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Abstract— In this paper we deal with the optimal feedback
synthesis problem for robotic vehicles with trailers which can
be modeled by differential equations in chained-form. With
respect to classical methods for numerical evolution of optimal
feedback synthesis via Dynamic Programming which are based
on both input and state discretization, our method exploits the
lattice structure naturally imposed on the reachable set by input
quantization. A generalized Dijkstra algorithm can be used to
obtain optimal feedback control laws, for chained-form vehicles
with n-trailers, in an effective way.

I. INTRODUCTION

A remarkable robotic problem consists in computing mo-

tion strategies that bring a system from an initial config-

uration to a desired final configuration, requiring specific

performance to the control policy. Typically this problem is

solved by decoupling the task into a path– planning and a

path–following sub–tasks.

In our previous work [1], the path planning task has been

treated for chained-form systems. In particular, a solution

algorithm based on non-standard optimization techniques

to the optimal steering problem has been proposed. Con-

vergence to the optimal solution in finite time has been

demonstrated. Therefore, the optimal control problem in

open–loop has been solved, giving satisfactory results.

In this paper, the same robotic motion problem has been

investigated to find feedback motion strategies for chained-

form systems. With the proposed approach the two previous

sub–tasks are solved at the same time.

Several robotic systems such as mobile wheeled robots

and satellites are continuous-time driftless nonholonomic

systems that can be converted in the chained-form has it

has been shown in [2]. Since then, the chained-form has

been extensively been used in the automatic control literature

for modeling and controlling several robotic systems ([3],

[4], [5], [6], [7], [8], [9]). While many steering methods for

chained form systems have been provided in the literature,

optimal control for these systems is still a completely open

problem.

Under quantization, this class of systems are characterized

to have a lattice structure as reachable set, [10], [11], and this

property is used in this paper to determine optimal feedback

strategies applying Dynamic Programming. In particular, we

describe how to apply the Dynamic Programming approach
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to construct the optimal cost function and the relative motion

strategies on the reachable lattice.

Dynamic Programming is a powerful optimization pro-

cedure whose drawback is the computational efforts to ob-

tain numerical solutions in case of continuous-state space

problems [12], [13], [14]. Hence, the state-space is usually

discretized and the discretization mesh affects the accuracy of

the approximation to the continuous problem. Furthermore,

during the resolution procedure interpolations of values of

the value function at points other than state-space grid points

may be needed. Hence, optimal solutions depend on the

grid resolution chosen on the state-space, on the control

discretization and on the interpolation techniques that have

been applied [15].

On the contrary, in chained-form systems the lattice struc-

ture depends only on the quantized control inputs [11] while

no state-space discretization is needed. Furthermore, since

all reachable points belong to the lattice (state-space grid)

no interpolation is required during the optimal resolution

procedure.

The obtained results in computing optimal quantized feed-

back strategies for chained–form systems can be applied to

approximate a solution to the optimal feedback problem for

continuous nonlinear systems for which there exist encoding

schemes by which the systems can be written in chained-

form, [16], [11]. In this paper the particular application to

tractors with n trailers is considered. Indeed, such systems

can be converted in chained form, as has been shown in [3]

by Sørdalen with a constructive method.

The paper is organized as follows. The dynamic program-

ming approach to optimal control is introduced in section

II. In section III the Dynamic Programming application

to chained-form systems and a resolution algorithm are

described. The applications of the proposed approach to

wheeled vehicles with trailers is reported with experimental

results in section IV.

II. THE CLASSICAL DYNAMIC PROGRAMMING

Consider a discrete-time stationary dynamical system

xt+1 = f(xt, ut), u ∈W,

where t denotes a time stage and f is the state transition

function. Given an initial configuration xstart = x1, let

u1, . . . , uK be an input sequence lead into a state trajectory



or a path, x1, . . . , xK+1. We define a trajectory cost function

L(x1, . . . , xK+1, u1, . . . , uK) =

K
∑

k=1

l(xk, uk)+lK+1(xK+1),

(1)

where l(xk, uk) is the cost related to the state xk and to

the control uk, and lK+1(xK+1) yields the cost of the final

state. Hence, L(x1, . . . , xK+1, u1, . . . , uK) is the cost of the

trajectory produced by the control u1, . . . , uK , starting at

state xstart.

Given a desired configuration xgoal = xK+1, the optimal

feedback control problem consists in finding a feedback

control sequence that achieves the goal and minimizes the

trajectory cost function.

The resolution of this type of problems is the goal of

the celebrated Dynamic Programming approach, proposed by

Bellman [17] and later extended to a complete mathematical

and computational theory by Larson [14], [18] and Bertsekas

[13].

Solving this problem (see [15]) by Dynamic Programming

consists in constructing a representation of the feedback stra-

tegy (γ : X 7→ U where X is the state space and U is the

input space) in terms of a navigation function that we indicate

as the optimal cost function. This function is defined as L∗ :
X 7→ [0,∞] and associates at each state, the cost given by

the trajectory cost function (1) under the execution of the

optimal trajectory from the state to the goal configuration. If

the goal configuration can not be reached, the value of L∗

is infinity.

Numerically, the function L∗ is computed as limit of a

finite sequence of stage-dependent optimal cost functions,

accordingly with the fact that for all points taken in consid-

eration, the goal is reached in a finite number of stages.

Typically, in Dynamic Programming, the procedure is

backward from the goal to the initial state and consists

in considering k-trajectories for all k ∈ IN, where a k-

trajectory is a trajectory obtained from the goal state applying

k (inverse) control inputs. Since the number of stages to

reach the initial state is finite, the procedure stops as soon as

the number of stages is higher than the minimum number of

stages necessary to check an optimality criterion [15], [14].

Hence, starting from the goal state at stage 0, an optimal

cost function L∗
k can be defined for each stage k as follows

L∗
k(x) = min

uk

{

l(x, uk) + L∗
k−1(f(x, uk)),

}

(2)

where L∗
0(xgoal) = 0 and the value L∗

k(x) yields the optimal

cost for the path from state xgoal = xK+1 to x in k stages.

If we consider two different stages k1 and k2, with k1 < k2,

L∗
k1

(x) ≥ L∗
k2

(x) is satisfied.

In case of optimal paths of unspecified length (in terms

of stages) the approach is similar to the one described [15].

A “null” action uN is introduced such that ∀i ≥ k, ui =
uN , xi = xk and l(xi, uN ) = 0. Furthermore, notice that

formula 2 can be iterated for infinite times. If the function

l(x, u) is non negative there exist a stationary k̂ such that

L∗

k̂+1
(x) = L∗

k̂
(x)∀x ∈ X . Under these assumptions the

optimal cost function can be defined as follows

L∗(x) = min
u

{l(x, u) + L∗(f(x, u))} . (3)

Also in this case the optimal cost function is evaluated

starting from the final state xgoal and is obtained recursively

proceeding with a backward approach.

In general, the optimal cost function L∗ is numerically

computed over a grid of points, then approximated on

the other points by interpolation. In the particular case of

chained-form systems, interpolation is not needed because

all reachable points belong to the lattice and for each inter-

mediate point the function L∗ is computed. A fundamental

property of dynamic programming approach is that the

optimal solution depends on the choice of the grid points and

on the control discretization. In [19], [14] the convergence of

the approximated values to the optimal one while increasing

the resolution of the grid has been shown.

The optimal cost function L∗, computed iteratively as

above, is used to encode the feedback strategy

γ(xt) = argminut∈UL
∗(xt+1), (4)

that is the input γ(xt) is obtained as a control ut ∈ U that

yields the minimum value for the optimal cost function on

the next state (4).

The Dynamic Programming approach will be applied in

the following for our purposes. In particular, it will be applied

and modified for a problem with a fiber structure such as

the optimal steering problem for chained-form systems with

quantized inputs.

III. OPTIMAL FEEDBACK ON LATTICES THROUGH

DYNAMIC PROGRAMMING

An algorithm that computes optimal steering strategies

for quantized chained-form systems has been proposed in

[1]. We are now interested in computing optimal feedback

strategies on the reachable lattices generated by quantized

chained-form systems. For the reader convenience, some

notation and fundamental results reported in [11], [1], [20]

are now briefly described.

A. Main properties of chained form systems

Chained-form systems, introduced by Sastry and Murray

in [2] as a canonical form for some continuous-time, drift-

less nonholonomic systems, are described by the ordinary

differential equations


























ẋ1 = u1,
ẋ2 = u2,
ẋ3 = x2u1,
... =

...

ẋn = xn−1u1.

(5)

Consider the case where system inputs, rather than being

allowed to change continuously in time, are bound to switch

among a finite set of different levels at given switching times,

which are multiples of a given time interval. Assuming such

sampling interval to be of unit length, an exactly sampled



model of chained-form systems can be easily obtained in

discrete time from (5) by integration as






























x+
1 = x1 + u1,
x+

2 = x2 + u2,
x+

3 = x3 + x2u1 + 1
2u1u2,

... =
...

x+
n = xn +

∑n−2
j=1 xn−j

u
j

1

j! + un−2
1 u2

1
(n−1)! .

(6)

We will assume that inputs u = (u1, u2) can take values

within a state-independent set of input symbols U , which is

symmetric (i.e., if u ∈ U , then also ū = −u ∈ U ). The

set Ω of admissible control words (i.e. strings of admissible

input symbols) is endowed with a composition law given

by concatenation of strings. Because of the symmetry of U ,

every element ω ∈ Ω has an inverse ω−1 ∈ Ω, simply defined

as (u1u2 · · ·uq)
−1 = −uq · · · − u2 − u1,±ui ∈ U, ∀i.

In the state manifold of chained-form systems (5, 6) it

is customary to distinguish a base subsystem, consisting of

the first two state variables (x1, x2), and a fiber subsystem

with coordinates (x3, . . . , xn). Observe that the restriction

of chained-form systems to the base variables is linear, and

indeed trivial to control. On the other hand, the difficulty in

controlling fiber variables increases with the dimension of

the state space.

Regarding the reachability properties of the two subsystem

the following holds ([10]): if the controls set U is rational

and quantized, the reachability structure of a chained form

discrete-time system is completely described by a lattice in

the state space (the cartesian product of the base and fiber

lattices).

Furthermore, the lattice structure, which plays a central

role in our approach in solving the optimal steering problem,

can be completely described by a finite number of generators,

whose evaluation can be done in polynomial time with

respect to the state space dimension and the number of

control symbols in U ([11]).

From now on, we focus on the fiber subsystem of (6) with

quantized, rational and symmetric control set U for which

the reachable set has a lattice structure. Denote this lattice

structure as ψ with state space X in which each state is a

vector that represents a fiber reachable displacement. The

problem consists in designing an optimal feedback motion

strategy that steers the fiber subsystem from a desired final

configuration xgoal to xstart with the assumption that these

configurations belong to the lattice, see figure 1. Otherwise

we consider the best approximations of these points on the

lattice and we solve the feedback problem with an error

related to the lattice mesh.

Since the lattice is obviously invariant by translations,

xgoal can be considered to be 0 translating the relative xstart

in x̂start = xstart−xgoal. Hence, the task is to determine the

optimal feedback from the origin to the configuration x̂start.

Let I = {g1, . . . , gl} denotes the displacements

on the fiber that generate the lattice, W =
{ω1

1, . . . , ω
1
j1
, ω2

1, . . . , ω
2
j2
, . . . , ωl

1, . . . , ω
l
jl
} a set of cyclic

controls on the base that generate the above displacements,

Fig. 1. Example of steering of a 3-Trailer system on the fiber

[22], [11]: in particular the motion gi can be realized by

any cyclic control in {ωi
1, . . . , ω

i
ji
}. Let Ω be the set of the

finite control sequences whose control words belong to the

set W : we have that any displacement on the fiber lattice is

obtained by a word sequence ω̃ ∈ Ω.

Given a control word ω̃, define the function Γ : Ω 7→
[0,∞] that yields the cost of the sequence. This value is

computed as the number of symbols that compose the word

(minimum-time optimization) or by a weighted sum of the

number of symbols that appear in the control sequence. By

results in [11], the cyclic controls in W are fiber generators

of lowest cost.

Furthermore, composing cyclic controls different number

of cancellations may occur. For example, if ωi = u1u2u3u4

and ωj = −u4u5−u2−u1, in a minimum time problem we

have Γ(ωi) = 4 and Γ(ωj) = 4. However, the concatenation

of ωi with ωj leads, by cancellations, to the control word

ω = u1u2u3u5 − u2 − u1, so that Γ(ω) = 6 < Γ(ωi) +
Γ(ωj). Obviously, cancellations are crucial in minimizing

unnecessary maneuvers in the steering problem, and motivate

the necessity of introducing a generalized lattice structure

that takes into account a larger amount information for each

state. A possible generalized lattice structured is described

in next subsection.

B. The Generalized Lattice

Let X̃ = X ×W×W be a generalized state space, where

X is the state space of the initial problem and W the control

set of lattice generators. We consider a subset Ψ ⊂ X̃ whose

points are defined as x̃ ∈ Ψ, x̃ = (x, ω, ωl) where x is a

point of the reachable lattice ψ in the space X , ω and ωl

are symbols belonging to the set W . The subset Ψ has a

lattice structure inherited from the lattice structure ψ of the

first component while the other components belong to finite

sets.

Let us introduce an equivalence relation ∼ over the

elements of Ψ by setting (x1, ω1, ωl1) ∼ (x2, ω2, ωl2) iff

x1 = x2. Using this relation, the lattice ψ ∈ X can be

obtained considering the quotient Ψ̃ = Ψ/ ∼ with respect

to the equivalence relation ∼. The equivalence class of state

ξ = (x, ω, ωl) will be denoted as [x]. Hence, a path from



the origin to x̂start on the lattice ψ becomes a path on Ψ̃
between [0] and [x̂start].

The state transition function on the generalized lattice Ψ
is given by

ξt+1 = fΨ(ξt, ω) = (xt + g, ω, ωt), ω ∈ W ,

where ξt = (xt, ωt, ωlt) and g is the fiber displacement

generated by ω.

Notice that in the state we keep track of both the last

and the second-last control used to reach the state. This is

necessary in order to use the inverse of the state transition

function in the backward approach of Dynamic Programming

and for the reconstruction of the optimal feedback control

sequence. However, the equivalence class is represented only

by the fiber displacement.

C. The optimal cost functions

Optimal cost functions L∗ and L̂∗ will be now defined for

the fiber lattice ψ and the generalized latice Ψ. The relation

between these quantities is given by the quotient space Ψ/ ∼.

Indeed, for each equivalence class in Ψ/ ∼, it is possible to

define an optimal cost function on Ψ/ ∼ as follows

L̃∗([ξ]) = min
ζ∈Ψ,ζ∈[ξ]

L̂∗(ζ).

Since in any equivalence class we have a finite number of

points, this operation is well defined. Besides, considering

the equivalence class corresponding to the point x in ψ, we

can define the function L∗(x) = L̃∗([x]). It is fundamental

to observe that an equivalence class can be visited different

times with different values of the optimal cost function.

For simplicity of presentation, we consider the compu-

tations of the minimum–time optimal feedback trajectories,

where the value of Γ(ω) is the number of symbols in ω
(or equivalent its length). The extension to weighted control

costs is straightforward.

Since the goal configuration (starting point of the back-

ward approach) is the zero of the fiber space we have that

L̃∗([0]) = 0 and L∗(0) = 0. Indeed, any points the fiber can

be reached with negative costs.

From (3), the optimal cost function L̂∗(ξ) defined on the

points ξ = (x, ω̃, ω̃l) ∈ Ψ of the generalized fiber is rewritten

as

L̂∗(ξ) = min
ω∈W

{

l(ξ, ω) + L̂∗(fΨ(ξ, ω))
}

. (7)

The cost term l(ξ, ω) can be defined as

l(ξ, ω) = Γ(ω) − canc(ω̃, ω),

where canc(ω̃, ω) is the number of symbols cancellations

that occur in the composition of ω̃ and ω (in the example

reported in section III the number of cancellations is 2).

In order to have stationary conditions it is necessary to

have a non negative cost term. Unfortunately, the cost term

may take negative value when the number of cancellations

is larger than the length of the applied control. Hence,

the sequence of ω and ω−1 should not be allowed. This

constraints is also justified by the fact that the sequence

ωω−1 corresponds to a unecessary maneuver for the vehicle

motion planning problem. The introduction of this constraint

is not sufficient to ensure a non negative cost term. For

example, if ω̃ = u v − u v u and ω = −u − v v we have

ω̃ω = u v −u, v, canc(ω̃, ω) = 4 and l(ξ, ω) = 3−4 = −1.

To avoid this problem, we introduce another generator in W
obtained by the composition of ω̃ and ω with the relative fiber

contribution added in I and relative length Γ(ω̃ω), i.e. in the

case above Γ(ω̃ω) = 4 and the fiber contribution is given

by the sum of the two controls contributions. Furthermore,

the application of control ω to a state ξ with ω̃ as second

component is no more allowed, see figure 2. This procedure

is repeated for each pair of controls in W whose composition

leads to a number of cancellation that is larger than the length

of the first control. With this strategy, the cost term applied

to the augmented control space W (still denoted with W for

simplicity of notation) is non negative.

Fig. 2. Sequences concatenation that leads to a large number of cancellation

D. Maximum optimal costs and optimal exploration of fiber

sectors

As introduced in section II, applying dynamic program-

ming techniques, the optimal strategy is constructed with

a backward approach, starting from final state xgoal (here-

inafter considered as translated to the origin) to initial state

xstart.

Each state of the fiber can be associated to a node of a

graph. An arc from the node associated to ξ = (x, ω, ωl) to

the node associated to ζ = (y, ν, νl) exists if ζ = fΨ(ξ, ν),
i.e. y − x is the fiber displacement generated by ν, and

νl = ω. Furthermore, such arc exists if the number of

cancellations in the composition of ν and ω is smaller than

Γ(ν). In particular, ν cannot be the inverse of ω. Finally, the

cost l(ξ, ν) is associated to the arc from ξ to ζ.

Starting from the node associated to the origin of the

fiber, a generalized Dijkstra algorithm is applied backward

to the obtained graph. Reversing the results obtained with

this approach it is possible to find feedback optimal control

laws to steer the system from any point of a fiber sector to

the origin.

The following remarks provide a quantitative descrip-

tion of the fiber space effectively explored by the Dijk-

stra algorithm and of the maximum optimal cost that we



may expect to find in a sector. Let r(ω̃, ω) = Γ(ω) −
canc(ω̃, ω) for ω̃, ω ∈ W , c = minω̃, ω∈W r(ω̃, ω) and

C = maxω̃, ω∈W r(ω̃, ω) the minimum and maximum cost

of the arcs of the graph. Let δ = (δ1, . . . , δn−2) where

δi = ming∈I |gi| and index i represents the i-th fiber

component. Equivalently, let ∆ = (∆1, . . . ,∆n−2) where

∆i = maxg∈I |gi|.

Remark 1: The optimal feedback control law to reach a

given fiber displacement P has cost L∗(P ) = L̃∗([P ]) whose

upper bound is Ub = maxi=1, ..., n−2

(

Pi

δi

)

C.

Remark 2: A fiber sector centered in the origin and with

vertex P is formed by points for which the optimal cost is

obtained if the Dijkstra algorithm has explored all nodes of

cost at most Ub.

Remark 3: Let ∆M = Ub

c
∆ and consider the fiber sector

M centered in the origin and with a vertex in ∆M . By

exploring with the Dijkstra algorithm all nodes of cost at

most Ub no fiber point out of M need to be explored by the

algorithm.

Remark 4: Let explore with the Dijkstra algorithm all

nodes whose optimal cost is less or equal to Ĉ, and let

δm = Ĉ
C
δ. At least for all nodes in the fiber sectorm centered

in the origin and with a vertex in δm the optimal cost has

been obtained.

The above propositions allow the introduction in the

Dijkstra algorithm of constraints in the exploration of the

graph since they determine which node of the graph does

not need to be explored. It is important to notice that the

application of the Dijkstra algorithm do not require to store

in memory the entire graph but only explored nodes.

IV. APPLICATION TO WHEELED VEHICLES

According to the reachability lattice approach [16], the

results obtained on lattices can be extended to reticulability

systems. In particular, these results can be applied to systems

that are equivalent to chained–form systems, in the sense of

coordinate changes and state feedback.

In this section, the optimal steering problem with feedback

strategies is applied to a tractor with n trailers. Experimental

results of the proposed generalized Dijkstra approach are also

reported.

Fig. 3. A 3-Trailer system, in this case n = 6.

Referring to figure 3, the kinematic model of a tractor with

n trailers is given by



































ẋ = cos θnvn

ẏ = sin θnvn

θ̇n = 1
dn

sin(θn−1 − θn)vn−1

...

θ̇1 = 1
d1

sin(θ0 − θ1)v0
θ̇0 = ω

(8)

where (x, y) is the absolute position of the center of the

axle between the two wheels of the rear-most trailer; θi is

the orientation angle of trailer i with respect to the x-axis,

with i ∈ {1, . . . , n}; θ0 is the orientation angle of the tractor

axle with respect to the x-axis; di is the distance from the

center of trailer i to the center of trailer i−1, i ∈ {2, . . . , n};

d1 is the distance from the wheels of trailer 1 to the wheels

of the tractor while di is the distance from the wheels of

the i− 1-th trailer to the wheels of the i-th trailer. The two

inputs of the systems are v0 and ω, the tangential velocity of

the car and the angular velocity of the tractor respectively.

The tangential velocity vi, of trailer i, is given by

vi = cos(θi−1 − θi)vi−1 =
i

∏

j=1

cos(θj−1 − θj)v0,

where i ∈ {1, . . . , n}. Incidentally, this model is identical

to the model of a four-wheeled car pulling n − 1 trailers,

provided θ0−θ1 denotes the angle of the front wheels relative

to the orientation θ1 of the rear axle of the four-wheeled car.

System (8) can be converted in chained form, as has

been shown in [3] by Sørdalen with a constructive method.

As already mentioned, under quantization on the control

inputs, this class of systems are characterized to have a

lattice structure as reachable set. The described quantized

feedback optimal control algorithm can then be applied to the

approximate determination of an optimal continuous control

for system (8). Computed solutions will provide piece-wise

continuous inputs to system (8).

For this application, the considered quantized control set

is comprised of three inputs:

U =

{

±

(

1
0

)

,±

(

0
1

)

,±

(

1
1

)}

,

corresponding respectively to straight motions, rotations

about the axle center and the tractor turn motions.

Several simulations have been carried out from the uni-

cycle case n = 3 up to the 5-trailer case (n = 8). By

fixing a maximum optimal cost value (MOC) we report in

the following table the CPU time (in seconds), the number

of optimal nodes obtained (ON) and the dimension of the

minimum fiber sector explored (δm).

The computation has been done on a Windows Xp, Pen-

tium 4, 2GHz, 512MB RAM.



−20 −15 −10 −5 0 5 10 15 20
−50

−40

−30

−20

−10

0

10

20

30

40

50

2

4

6

8

10

12

14

16

18

20

22

Fig. 4. Nodes with optimal cost less or equal than 20 represented on the
fiber space for the 1-Trailer system (a scale of 2 on first component and of
6 on second component have been used)

MOC ON sec δm ∆M

U 500 11917 18 83 250

U 1000 23917 89 166 500

1-T 20 28711 133 δm
1 2∆M

1

1-T 30 79799 1362 3
2δ

m
1 3∆M

1

2-T 15 143709 2507 δm
2 3∆M

2

2-T 20 822206 97599 δm
2 4∆M

2

3-T 10 5554 1.6 δm
3 10∆M

3

3-T 12 24621 68 δm
3 12∆M

3

3-T 15 280423 9059 δm
3 15∆M

3

4-T 10 5754 2.0 δm
4 10∆M

4

4-T 12 29324 77 δm
4 12∆M

4

4-T 15 314275 11850 δm
4 15∆M

4

5-T 10 6894 4.2 δm
5 10∆M

5

5-T 12 36152 184 δm
5 12∆M

5

where δm
1 =

(

2 2
3

)T
, ∆M

1 = (10 10)
T

, δm
2 =

(

1
2

1
6

1
24

)T
, ∆M

2 = (5 10 10)
T

, δm
3 =

(

1
2

1
6

1
24

1
120

)T
,

∆M
3 = (1 3 5 5)

T
, δm

4 =
(

1
2

1
6

1
24

1
120

1
720

)T
, ∆M

4 =

(1 4 2 12 12)
T

, δm
5 =

(

1
2

1
6

1
24

1
120

1
720

1
5040

)T
, ∆M

5 =

(1 5 13 22 27 28)
T

.

In figure 4 the nodes with optimal cost less or equal than

20 for the 1-trailer system have been reported on the fiber

space (a scale of 2 on first component and of 6 on second

components have been used). The sector delimited by δm
1

(scaled accordingly) has been visited while no nodes external

to the sector delimited by 2∆M
1 (scaled accordingly) has been

explored.

In figures 5 and 6 the nodes with optimal cost less or

equal than 11 have been reported on the 3D fiber space for

the 2-Trailer system (a scale of 2 on first component, of 6
on second component and of 24 on third component have

been used).

V. CONCLUSION

An algorithm to compute feedback motion strategies for

chained-form systems by quantization on the control inputs

has been proposed. For this systems class, under quantized

rational inputs, the structure of the reachable set is a lattice

and this property plays a central role in the definition of the
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Fig. 5. Nodes with optimal cost less or equal than 11 represented on the
fiber space for the 2-Trailer system (a scale of 2 on first component, of 6

on second component and of 24 on third component have been used)
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Fig. 6. Zoom of nodes with optimal cost less or equal than 11 for the
2-Trailer system

feedback law. Our approach in computing optimal trajecto-

ries is inspired by dynamic programming and in particular

the feedback strategy is encoded by an optimal cost function

that, in robotics, can be seen as the navigation function.

Applying Dynamic Programming directly on the lattice

structure we eliminate the discretization on the state-space

and the interpolation tasks, usually connected to this opti-

mal control techniques. Furthermore, satisfactory numerical

results can be obtained, as shown above.

These results provide a method to compute optimal feed-

back strategies for a large class of nonholonomic continuous

systems that can be converted in chained form by coordinates

change and feedback.
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