, as in the case of a cylindghtact point is isolatedk x is full rank, and the system has

or a cone rolling on a plane. B two DOF.’s. The main result of this paper is as follows:
Based on the two preceding lemmata, a classification ofTheorem 1:The pure rolling contact constraints (11) be-
rolling pairs ensues which is reported in Appendix A. tween two relatively strictly convex surfaces are:
a) holonomic if and only if bodies are specular images of
lll. STUDY OF THE REACHABLE MANIFOLD each other:

In this section we investigate the conjecture reported in theb) maximally nonholonomic otherwise.
introduction, and more particularly the degree of nonholonomy Remark 1:In nonlinear control terms, the thesis can be
of the rolling constraints (7) and (11), by analyzing the structurephrased as
of the re_achable mz_;mn_‘old for the control systems (12) and (13),a) dim(g,(q), g-(q)|91(q), g-(q)) = 2 iff specular;
respectively. We will first focus our attention on the case that b) dim(g,(q), g.(q)|g,(q), g9-(q)) = 5 otherwise;

the pure rollipg con;traints (112) are enforced, i.e., on the ContWHeregl, g, denote the vector fields forming the columns
form qf the kmgma‘uc; of pure rolling (1_3)' ) of G(g) in (13), and{-|-) denotes the smallest distribution
Notice that in (13), inputss may possibly be subject {0 ré- ¢ aining the second argument, which is invariant under
strictions entailed [because of (18)] by limitations on adm'ss'blﬁe-bracketing with the first argument.
w as discussed in Section II-B. For instance, for two conformal Roughly speaking, two bodies are said specular if they are,
surfaces havm.g.ank(KR). - 0 and Z€ro DOF"S' 13) degen'Iocally around the contact point, the mirror image of each other.
erates to the trivial equatiop= 0 by imposingw = 0. A mathematical definition of specularity is given as follows.
) ) Recall that the image of a surfakér, v) through arigid motion
A. Relatively Weakly Convex Bodies 9= (R, z) € SE(3)is defined ag o h(x, y) = Rh(z, y) +z.
Consider an admissible contact of a pair of relatively weaklyet s = (%, £), with 3 € O(3) anddet(X) = —1, andt € R®
convex bodies, which instantaneously has one rolling DOF. Bignote a symmetry. In particular, by takidy= RgRT, with
equations (18) and (20 € ker(Kg) = w € range(KR),
hence the control form (13) has only one independent input at

such configurations. 10 0
If the set of configurations for whichank(K r) = 1 is open ¥=101 0
0 0 -1

in the configuration manifold\, the control system (13) has a

single nonsingular control vector field, which is obviously in-  f — |:fu (w,v) f,(mv) f,@v)AF, ", @)}
volutive. Therefore, the reachable submanifold is a one-dimen- X K T

sional submanifold ofM. An example is a cylinder (or a cone) t=-RX-IdR f(uv) (21)
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thens o f(u, v) = 3f(u, v) + # is the symmetric surface of The sign of the components offs is derived con-
S (u, v) with respect to a plane tangent fdu, v) through the sidering the convention of outwardly pointing nor-
point f (@, 7). mals. This implies—1 = (f, A f,)"R(h. A h,) =

Definition 3: A surfaceh(z, y) is said to be thespecular —(f, A F,)TS(f, A Fo)(uzv,/|uz|vy]). Using the fact that
imageof a surfacef(u, v) at a pointf(w, ) if there exist a (f, A f,)T3(F, A F,) = —1, we get(uv, /|uz|lvy]) = -1,
rigid motiong = (R, z), a symmetrys = (RzRT, i) asin henceu,, v, have opposite signs anfi; has the first of the
(21), and a diffeomorphisr#: R? — R2, &: (z, y) — (u, v) two forms in the lemma statement.

such thay o h(z, y) = so f o ®(x, y). If insteadu, = v, = 0, u,, v, # 0, similar arguments can
Notice explicitly that a surface and its specular image, as dee used to prove thaks; has the second form. [

fined above, have a point in common, the mirror plane being theWe are now in a position to prove Theorem 1.

tangent plane at such contact point. Proof. Part 1: Holonomy= Specularity.

In the proof of theorem 1, the following lemma will be instru-  The control vector fields in (13) are written explicitly as
mental:

: -1 - 1
Lemma 3: If two surfaces are specular, the change of coordi- 0
nates®: R? — R? in definition 3 is a map whose Jacobida 1l 1
has either of these forms: 0 . 1.l
cos y —sin 7
IR A o= | T | and g | TR
A I7.1 N |
Jg orJe == —sin ¢ — oS P
LY Ikl Tl T
Y
I7.1 I7.1 e B
Proof: Supposey o h(x, y) = so f o ®(x, y), then
where
(goh)y =(sofo®), = Rh, = 3f u, + 2f v, X o
(goh)y =(sofod), = Rh, = 2ADfuuy + 2ADfrqu' tAl =t cos z/jfl o z/)t?
ty =to — sin ¥t — cos Pt
The condition of orthogonality of the local coordi- rf.
nates implies that the inner produdtRh.)’(Rh,) = b= AR
| ull?uztey + || f,]]2vsvy is zero. Hence the three conditions " v
uzty = 0, v;v, = 0 andrank(Jg) = 2 together gives either b fffu,v
Up, Uy # 0, %y = vy = 00ru, = vy, = 0, uy, v, # 0. 2 FAl ||Jt',”||2
Suppose the first case holds. The inner and cross products of -
both sides are evaluated, recalling that(2) = —1, as 7, — h, hao
- 2
2 2 (1| [y ]
el = 1 £l 22 WTh
2 2 - o hy
IBll” = 115,17 2 AL
Riho Ahy) = — w0, S A L), e[y |
hence The Lie brackey,; = [g;, g-] is evaluated as shown in (23) at
the bottom of the page, where by we denote the derivative
i Ryl 29 of ¢; with respect to the variable It will be shown below that
[ue] = AR oyl = 7. (22) g5 = —t1g, — t2g, at a specular configuration.
- _t—l -
£l
ta
£
1 . . o
gs = Tl (tl — cos Pt +sin z/)tg) (23)
1 . . N N
(tg + sin 1t; + cos z/)tg)
1Py
t?'u, t 1w i?’l‘ El Yy T (7 T (7
- - + —t(t1—t)—ta{te—t
Ll Fll (Rl Iyl ( ) ( )-




MARIGO AND BICCHI: ROLLING BODIES WITH REGULAR SURFACE: CONTROLLABILITY THEORY AND APPLICATIONS 1593

In fact, the first two components trivially satisfy this condidt should be noticed that either (24) and (25), or (26) and (27),
tion. The third and fourth components do also, by simply olhold true for all points in the neighborhood of the contact point

serving that where specularity holds. To verify that the last componeugtof
L . ] in (23) is equal to—t1t; — t2t2, it suffices to notice that, as a
ty =ty cos -ty sin ) = —#; cos P+ 1tz sin g consequence of either (24) or (26), it holds

and

—t1 (f1 — t1) — to (f2 — t2) = —t1t; — fata.

- L (end of Proof of the Part 1).
The last component @f; satisfies the condition if the surfaces Part 2: Holonomy= Specularity,

are specular. In this case, we know that there exists a change oé . . . . .
. . y hypothesis, the constraint equation (11) are integrable, i.e.
coordinatesp such thayy o h(z, y) = so f o ®(z, y) with J h . ; ional itol )
as in Lemma 3. If there exists a tW(_) dimensional submanifold describedgoy
' M: F(q) = 0}, with F aC>™ mapF: R?xR*x §* — R? x §*

o + 11 Sinz/)+f2 cos Y = + 1 sin 1) + to cos .

|| Az | such that its rank-3 Jacobian is
oo |10 e [ M RM, 0
Ayl T M, ToMy, -1
7.1 By the Implicit Function Theorem, there exists locally a
then C* map ¢: R? — R3 ®(x,y) = (u,v, ) such that
llhz]| ¢ o F(z,y, ®(z, y)) = 0. Let & denote the trivial restriction of
th; = HquEfu = HhacH Efu (I)’ P RQ N RQ: <I>(a:, y) — (U,, U).
|’|h [ . Consider the surfacg(z, y) = so f o ®(x, y), which is
= — Sl = — k[ 2 i int(u, o T, 7
T A y v the specular image of(u, v) at point(w, v) = (7, ¥). The
and v theorem will be proved by showing that the surfg¢e, ») and
9 |ha | of h(x, y) are indeed the same. }
(goh)s =3F, 5 Lt b = 5 L The elements of the first fundamental formgfafre evaluated
* i as
Y athH Aaf
oh . =3 w =+ hT > Y ~ A - A - 1
(goh)sy =3f oy [lhe| 25 7. :Efu||h”||fcc|)|sz/; _2fv||h”||f51”n¢
hence - . h,u siny & h, | cos 1
. ) 7= g Ml g iyl cos ¢
1 S i A 171
= - - o funT,
AT PRSI T M
T T [l Il
ot Sofw 24 \which impli
o 1 Rl 1F 1 WHETIMPHES
and |2.] = e
o _ hy |7, = 1
= Y Y
1Full - Byl )
tou  _ t2n (25) hence the first fundamental forms ffx, y) andh(z, y) coin-
AR cide, i.e.
If otherwiseJ s has the second form in the statement of Lemma 7 =1. (28)

1, then, by similar calculations and taking into account that, _
because of the orthogonality of the parameterization, it holf&irther, it holds that

fifoo =0 Fuw@ndfy fup = =5 fuur ONE getS e el cos g o [lhe]l sin v
Ny =2XNy—————— — 2y ———
i = 3=y = o byllsing o IRy cos v
Ryl 1P l|™ (1Ll £ ny = — EnuW - EﬂwW-
T K23 v
E _ hy hmy _ _fff'uuu, — ¢ (26) ~
2= 2R 2 - The elements of the second fundamental fornfi afe evaluated
7279 i 2 | R 1 I as
and . .
tl t~2 _ﬁTfacac = ’ﬁ’z;fac
. _ T T 7 T 7
= - - f,.=n.7,
£~ Tl b S =t
tgu _ _ tly (27) _'n:T.{-acy = ’n,;.fac
£l Ay | 0" fyy =0y f
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and, by some calculations, the relation between the second fimthe last term of (31) can be put into diagonal form by

damental forms of’(x, y) and f(u, v) is found as elementary columns operations, and its eigenvalues are:
O U | _ _ i —£
M IIM =R ,M{'II,M'R, (29) { I S ,fg};w?s’“—”
- = 1750 1% 19| 2
whereM = V7
The first and second fundamental forths ZZ, for a sur- { ! ; 1 ; s ; s ; 53} s =kn
faceh(x, y) holonomically rolling onf(u, v) are derived con- £l Nl Hh’f” ”hy”
sidering once again the rolling-without-sliding constraint (7) in 1 1 Ft3 =£t3 fa b= km
the form (5), rewritten as Il TF Tl Tl 277~ 27
]’u cos 1 — ]’,U sin 9 = h. The matrix is always full rank wheneves # 0 (in which case
_}, sin o) — f cos 1 = h the matrix has rank 2). Recalling from part 1 and 2 of this proof
. ¢ 0 v that the conditiorf; = 0 in a neighborhood of the contact point
It directly follows thatZ, = 7, . Further, observing that is equivalent to specularity of objects, the proof is finalizeml.
ny (fu cos ¢ — f, sin z/)) =nlh, Based on the above results, the structure of the reachable
manifold of a system of relatively convex rolling bodies can be

ny (—}'u sin 3 — f, cos z/)) =nZh, described as follows:
Case) dim{g,, g-|g9,, g-) = 5, Vq € M: the wholeM is

by some calculations one gets 171 ; : i
reachable. This is the case witmostall pairs of strictly

M3 IToM;" = RyMT' I M 'R, relatively convex bodies;
whereM, = /Z,. Therefore, as (28) implieBf = M,, we  Casei) dim(g,, 9,9, g5) = 2,V q € M: the configura-
have tion manifold is foliated in two-dimensional maximal in-
R tegral submanifolds. This is the case e.g. with two equal
17 =117,. (30) spheres rolling on each other.

Caseii) dim{g,, g-|9:, 9,) varies onAM: There are con-
nected 2-dimensional submanifoldd, ¢ M of spec-
ular configurations which are maximal integral subman-
ifolds. In other words, every configuratian € A}, can
be reached frong,, if and only if g, € A},. The comple-

Recalling from Bonnet’s theorem [26] that two surfaces
with equal fundamental forms coincide up to a rigid motion
in SE(3), it is proved that a surfacg, rolling holonomically
on S; must be specular &f; in a neighborhood of the contact

point. mentAM\J, M) is comprised of (possibly several, non-
(end of Proof of Part 2). connected) five-dimensional maximal integral submani-
Part 3: Nonspecularityy Maximal Nonholonomy. folds.

Because of Chow's theorem, we only need to Show gyample: The system of two identical rugby balls possesses
that dim(gy, g2[9:,92) = 5 in a neighborhood of a .2 yyo.dimensional and one five-dimensional maximal
nonspecular configuration. From (23), the vector fielthieqra) submanifolds. In fact, consider an initial configuration
95 = l9:, 9] at a generic configuration can be Tewritten &gt the palls touching at their medium circle such that their
93 = —119; —tagy + g3 Withgs = [0 0 0 0 %]", and a5 of symmetry is parallel. This is a specular configuration,
ts = (tau/Ifull) = (tro/IIF1) = 2/ IRal)) + (tao/ 11y ]) = and the family of such configurations is clearly diffeomorphic
tu(tL — 2t0) — ta(tz — 2t2). to ST x S!. Indeed, they could be obtained by detaching the

We have then balls slightly, rotating either one about its symmetry axis, and
{91, 92191, 92) bringing them back in contact. RoIIi_ng th_e balls_ arbitrarily,

D span{gy, g5, 93, (91, 93], (92, g5]} ztartmg from any of the;e mma] configurations, WI|| keep thg

i i i alls specular, generating orbits that can not intersect with
= spall {_91’ 912’ 9s: (91 95l 92: 93]} those starting from a different initial condition of the described

—_ 0 0 0 0 family. If starting from a nonspecular configuration, on the
1l other hand, although local controllability is guaranteed, it will
0 1 0 0 0 never be possible to reach a specular configuration.
I£1l Finally, for the sake of completeness, we report the following
—gpan | €os¢  —sine 0 sin ¢ cos ¢ Theorem 2:The rollipg-without-sliding copstrainfts (7) be-
17| T ]| 3 1] 3 tween twp relatively strictly convex surfaces is maximally non-
—sin 1y —cos P cos . —sin . holonomic. . .
0 3 3 Proof: The proof directly follows from the computation
1Ayl 1Ayl 1Ayl 1Byl of the Lie Algebra generated by the vector fields in (12), and is
t ts ts ty ts | omitted here. n
(31)
With £4 = (Fau /|| £, D)+ (o cos 9/ [1Ral) = (Bay sin o /|[Ry ]I V. PLANNING ALGORITHM
— tigts and t5 = (ta/||full) — (Eaz sin ¢/[|he|]) — It may be worthwhile noticing that, as a particular case of the-

(tay cos ¥/||hy||) — %2uts. For all 3 the matrix appearing orem 1, any convex body rolling on a flat surface is controllable.
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Hence, the possibility of achieving dexterous robotic manipula- Theorem 3: The kinematic equations (13) of a strictly convex
tion of arbitrary convex objects by means of a robotic hand withody rolling on a planar surface are feedback equivalent to a
as few as three motors and flat fingers, is guaranteed in pratrictly triangular form.
ciple. Torealize such principle, itis necessary that a mechanisnin other words, for (13) with say surface 2 a planar surface
for the hand can be designed that allows application of arbitrafiye., My = Isy2, To = 01«2, Ko = 0242), there exist a reg-
angular velocities to the object. Two examples of such mechlar static state feedbaaek = A(g)w and a state diffeomor-
anisms are reported in Figs. 1 and 2. Notice that in practicephismz = ®(g) (actually, a simple reordering of coordinates
fourth motor may be needed to keep hold of the manipulatedth z = [u, v, %, =, y]*) such that
object, and achieve sufficient friction forces to impart rolling Ioyo
motions. , . 2= (2.GA)|gg 1= | 1M1 | ®.  (33)

To realize the goal of nonholonomic dextrous manipulation, 9=271(2) RyM
several problems of both technological and theoretical nature N g -
remain to be solved. Among theoretical difficulties to be over- Therelevance qf strlgttrlangular forms to planning |§twofold.
come, the two prominent ones are to find an efficient algorith fact, an O'D'E: in strictly triangular form can be gasny solved
to steer the system between two given configurationsy{tze- y quadratures, i.e. the flow of the control vector fields is found

ning problem), and providing feedback laws stabilizing motionsc‘imply by subsequently integrating their components over time.

in the presence of uncertainties. In this paper, we confine 0%frthermore, strict triangularity allows to break the solution of

selves to describing a method for planning, and leave the con f System ok nonlinear equations of step 2) of the generic

problem as a challenging open question algorithm above, into the solution of multiple systems of fewer
' quations.

G Il king, th bl f planni driftless . .
enerally speaxing, the problem of planning a dritties These advantages of the form (33) are exploited in the

system following algorithm. The algorithm will be illustrated re-
q= G(qw, q(0) = g, € R" (32) ferring to the case of a convex object rolling on a plate,
whose surface is described in spherical coordinates as
consists in finding, for each paig,, ¢,), a control function [ =7, 7)) x (=n/2, 7/2) — R?,

w: [0, 1] — R™, ¢ — w(¢) within an admissible sé’ such p(1, v) COS U COS v
that, for the corresponding solutig¢, g, w) of (32), it holds flu, v) = | plu, v) sin u cos v
q(1, g9, w) = q;. A brute force approach to this problem con- p(u, v) sin v
sists in:

) o ] o For objects with an axis of symmetry, which we consider hence-
1) solving (32) for a generic inpub(p, ¢) in a sufficiently  torth for simplicity, spherical coordinates can be chosen such
general familyW’ C W suitably parameterized Qy € hat they are everywhere orthogonal (except at the north and

R, and ) _ south pole singularities) ang, = 0. The strictly triangular form
2) solve the set of nonlinear equationg(1, zo, p) = gy (33) reads in this case as
in the p unknownsp.

Obviously, both steps may possibly hide enormous difficul- 1 0
ties, as solving an O.D.E. in closed foris rarely possible, and 0
solving large systems of nonlinear equations is notoriously hard. psin v — p, cos v
| ofnon ! . o= 0 . (34)
ndeed, the mathematically interesting problem behind planning N
is not to solve steps 1) or 2) above, but rather to find a feedback 5 -
equivalence (i.e., a change of coordinates and a state feedback p cos v cos —Vpt oy sin g
law) such that steps 1) and 2) become easily solvable. L p cos v sin ¥ —/ P>+ p2 sin ¢ |

As mentioned in the introduction, while there exist efficient A possible choice for the admissible input $étis to con-
planning algorithms for systems that are feedback equivaleider piecewise constant inputs over time interlsith an
to chained or nilpotent forms, only iterative planning schemegternating pattern,
(such as the generic loops method of Sontag [27], or the con- T
tinuation method of Sussmann and Chitour [28]) exist for gen- w(kT + t) = 1, = { A O]T k- even
eral nonholonomic systems. Because of their generality, such [0, A]” & odd
schemes offer limited performance in computational terms, asdch that the flowsbgfvT of the two control vector fields are

0<t<T

algorithms that are more efficient should be sought that expl&idlowed sequentiallyf\f times ¢ = 0,1,---, N —1). The
any structure of the model at hand. flows can be integrated explicitly starting from initial conditions
Although the kinematics of rolling bodies (13) do not fall inzy, = 2(%7T) for k even as
any of the categories to which the specialized, efficient algo- CT + g, T
rithms mentioned above apply, they do possess an interesting -
property when one of the bodies has planar surface (as it hap- (i) M T + i
pens, e.g., in the dexterous grippers of Figs. 1 and 2). In fact, the Zep1 = | p oS UL, _ (35)
following proposition was shown to hold in [29]: W (sin Yhpt1 — sin ¢r) + o
1The meaning of “cl " or “symbolic” form solution is not well defined. p COS U
What (ias bggcalﬁl%egr?tsﬁgreois “Sgasﬁ)? c%m%uta?)?eﬁj”to s notwell defined I m (cos P41 — cos Pi) + Y. |
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11 05 0 05 1

Fig. 4. Shape of the convex object used in the example.

where

p sin v — p,, cos v

Vo2 +0d

F(Uk) =

and fork odd as
U,
AT+ v
Zppr = | Un (36)
— A sin YA + 2
—Ak €08 YrAx + Yk
with
(k41T

Ay = VP2 + p2d.

kT

with  p» arbitrary [provided that Dlvy) #
['(vg)], the third variable reaches its
desired value: 2(6T) = [ug, vy, ¥y, Ts, Yo

Step 3) Apply a sequence of 15
controls that does not alter the
first three variables, namely

(M = 0,d8 = pg, Ao = s, Adio = —fia, Al =
—ps 6, Al2 = p7, A13 = —pi6, , Al4 = —ji7, A1z =
M3y Ale = [l4, Al7 = —H3, A18 = —Mq + fir, A9 =
it6, A20 = — b7, A21 = —pg. FOr such a sequence

to take the last two variables to
their desired value, it is sufficient

to choose any quadruple (fhay 155 165 147)
solving the system of two nonlinear
algebraic equations x22(26, pa, [13, Hi6, 7)) =

T 55 y22(26, pa, P35, 16, H7) = Yf-

Remark 2: The algorithm description highlights the role of
commutator sequences of typé BA~* B~1)3 in planning the
input (a simple commutator is used at step 2, and a commutator
of commutators at step 3). The final sequence of steps can how-
ever be written more compactly by imposing some further con-
ditions, reducing the redundancy of solutions to the equations
in step 3 but not compromising generality:

A)  If vy # v, settingue = —p1, pta = pa, aNdus = e,

a control sequence is obtainggio + g3, 1 +
M, —p3 + p7, =y, =7, B, 43, —Hs, —H3 T
Wty Posy —r, —ps), With po = (uy — w)/7,
pr = (vy — w)/T, pz = (Y5 — 2o —
L(vo)po/(T(vo) — T(vo + piL))T), ps and pr
solving the system of two nonlinear algebraic equa-
tions w12(20, 113, p7) = x5 y12(zo, ps, H7) = Yy,

In terms of these positions, the planning problem can be restated ~ that steers fronx to z; in just 1277

as:

Problem 1: Given a pair(zo, z;), find an integetV-and an
N-tuple of real numberg), ---, Ay—1) such that the non-
linear, discrete-time system defined by (35), (36), with) =
zg, hasz(N) = z;.

B) If otherwise vy = vy, the control se-
quence (vo + wi,v2, -1 + v3, -2 +
V4, —V3, —V4, V3, V2, —V3, —1/2 +
vy, V3, —vyg, —3), With vy = (up — wug)/T,

mo= ¥y — vo — I(vo)ro/(I'(vo) — [(v2))T),

A solution to this problem is provided by the following algo- vy arbitrary provided thatl'(vo) # I'(v2), 13

rithm, which exploits the strictly triangular structure of (34):

Algorithm

Step 1) Apply first inputs that take
the first two variables to the de-
sired value: set Ao = po = (up — w)/T,
M o= m = (vy — w)/T, such that  2(2T) =
[ug, v, P2, 2, Yol;

Step 2) Apply a sequence of five inputs
that does not alter the first two vari-

ables, i.e. ()\2 = 0, A3 = 12, Ay = 3, As =
—p2, Ae = —u3)? . By choosing
_ Yy — 2
H3 = ’
(I'(vs) = D(we)) T
2The void input A2 = 0 is included for preserving

consistency of index parity with (35) and (36), and
of course it is not necessary to wait for the corre-
sponding interval T before applying the next input.

and v; solving the system of two nonlinear
algebraic equationszis(zo, v3, V1) = zy
na(zo, v3, va) = yy, Steers the system ir87".

Example: As an example of application of the planning algo-
rithm, consider the problem of rolling an object of general shape
described in spherical coordinates by a weighted sum of suitable
basis functions. In particular, recalling that spherical harmonics
form a complete orthogonal basis for the spacé&gfunctions
on a spherical domain, one can write

n £
p() =D > feaYea(v) 37)
=0 s=—¢
where f;, are weights, and

Yis(u, v) = Uy cos(us) P/ (sin v) 0<s<Y?
=Uy, sin(us)lesl(sin v) —{<s5<0
= Uy Py(sin v) s=0

3The inverseA—1 of an inputA: [0, Ts] — R,, is defined here ad—! =
—A(Ta —1).
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1+

24

-3}

application of the above algorithm, modified as in Remark 2-A,
to the problem of steering fromy, = (—«n /4, /4, 0, 0, 0) to

zy = (n/4, —n/4, 0, 2, 1), are computed g8y = 7 /2, 11 =
—7/2, p3 = —0.40; us = 3.03; uz = 1.07. The solution

of the system of nonlinear equations at the last step of the
algorithm is performed numerically. The path followed by
the coordinates along the 12 intervals used for planning are
reported in Figs. 5 and 6.

V. CONCLUSION

We have shown that almost all contacting pairs of bodies with
regular surface can be brought to an arbitrary relative configu-
ration by rolling. This is the proof of a conjecture that was ad-
vanced to justify construction of dextrous robotic hands with re-
duced hardware complexity. Furthermore, we presented a plan-
ning algorithm for a rather general class of objects rolling on a
plane.

Fig. 5. Trajectory followed by the contact point on the plane for the planning Several generalizations of the problem considered in this
example. Circles denote the states at the end of each planning interval;padper are practically relevant and present challenging open

asterisk denotes the initial conditions.

Fig. 6. Plot of the state variables v, ¢ in the planning example.

for/ =0, 1, ---. Here,

20+1 (£—|s))!
2 -— 0
VAT sy
UZSI
20+1
47 s=0

P, t=0,1, .-, are the Legendre polynomials, afid are the
Legendre functions

issues, of which we mention a few: firstly, paths planned by our
algorithm may turn out to be rather long and complicated for
some objects and configurations. Efficient algorithms to find
optimal controls resulting in shortest paths, generalizing the
work of [22] to generic objects, would be very useful. Work in
this direction is reported in [30], who also derive controllability
conditions equivalent to ours in an elegant coordinate-free
setting. Secondly, if the object shape is not known beforehand,
identification techniques need to be applied based on outputs
from tactile sensors on the hand (see [31]), and adaptation
mechanisms for re-planning paths should be devised. Thirdly,
if objects to be manipulated do not possess a regular surface,
tools adopted in this paper do not apply. In fact, quite different
behaviors may appear, such as nondensity of the reachable set,
that have been studied in [32]. Finally, feedback stabilization of
a configuration of the manipulated object is an open problem
which, due to the nonflatness of the system, appears to be
rather hard to solve.

APPENDIX
CLASSIFICATION OF ADMISSIBLE ROLLING PAIRS

Consider the diagonal decomposition of the curvature forms
kr O hi O
Ki=0, { 0 kJ Qf K= { 0 hfj Q:

QTRU’JQQ = {_Z _b}

—a

with (k1, ko), (h1, he) the principal curvatures of the first and
the second object. Assume the eigenvalues are ordered so that

. 2\8/2 L k1 > ko; h1 > ha; k1 > hy. The relative curvature fornk
Pi(z) = (1= 27)%7 o= Pu(2). is given by
. . . . . k14 hy 0
Observe that objects with an axial symmetry can be written with Kr=0Q,
0 ko + ho
f[,s = 0, Vs 7£ 0.
In Fig. 4 is reported the shape of an object ob- —b(hy — hy) { b _“D 1T
tained as the sum of the first three harmonics, with —a —b

fooo =1, fi 0 =04, fo 0 = 0.1. The inputs resulting from The following cases apply:
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TABLE I
CLASSIFICATION OF ADMISSIBLE ROLLING CONTACTS

Sign of principal
curvature Example d.of.

ho | hi | ka | ka1 | VO

- | - [+ | + | sphere inside hollow sphere 2

- |1 0|+ | + | sphere inside hollow cylinder 2

- | + |+ | + | sphere onto saddle 2

0 | + | + | + [ sphere onto cylinder 2

+ | + | + | + [ sphere onto sphere 2

hy | by | Ko | ku | T

- | - | + | + | ellipsoid inside hollow ellipsoid | 2

- | 0|+ | + | ellipsoid inside hollow cylinder 2

- |+ | - | + | saddle onto saddle 2

- |+ | 0! + | cylinder onto saddle 2

- |+ |+ | + | ellipsoid onto saddle 2 [1]
0|+ |0 /| + |cylinder onto cylinder 2

0|+ | - | + |saddle onto cylinder 2

+ |+ | - | + |saddle onto ellipsoid 2 2
by [ha [k [ ba [V9

00| 0| + |cylinder onto plane 1 (3
hy |l | ko | by | T [4]
- | 0] 0| + | cylinder inside hollow cylinder 1

- | + | - | + {ruled saddle onto ruled saddle 1 5]
- |+ | 0| + | cylinder onto ruled saddle 1

0 | +] - | + | ruled saddle onto cylinder 1

0|+ | 0| + [cylinder onto cylinder 1

A)

det Kg = (/{}1 +h1) (kQ + hQ) +b2 (/{}1 — /{}2) (h1 — hQ) >0
Ky
K22 = (ko + ha) + 6% (hy — ha) > 0

B)
B-i)

det K = (ky + hy) (ko + ho) 4+ 02 (k1 — kg) (hy — he) =0
K

B-ii)

11
KR

(6]
(71
Surfaces have an isolated contact point and have two
rolling DOF.’s iff [

[©]
= (k1 +hy) —b*(hy — ha) >0
[10]

whereKjg denotes thé, jth element of matrixkK .
These conditions hold v iff —hy < —hs < ko <
k1. They hold for some values ef iff —h; < ko <
—hy < k. [12]
Surfaces have a one-dimensional contact manifold iff 13,

(11]

[14]
= (k1+h1)—b2(h1 —hQ) > 0
K3} = (ko + ho) + 0% (h1 — ha) >0 [15]
or
[16]
det KR = (k‘l + hl) (k‘g + hg) + b2 (k‘l — kQ) (hl — hg) =0 [17]
= (/{}1 +h1)—b2(h1 —hg) =0
K% = (/fg + hg) +b? (hl — hg) >0 (18]
Case B-i) holdsv ¢ iff —hy = —hy = k2 < k1i; g
\V/”(/} # :|:(7T/2) iff —h1 < —hos = ky = kq; and
forey = {0, 7} iff —hy < —hy = ky < k. Case [20]
B-ii) holds for¢ = (7 /2) iff —hy < ky < —hy = [21]

k1. Moreover, if surfaces have one rolling DOF., then

hiha < 0andki ke < 0 (contact points must be hy-
perbolic or parabolic).

Possible cases and examples are summarized in Table I,
where the number of DOFs of rolling refers to enforcing both
constraints (6) and (10).
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