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Abstract— In this paper we consider the problem of con-
trolling multiple scalar systems through a limited capacity
shared channel. Each system is affected by process noise and
can be controlled by actuators with values in afixed finite
set. The control objective is to bound the evolution of the
systems in specified sets (controlled invariance). Our goal is
to find an optimal allocation of the shared communication
resource to the different control activities and to identify
correct choices for the design parameters. The paper provides
fundamental conceptual tools to attack the design problem in
the formal framework of an optimization problem. Namely, we
give a feasibility criterion to decide whether a set of design
parameters conforms with a control specification (i.e., with
the controlled invariance of a specified set for each system).
Moreover, we offer the explicit computation of the minimum
bit rate necessary for the controlled invariance of a set, which
is of utmost importance for solving the optimization problem.

I. I NTRODUCTION

Traditional control design is based on ideal assumptions
concerning the amount, type and accuracy of the infor-
mation flow that can be circulated across the controller.
Unfortunately, real implementation platforms exhibit non-
idealities that may substantially invalidate such assump-
tions. As a result, the system’s closed-loop performance
can be severely affected and sometimes stability itself
is jeopardized. These problems show up with particular
strength when multiple control loops share a limited pool of
computation and communication resources. In this case the
designer is confronted with the challenging task of choosing
at the same time the control law and the optimal allocation
policy for the shared resources (control algorithm/system
architecture co-design). An intriguing general discussion for
this class of problems can be found in [5]. Investigations in
this field have been developed in several directions. A first
prong of research activities has focused on the problem of
resource sharing [16], [12], [7]. However, these papers do
not explicitly cope with quantization and bit rate constraints
that play an important role in complex distributed systems.
A remarkable thread of papers has focused on the problem
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of stabilization under bit rate constraints [8], [19], [9],
[15], [10], [14], [2]. In these works, the authors generally
synthesizequantization schemes instrumental to the goal of
finding encoding-decoding policies that make for an optimal
use of the channel, when the latter is used in a control
loop. Albeit interesting from a theoretical point of view, this
approach is to be verified from the standpoint of technolog-
ical feasibility. In [17], [18] a different view is taken. The
authors analyze the attainable control performance when
quantization is afixed element of the problem. An evident
motivation for this work is the analysis of control systems
where actuation and/or sensing are inherently quantized,
e.g., stepper motors, D/A converters, quantized encoders.

In this work, we make the same assumption: control loops
are operated by quantized actuators, which are regarded as
given “hardware” components to build on the top of. The
general setting we refer to is depicted in Fig. 1: a limited
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Fig. 1. Pictorial representation of the problem analyzed in the paper.

bandwidth channel is shared between several independent
control loops. This can be thought of as “smart-sensor”
scenario, i.e., one where processing activities are located
in the proximity of sensors and commands have to be sent
to actuators by a channel. For the sake of simplicity and as
a first step towards a more general theory, we restrict the
analysis to scalar systems ruled by control laws generated
by periodic sampling and consider uniform quantizers. In
order to limit the bandwidth used for the transmission,
some of the levels provided by the quantized controller
can be left unused. Therefore the subsetU necessary to
accomplish the control task is a design parameter along with
the sampling period. Our final goal is to produce automated
procedures for the optimal allocation of the channel capacity
among the different loops and for the choice of the set
of design parameters. Both problems require a thorough



investigation of the design problem for a single loop, which
is the main contribution of this paper. We will address
two fundamental questions: the identification of the feasible
design parameters with respect to a control specification
and the determination of the minimum bit rate necessary to
attain a specification. As far as the control goal is concerned,
it is well known [8] that classical notion of stability has
evident shortcomings when quantization is in place. We
hence aim at “practical” stability. In particular, in this paper
we are concerned with the steady-state behavior of the
system, i.e., the ability to make a desired set invariant.
This concept is closely related to the notion of “bound-
ability” [2]. The presence of noise is of particular interest
in our context, while this problem has not been extensively
regarded in the previous literature on quantized systems.
Indeed, the presence of noise emphasizes the importance of
the sampling period especially for unstable systems since
long sampling intervals determine performance degradation
due to longer uncompensated actions of the noise term.
The paper is organized as follows. In Sec. II we formally
introduce the problem dealt with in the paper. In Sec. III the
analysis for a single plant is developed and the basic tools to
face the multi-plant problem are derived. Some conclusions
and open problems are suggested in Sec. IV .
Notation: I(Λ) :=

[ − Λ
2 ; Λ

2

]
. bxc := max {z ∈ Z | z ≤

x} and dxe := min {z ∈ Z | z ≥ x} are the floor and the
ceil functions. The Lebesgue measure is denoted byλ( · ) .

II. PROBLEM FORMULATION

Consider a set ofN ≥ 1 scalar plants




˙̃xi(t) = aix̃i(t) + ũi(t) + w̃i(t)
x̃i(0) = x̃0

i

i = 1, . . . , N ,
(1)

where the control functioñui(t) takes values in a regularly
quantized setUi ⊆ εi Z ( εi > 0 ) and w̃i(t) ∈ I(wi)
( wi ≥ 0 ) represents an exogenous noise term. It is
supposed that̃wi(t) is an integrable function. Each scalar
system is denoted by the triple(ai, εi, wi) which are the
givenparameters characterizing the system.
We assume that the states̃xi ( i = 1, . . . , N ) are sampled
periodically at time0, Ti, 2Ti, . . . (the sampling intervals
Ti are design parameters) . Based on these samples,N
individual control values are derived and transmitted over a
sharedcommunication channel to zero-order hold devices in
the corresponding actuator nodes. The sampled-data control
system corresponding to (1) is





xi(k + 1) = Φixi(k) + Γiui(k) + wi(k)
xi(0) = x̃0

i

i = 1, . . . , N ,
(2)

where xi(k) = x̃i(kTi) and

Φi = eaiTi

Γi =
∫ Ti

0
eaisds

wi(k) =
∫ (k+1)Ti

kTi
eai

(
(k+1)Ti−s

)
w̃i(s)ds .

Each Ti–sampled system is denoted by the quadruple
(ai, εi, wi, Ti) . From the last equation it follows that the
discrete time disturbancewi(k) takes values inI(Γ ·wi) .
In this setting the quantized discrete time control law is a
function

qi : R → Ui ⊆ εi Z
xi(k) 7→ ui(k)

so that with the zero-order hold the continuous time control
law is the piecewise constant function

ũi(t) = ui(k) , t ∈ [ kTi ; (k + 1) Ti [ .

The plants share a limited bandwidth channel with bit rate
R , hence the bit ratesRi’s devoted to each control loop,
which will be allocated on the basis of some optimality
criterion, have to comply with the following inequality:

∑N
i=1 Ri ≤ R .

The target is to guarantee “practical” stability for each plant,
more precisely we consider the controlled invariance prob-
lem. Namely, we are interested in finding neighborhoods
of the equilibrium where the trajectories of each plant can
be confined irrespective to any noise affecting the systems.
In our framework we refer to the following definitions of
controlled invariance (see also [4]) :
Definition 1 (Continuous time):For a system (a, ε, w)
with control set U , the interval I(∆) is said to be
controlled invariant iff there exists T > 0 such that
∀ x̃0 ∈ I(∆) there existsu ∈ U such that for any integrable
function w̃ : [ 0 ; T ] → I(w) the solution of

{ ˙̃x(t) = ax̃(t) + u + w̃(t)
x̃(0) = x̃0

is x̃(t) ∈ I(∆) ∀ t ∈ [ 0 ; T ] .
Definition 2 (Discrete time):For a system (a, ε, w, T )
with control set U , the interval I(∆) is said to be
controlled invariant iff ∀x0 ∈ I(∆) there existsu ∈ U
such that ∀w ∈ I(Γ ·w) , x0+ = Φ x0 +Γ u+w ∈ I(∆) .
The following proposition allows us to get rid of the
distinction between continuous time and discrete time:
Proposition 1: Consider the T–sampled control system
(a, ε, w, T ) : if x0 ∈ I(∆) and u ∈ U is such that
x0+ = Φ x0 + Γ u + w ∈ I(∆) ∀w ∈ I(Γ · w) , then for
any integrable functionw̃ : [ 0 ; T ] → I(w) the solution
x̃(t) of { ˙̃x(t) = ax̃(t) + u + w̃(t)

x̃(0) = x0 (3)

is such thatx̃(t) ∈ I(∆) ∀ t ∈ [ 0 ; T ] .
Therefore, if I(∆) is controlled invariant for the discrete
time system(a, ε, w, T ) , then it is controlled invariant for
the continuous time system(a, ε, w) .

Proof: See Appendix.
Conversely it is obvious that ifI(∆) is controlled invariant
for system (a, ε, w) , then I(∆) is controlled invariant for
system (a, ε, w, T ) for any T as in Definition 1. Thus, it



will be sufficient to introduce and to check the properties
based on invariance only for discrete time models.
The channel: By a limited bandwidth channel of capacity
R we mean a device capable of transmittingR bits per unit
of time. In particular, the number of symbolsσ that can be
transmitted during the time intervalT satisfiesσ ≤ 2RT .
Since the number of bits to be transmitted at each sampling
instant is integer, we require thatσ ≤ 2bRTc .
Definition 3: Consider system(a, ε, w) , suppose that a
channel of capacityR is connecting the controller to the
plant: the triple (R, T, ∆) is said to befeasible for the
invariance problem iff there exists a control setU ⊂ εZ
renderingI(∆) controlled invariant for system(a, ε, w, T )
and satisfying#U ≤ 2bRTc .
Consider the set of systems(ai, εi,wi) , i = 1, . . . , N .
Let ~R := (R1, . . . , RN ) , ~T := (T1, . . . , TN ) and ~∆ :=
(∆1, . . . , ∆N ) . The triple (~R, ~T , ~∆) is said to be feasible
iff ∀ i = 1, . . . , N , (Ri, Ti, ∆i) is feasible for the
invariance problem related to system(ai, εi, wi) .
The presence of multiple plants opens up different design
possibilities as to how the communication capacity of the
link can be shared between the different control loops. As
a first example, it is reasonable to require that the measure
∆i of the invariant set attained on thei–th loop be in a
half-space∆i ≤ ∆i . More generally, we require that~∆
be in a specified domain:~∆ ∈ D . The design problem can
be formulated as follows:

min
(~R,~T ,~∆)

f(~∆)

subj. to:





~∆ ∈ D∑N
i=1 Ri ≤ R

(~R, ~T , ~∆) feasible

(4)

where f is a cost function. Settingf to 0 amounts to for-
mulating a feasibility problem, i.e., the search for a feasible
solution within the specified constraints. A different choice
can be to relatef to the attainment of a specified vector
~∆0 . Hence,f must penalize realizations~∆ differing from
the desired target. E.g.,f(~∆) := ‖~∆0−~∆‖

‖~∆0‖ .

Let Rmin(~∆) :=
∑N

i=1 Ri
min(∆i) , where Ri

min(∆i) is the
smallest bit rateRi ensuring that there exists a choice of
Ti such that (Ri, Ti, ∆i) is feasible. It is immediate to
check that the minimum of problem (4) is equal to

min
~∆

f(~∆)

subj. to:

{
~∆ ∈ D
Rmin(~∆) ≤ R

(5)

Therefore, the solution of the problem is significantly aided
by the availability of the functionRi

min(∆) for each
plant. For instance the feasibility problem becomes almost
straightforward if such a function is available. Thereby, the
computation of this function is one of the most relevant
contribution of the paper.
We end this section with an example to be regarded as a
aid for the understanding of the problem setting.

Example 1 (Tracking of an unknown reference):Consider
N agents moving on a line according tõ̇yi(t) = ũi(t) ,
i = 1, . . . , N . Let r(t) be an unknown reference to
track and assume that|ṙ(t)| ≤ w

2 . A camera takes the
measures of the displacementsẽi(t) := ỹi(t)− r(t) of the
agents and sends the quantized control valuesũi’s to the
actuators through a shared channel of capacityR . The
resulting dynamics of the displacement of thei–th agent
is ˙̃ei(t) = ũi(t)− ṙ(t) so that the problem is modelled by
system (1) withai = 0 ∀ i . ♣

III. S INGLE PLANT ANALYSIS

This section is devoted to the characterization of feasible
triples (R, T, ∆) and to the calculation ofRmin(∆) .

A. Feasibility analysis

Given ∆ > 0 and T > 0 , suppose that there exists a
control set U ⊂ εZ rendering I(∆) controlled invariant
for system(a, ε, w, T ) . Let `(∆, T ) ∈ N be the minimum
of the cardinality of the control setsU ⊂ εZ rendering
I(∆) controlled invariant.
Theorem 1 (Feasibility test):Consider system (a, ε, w) ,
the triple (R, T, ∆) is feasible if and only if

R ≥ 1
T

⌈
log2 `(∆, T )

⌉
.

Proof: It is an immediate consequence of the defini-
tions of feasibility and of the functioǹ(∆, T ) .
Since we will be able to determine the expression of the
function `(∆, T ) , Theorem 1 will be an effective tool to
solve the feasibility problem.
Let us start by the characterization of the domain of
`(∆, T ) . Given ∆ > 0 , assume thatU = εZ and let

T (∆) :=
{

T > 0 | I(∆) is controlled invariant
for system(a, ε, w, T )

}
.

The domain of`(∆, T ) is
{
(∆, T ) | T ∈ T (∆)

}
.

We hence start with the determination of the setT (∆) .
The main step is the following
Proposition 2: Consider system(a, ε, w, T ) and assume
that U = εZ , then
ı) if a < 0 , I(∆) is controlled invariant if and only if

∆ ≥ min
{

Γw
1−Φ ; Γ (ε + w)

}
=

= min
{

w
|a| ;

eaT−1
a (ε + w)

}
;

ıı) if a ≥ 0 , I(∆) is controlled invariant if and only if

∆ ≥ Γ (ε + w) =
{

T · (ε + w) if a = 0
eaT−1

a (ε + w) if a > 0 .
Proof: Omitted.

T (∆) , and hence the domain of the functioǹ(∆, T ) ,
is determined by solving forT the invariance conditions
provided by Proposition 2 :
Corollary 1: Consider system(a, ε, w, T ) , assume that
U = εZ and let ∆ > 0 . The following facts hold:



ı) if a < 0 and ∆ ≥ w
|a| , I(∆) is controlled invariant

∀T > 0 ; if ∆ < w
|a| , I(∆) is controlled invariant if

and only if

T ≤ min
{ 1

a
log

(
1− |a|∆

ε + w

)
;

1
|a| log

(
1 +

w
ε

)}
;

ıı) if a = 0 , I(∆) is controlled invariant if and only if

T ≤ ∆
ε + w

;

ııı) if a > 0 , I(∆) is controlled invariant if and only if

T ≤ 1
a

log
(
1 +

a ∆
ε + w

)
. 2

Before we proceed to the exact calculation of`(∆, T ) ,
we derive a lower bound for̀ from which necessary
conditions for the feasibility of a triple(R, T, ∆) are
obtained. To this aim, aninvariance criterionholding for
systems (a, ε, w, T ) is introduced (more in general, we
could assume thatU ⊆ R ) .
Given ∆ > 0 , ∀u ∈ R let Xu :=

{
x ∈ R |x+ =

Φ x + Γ u + w ∈ I(∆) , ∀w ∈ I(Γ · w)
}

=
{
x ∈

R | − 1
Φ (∆

2 + Γ u − Γ w
2 ) ≤ x ≤ 1

Φ (∆
2 − Γ u − Γ w

2 )
}

.
Let {

αu := − 1
Φ (∆

2 + Γ u− Γ w
2 )

βu := 1
Φ (∆

2 − Γu− Γ w
2 ) ,

(6)

if Xu 6= ∅ , then Xu =
[
αu ; βu

]
with measureλ(Xu) =

∆−Γ w
Φ . It is immediate to check that a control setU ⊆ R

rendersI(∆) controlled invariant if and only if
⋃

u∈U
Xu ⊇ I(∆) . (7)

A lower bound for `(∆, T ) is provided by the following
Lemma 1:Consider system(a, ε, w, T ) and suppose that
U ⊆ R . If I(∆) is controlled invariant, then#U ≥⌈

∆ Φ
∆−Γ w

⌉ ≥ dΦe .
Proof: By the invariance criterion given in Equa-

tion (7) it holds that

∆ ≤ λ
( ⋃

u∈U
Xu

)
≤ #U · ∆− Γw

Φ
,

from which the first inequality follows. The second inequal-
ity is obvious.
Proposition 3: Consider system(a, ε, w) : necessary con-
ditions for the feasibility of a triple(R, T, ∆) are
ı) R ≥ a

log 2 + 1
T log2

∆
∆−Γ(T )·w .

If moreover, a > 0 :

ıı) T ≥ 1
R ;

ııı) ∆ ≥ ε+w
a (e a/R − 1) .

Proof: ı) By Theorem 1 ,R ≥ 1
T log2 `(∆, T ) ≥

1
T log2 Φ + 1

T log2
∆

∆−Γ(T )·w = a
log 2 + 1

T log2
∆

∆−Γ(T )·w
(the second inequality follows by Lemma 1) .
ıı) Since T > 0 and a > 0 , 2 ≤ ⌈

eaT
⌉ ≤ `(∆, T ) ≤

2RT (the second inequality follows by Lemma 1).
ııı) Apply Proposition 3.ıı to the condition provided by
Proposition 2.ıı .

q q

q q

q q

q q

q q

Xu2

Xu1

αu1

βu1
βu2

−

∆

2 ∆

2

Fig. 2. Construction ofŨ in the proof of Proposition 4 .

Remark 1:When w = 0 and a > 0 , Proposition 3.ı
provides the well-known boundR ≥ a

log 2 (see [2]). The
same bound is approached when∆ À Γ(T ) · w .
The condition provided by Proposition 3.ıı shows explicitly
that an arbitrarily fast sampling is not allowed.
We pass now to the explicit calculation of the function
`(∆, T ) : we will mainly address the case of an unstable
plant (a > 0) , which indeed is the most significant as far
as the design of the sampling intervalT is concerned.
Proposition 4: Consider system(a, ε, w, T ) , assume that
a ≥ 0 and let ∆ > 0 be such thatT ∈ T (∆) . Then

`(∆, T ) =

⌈
∆/γ

b∆
γ − w

ε c
Φ +

θ1 − θ2

b∆
γ − w

ε c

⌉
:= l , (8)

where1 γ = Γ · ε , θ1 =
⌈

1
2

(
∆
γ (Φ− 1) + w

ε

)⌉− 1
2

(
∆
γ (Φ−

1) + w
ε

)
and θ2 =

(
∆
γ − w

ε

)− b∆
γ − w

ε

⌋
.

Proof: We construct a control set̃U ⊂ εZ making
I(∆) controlled invariant and such that# Ũ = l . Then we
show that a control setUmin ⊂ εZ of minimal cardinality
(with respect to all sets renderingI(∆) controlled invari-
ant) is such that#Umin = # Ũ .
To simplify the notation we restrict to the caseΓ = ε = 1
and w = 0 : the proof in the general case is analogous. Let
us constructŨ recursively (see Fig. 2) , we use the notation
introduced in Equation (6) :

• Let Ũ := {u1} where u1 ∈ Z is such that
βu1 = min

u∈Z s.t. βu≥∆
2

βu ;

• While αui > −∆
2 , let Ũ := Ũ ∪ {ui+1} where

ui+1 ∈ Z is such that βui+1 = min
u∈Z s.t. βu≥αui

βu .

The algorithm terminates in a finite number of steps because
T ∈ T (∆) . By construction,Ũ satisfies the invariance
criterion given by Equation (7). Let us show that# Ũ = l :
it is easy to verify thatu1 = −⌈

1
2∆(Φ − 1)

⌉
, hence we

calculate the measure ofXu1 ∩ I(∆) which is ∆
2 −αu1 =

∆−θ1
Φ . The measure of the overlapping of two consecutive

intervals associated to the elements ofŨ is βui+1 − αui :
simple calculations show thatui+1 − ui = b∆c and
βui+1 −αui = θ2

Φ . Hence, the cardinality of̃U is obtained

1The dependence fromT is implicit in Φ, γ, θ1 , and θ2 .



looking for the smallest integers such that

∆− θ1

Φ
+ (s− 1)

∆− θ2

Φ
≥ ∆ : (9)

solving the inequality fors ∈ R we have s ≥ ∆
∆−θ2

Φ +
θ1−θ2
∆−θ2

= ∆
b∆cΦ+ θ1−θ2

b∆c ; thus the smallest integer satisfying
the inequality (9) isl .
Let us suppose thatUmin ⊂ Z is a control set of
minimal cardinality within the family of the setsU ⊆
Z rendering I(∆) controlled invariant. Suppose that the
elements ofUmin = {u(min)

1 , . . . , u
(min)
m } are ordered so

that β
u

(min)
1

> β
u

(min)
2

> · · · > β
u

(min)
m

. Because of
the invariance criterion (7) and by construction ofu1 it
holds thatβ

u
(min)
1

≥ βu1 : this implies thatβ
u

(min)
2

≥ βu2

becauseβ
u

(min)
2

≥ α
u

(min)
1

≥ αu1 and by definition ofβu2 .
Iterating the same argument it is shown thatβ

u
(min)
m

≥ βum

and henceαum ≤ α
u

(min)
m

≤ −∆
2 , since by construction

αui
≤ −∆

2 only for i = l then l = m = #Umin .
Remark 2:The proof of Proposition 4 also yields an al-
gorithm to construct a control set of minimal cardinality
realizing the invariance ofI(∆) .
The formula for` given in Equation (8) can be manipulated
to obtain a more treatable expression. We shall make use
of the following
Lemma 2: ∀x ∈ R and ∀n ∈ N \ {0} ,

⌈
1
ndxe

⌉
= d x

ne .
Proof: Omitted.

Let y := 1
2

(
∆
γ (Φ− 1) + w

ε

)
and plug in Equation (8) the

explicit expression forθ1 and θ2 , then

` = 1 +
⌈

y + dye
b(∆/γ)− (w/ε)c

⌉
= 1 +

⌈ ⌈
y + dye⌉

b(∆/γ)− (w/ε)c

⌉

by Lemma 2 ; since
⌈
y + dye⌉ = 2dye we get

`(∆, T ) = 1 +

⌈
2

⌈
1
2

(
∆
γ (Φ− 1) + w

ε

)⌉

b(∆/γ)− (w/ε)c

⌉
. (10)

Let us make explicit the dependence of` from the sampling
period T (for a > 0 ) :



`(∆, T ) = 1 +

⌈
2
⌈

a∆+w
2 ε

⌉
⌊

a∆
ε (eaT−1)

−w
ε

⌋
⌉

T ∈ T (∆) i.e., 0 < T ≤ 1
a log

(
1 + a ∆

ε+w

)
.

(11)

B. Determination ofRmin(∆)
We pass now to the determination of the smallest bit rate
R ensuring that, for a given∆ > 0 , there exists a choice
of T such that the triple(R, T, ∆) is feasible. For the sake
of brevity, the analysis will henceforth be restricted to the
casea > 0 . Let

Tmax(∆) :=
1
a

log
(
1 +

a∆
ε + w

)
.

Rmin(∆):=min
{
R > 0 | ∃T s.t. (R, T, ∆) is feasible

}
.

By Theorem 1 and Corollary 1.ııı ,

Rmin(∆) = min
T∈ ] 0 ; Tmax(∆) ]

1
T

⌈
log2 `(∆, T )

⌉
. (12)

q

q

q

1
T

⌈

log2 `(∆, T )
⌉

T1 Tmax

a

log 2

Fig. 3. An example of the graph of1
T

⌈
log2 `(∆, T )

⌉
( for a fixed ∆ ) .

Given ∆ > 0 , the mapping`(∆, T ) is piecewise constant
with T . Hence, the local minima of the “channel occu-
pation” function 1

T

⌈
log2 `(∆, T )

⌉
are taken in correspon-

dence of discontinuity points of̀(∆, T ) . The discontinuity
points T1 < T2 < · · · < Tk can be determined using
Equation (11) , thus the local minima of the channel occu-
pation function can be listed. However, a closed formula
for Rmin(∆) is difficult to work out. We hence provide an
expression which is a good estimate ofRmin(∆) .
Proposition 5: Consider system(a, ε, w) and assume that
a > 0 . For ∆ > 0 , a sufficient condition onR in order
that the triple (R, T, ∆) is feasible for someT > 0 is

R ≥ Rsuf
min(∆) :=

a

log
(
1 + a∆

2 ε
⌈

a∆+w
2 ε

⌉
+w

) .

Proof: IndeedRsuf
min(∆) = 1

T1

⌈
log2 `(∆, T1)

⌉
, where

T1 is the first discontinuity point of`(∆, T ) . Let us
calculate T1 : for a given ∆ > 0 , the argument of the
floor in the denominator of Equation (11) is a decreasing
function of T , in particular`(∆, T ) is non-decreasing with
T . To determineT1 it is sufficient to find the largestT
such that the denominator in Equation (11) is greater than
or equal to the numerator, that is to solve

a ∆
ε (eaT − 1)

− w
ε

= 2
⌈ a ∆ + w

2 ε

⌉
.

Hence,

T1 =
1
a

log
(

1 +
a∆

2 ε
⌈

a∆+w
2 ε

⌉
+ w

)

and
`(∆, T ) = 2 ∀T ∈ ] 0 ; T1] .

The thesis follows.
Remark 3:The effect of the noise on the system is go-
verned by the functionΓ(T ) which grows exponentially:
hence, as the sampling intervalT increases, the system is
more and more affected by the noise. It is then natural to
expect that the local minimum in correspondence of the first
discontinuity point T1 is close to the actual minimum of
the function (see Fig. 3) . This fact can be explicitly verified
for a ∆ À max {ε , w} , in fact (see also Fig. 4) :

lim
∆→+∞

Rsuf
min(∆) =

a

log 2
,



∆

R
suf
min

a
log 2

Fig. 4. The graph ofRsuf
min(∆) for the system of Fig. 3.

namely, as∆ → +∞ , Rsuf
min(∆) approaches the theoretical

lower bound onR (see Proposition 3.ı and Remark 1) .
Notice also that the feasible triple

(
Rsuf

min(∆), T1, ∆
)

leads
to the implementation of a binary control law.
Remark 4:For a given ∆ > 0 , if R is not much larger
than Rmin(∆) , the set of values ofT such that(R, T, ∆)
is feasible consists ofdisjoint intervals whose right ex-
tremes are discontinuity points of the function`(∆, T ) (see
Fig. 3) . A criterion to discriminate the allowed values for
T , apart from robustness arguments, should take into ac-
count of the entailed channel occupation1T

⌈
log2 `(∆, T )

⌉
.

Remark 5 (Coping with transmission-delay):In this paper
we have assumed that the control selected by the controller
is instantaneously applied by the actuator. This is apparently
unrealistic in presence of a finite capacity channel. However,
the analysis presented thus far can be adapted to cope
with transmission delay if the controller is endowed with
memory (so that at the instantk the controller knows the
current state and the control values applied at timek−1 ) .

IV. CONCLUSIONS AND FUTURE WORK

In this paper we gave the basic theoretical tools to produce
automated design procedures for control design of systems
with quantized actuators and bit rate constraints. Particular
emphasis was put on the presence of noise that exposes
important aspects of the system’s behavior. Many interesting
points remains open for future investigations. It is already
in progress a similar analysis for transient behaviors [3],
when the state has to be attracted intoI(∆) from an
enclosing region, and also an efficient algorithm for solving
problem (5) has been devised (to appear elsewhere). Finally,
a further goal is the study of event-based samplinga la
Lebesgue[1] which is almost naturally induced by the
presence of quantization. However, it is not evident under
which conditions such a sampling could lead to significant
advantages in terms of average required bit rate.

V. A PPENDIX

Proof: [Proposition 1] Let x̃m(t) be the solution of
{ ˙̃x(t) = ax̃(t) + u− w

2
x̃(0) = x0

and x̃M (t) be the solution of the same system with+w
2

in place of−w
2 . For any integrable functioñw : [ 0 ; T ] →

I(w) the solutionx̃(t) of system (3) is such that̃xm(t) ≤
x̃(t) ≤ x̃M (t) , in fact:

x̃(t)− x̃m(t) =
∫ t

0

ea(t−s)
(
w̃(s) +

w
2

)
ds ≥ 0

because the integrand is positive. The other inequality
is analogous. It is then sufficient to show that∀ t ∈
[ 0 ; T ] , x̃m(t) ∈ I(∆) and x̃M (t) ∈ I(∆) . By hypoth-
esis, x̃m(T ) ∈ I(∆) . Since x̃m(t) is the solution of the
differential equation˙̃x = ax̃+u− w

2 = f(x̃) not depending
explicitly on t , then it is a monotonic function and the
thesis consequently follows. The same holds forx̃M (t) .

REFERENCES
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