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Abstract—In this paper we consider the problem of con- of stabilization under bit rate constraints [8], [19], [9],
trolling multiple scalar systems through a limited capacity [15], [10], [14], [2]. In these works, the authors generally
shared channel. Each system is affected by process noise andgynihesjzguantization schemes instrumental to the goal of
can be controlled by actuators with values in afixed finite findi dina-d di licies that ke f timal
set. The control objective is to bound the evolution of the 'NCING €ncoding-decoding policies that make for an optima
systems in specified sets (controlled invariance). Our goal is Use of the channel, when the latter is used in a control
to find an optimal allocation of the shared communication loop. Albeit interesting from a theoretical point of view, this
resource to the different control activities and to identify  approach is to be verified from the standpoint of technolog-
correct choices for the design parameters. The paper provides .4 feasibility. In [17], [18] a different view is taken. The
fundamental conceptual tools to attack the design problem in th | the attainabl trol f h
the formal framework of an optimization problem. Namely, we authors analyze the atlainableé control performance when
give a feasibility criterion to decide whether a set of design guantization is dixed element of the problem. An evident
parameters conforms with a control specification (i.e., with motivation for this work is the analysis of control systems
the controlled invariance of a specified set for each system). where actuation and/or sensing are inherently quantized,
Moreover, we offer the explicit computation of the minimum ¢ ¢ - stepper motors, D/A converters, quantized encoders.
bit rate necessary for the controlled invariance of a set, which In thi K ke th L 0
is of utmost importance for solving the optimization problem. n this work, we ma ?t € same assumptlon. control loops

are operated by quantized actuators, which are regarded as
given “hardware” components to build on the top of. The
. INTRODUCTION general setting we refer to is depicted in Fig. 1: a limited

Traditional control design is based on ideal assumptions
concerning the amount, type and accuracy of the infor-
mation flow that can be circulated across the controller.
Unfortunately, real implementation platforms exhibit non-

) I . A Actuat Plant 2 Controll
idealities that may substantially invalidate such assump-
tions. As a result, the system’s closed-loop performance
can be severely affected and sometimes stability itself
is jeopardized. These problems show up with particular Actuator Plant N Controller
strength when multiple control loops share a limited pool of
computation and communication resources. In this case the Finite bandwidih chammel

designer is confronted with the challenging task of choosing e e e
at the same time the control law and the optimal allocation_

. . Fig.
policy for the shared resources (control algorithm/system
architecture co-design). An intriguing general discussion for
this class of problems can be found in [5]. Investigations ilvandwidth channel is shared between several independent
this field have been developed in several directions. A firgiontrol loops. This can be thought of as “smart-sensor”
prong of research activities has focused on the problem etenario, i.e., one where processing activities are located
resource sharing [16], [12], [7]. However, these papers d@ the proximity of sensors and commands have to be sent
not explicitly cope with quantization and bit rate constraintso actuators by a channel. For the sake of simplicity and as
that play an important role in complex distributed systemsa first step towards a more general theory, we restrict the
A remarkable thread of papers has focused on the probleanalysis to scalar systems ruled by control laws generated
. . by periodic sampling and consider uniform quantizers. In
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1. Pictorial representation of the problem analyzed in the paper.



investigation of the design problem for a single loop, whickeach T;—sampled system is denoted by the quadruple
is the main contribution of this paper. We will addresa;,¢;, w;,T;). From the last equation it follows that the
two fundamental questions: the identification of the feasibldiscrete time disturbance; (k) takes values inf (T - w;) .
design parameters with respect to a control specificatidn this setting the quantized discrete time control law is a
and the determination of the minimum bit rate necessary fonction

attain a specification. As far as the control goal is concerned, ¢: R — UCeZ

it is well known [8] that classical notion of stability has zi(k) —  ui(k)

evident shortcomings when quantization is in place. Wgo that with the zero-order hold the continuous time control

hence aim at “practlca'l" stability. In particular, in th'IS Papel,.y is the piecewise constant function
we are concerned with the steady-state behavior of the
system, i.e., the ability to make a desired set invariant. wi(t) = ui(k), tel[kTy; (k+1)T;].

This concept is closely related to the notion of “bound- o . o
ability” [2]. The presence of noise is of particular interest! e plants share a limited bandwidth channel with bit rate

in our context, while this problem has not been extensivel{t : hence the bit rates?;’s devoted to each control loop,
regarded in the previous literature on quantized system&hich will be allocated on the basis of some optimality
Indeed, the presence of noise emphasizes the importancecgterion, have to comply with the following inequality:

the sampling period especially for unstable systems since ZN R <TR.

long sampling intervals determine performance degradation =

due to longer uncompensated actions of the noise term. The target is to guarantee “practical” stability for each plant,
The paper is organized as follows. In Sec. Il we formallynore precisely we consider the controlled invariance prob-
introduce the problem dealt with in the paper. In Sec. Ill théem. Namely, we are interested in finding neighborhoods
analysis for a single plant is developed and the basic tools & the equilibrium where the trajectories of each plant can
face the multi-plant problem are derived. Some conclusior®e confined irrespective to any noise affecting the systems.

and open problems are suggested in Sec. IV. In our framework we refer to the following definitions of
Notation: I(A):=[—5;2]. |z] :=max{z €Z|z < controlled invariance (see also [4]):

x} and [2] := min {z € Z|z > 2} are the floor and the Definition 1 (Continuous time)For a system (a,¢, w)

ceil functions. The Lebesgue measure is denoted\py).  Wwith control set ¢/, the interval I(A) is said to be
controlled invariant iff there exists T > 0 such that

ll. PROBLEM FORMULATION vz0 € I(A) there existsu € U such that for any integrable
Consider a set ofV > 1 scalar plants function w : [0; T'| — I(w) the solution of

i(t) = a;@(t) + @i(t) + @i(t) E(t) = az(t) +u + w(t)

;(0) = (@h) #(0) = &0

i=1,....N

)

is Z(t) e I(A) Yte[0;T].
where the control functiorii; (¢) takes values in a regularly pefinition 2 (Discrete time)For a system (a,e,w,T)
quantized settd; C &Z (e > 0) and w;(t) € I(wi)  with control set i, the interval I(A) is said to be
(wi > 0) represents an exogenous noise term. It igontrolled invariantiff Va0 € I(A) there existsu € U
supposed thatv;(t) is an integrable function. Each scalargch thatvw e I(T-w), 2% =320 +Tu+w € I(A).
system is denoted by the tripleu;, ¢;,w;) which are the The following proposition allows us to get rid of the
givenparameters characterizing the system. distinction between continuous time and discrete time:
We assume that the statés (i =1,...,N) are sampled pyoposition 1: Consider the T—sampled control system
periodically at time0, T3, 2T;, ... (the sampling intervals (a,e,w,T): if 2° € I(A) and v € U is such that
T; are design parameters). Based on these sampVes, 0+ _ 0 { Ty 4w € I(A) Yw € I(T - w), then for
individual control values are derived and transmitted over 8ny integrable functiond : [0; T] — I(w) the solution
sharedcommunication channel to zero-order hold devices i. ;) of

the corresponding actuator nodes. The sampled-data control H(t) = ad(t) + u + B(t)
system corresponding to (1) is { #(0) = 2°

ST

©)

i’f(g;r:l:)io_ (k) + Liwi(k) + wi(k) @ is such thatz(t) € I(A) Vt € [0; T].
27: 1 ZN Therefore, if I(A) is controlled invariant for the discrete
R time system(a, ¢, w,T), then it is controlled invariant for
where z;(k) = z;(kT;) and the continuous time systerfu, ¢, w) .
o, — T Proof: See Appendix. [ |
ro— [T emsds Conversely it is obvious that if (A) is controlled invariant
! 0 for system (a, e, w), then I(A) is controlled invariant for

,f;:“lm eai((’““)Ti’S)wi(s)ds. system (a,e, w,T) for any T as in Definition 1. Thus, it



will be sufficient to introduce and to check the propertiegExample 1 (Tracking of an unknown referenc€onsider
based on invariance only for discrete time models. N agents moving on a line according t(t) = ;(t),
The channel: By a limited bandwidth channel of capacityi = 1,...,N. Let r(¢) be an unknown reference to
R we mean a device capable of transmittiRgbits per unit track and assume that'(¢)] < % . A camera takes the
of time. In particular, the number of symbods that can be measures of the displacemeritgt) := ¢;(¢t) — r(¢t) of the
transmitted during the time interval’ satisfiesoc < 2*7. agents and sends the quantized control valiigs to the
Since the number of bits to be transmitted at each sampliragtuators through a shared channel of capad@y The

instant is integer, we require that < 2l%7] resulting dynamics of the displacement of thieth agent
Definition 3: Consider system(a,e,w), suppose that a is &;(t) = u;(t) — #(t) so that the problem is modelled by
channel of capacityR is connecting the controller to the system (1) witha;, =0 V3. &
plant: the triple (R, T, A) is said to befeasiblefor the

invariance problem iff there exists a control detcC ¢Z Ill. SINGLE PLANT ANALYSIS

rendering/(A) controlled invariant for systena, e, w,T)  This section is devoted to the characterization of feasible
and satisfying#u < 2L77] triples (R, T,A) and to the calculation ofRi,(A) .
Consider the set of system@u;,e;,w;), ¢ = 1,...,N.

Let R := (Ry,...,Ry), T := (T1,...,Ty) and A := A. Feasibility analysis

(A1,...,An). The triple (R, T, A) is said to be feasible Given A > 0 and T > 0, suppose that there exists a
iff Vi = 1,...,N, (R;,T;,A;) is feasible for the control setid ¢ eZ rendering I(A) controlled invariant
invariance problem related to systefa;, €;, wi) . for system (a,e,w,T). Let ¢(A,T) € N be the minimum
The presence of multiple plants opens up different desigsf the cardinality of the control setéf C ¢Z rendering
possibilities as to how the communication capacity of thg(A) controlled invariant.

link can be shared between the different control loops. Asheorem 1 (Feasibility test)Consider system (a, e, w),

a first example, it is reasonable to require that the measuiiz triple (R, T, A) is feasible if and only if

A; of the invariant set attained on theth loop be in a

half-spaceA; < A;. More generally, we require thaf\ R > 1 “0g2 g(A’Tﬂ )
be in a specified domainA € D.. The design problem can Proof: It is an irmediate consequence of the defini-
be formulated as follows: tions of feasibility and of the functiorf(A,T) . [
min F(A) Since we will be able to determine the expression of the
(B,T,4) function ¢(A,T), Theorem 1 will be an effective tool to
AeD (4) solve the feasibility problem.
subj. to Zf\;l R, <R Let us start by the characterization of the domain of
(R,T,A) feasible ((A,T). Given A > 0, assume thald = ¢Z and let
where f is a cost function. Setting’ to 0 amounts to for- T(A) = {T > 0| I(A) is controlled invariant
mulating a feasibility problem, i.e., the search for a feasible for system(a, e, w, T)} .

solution within the specified constraints. A different choice
can be to relatef to the attainment of a specified vector The domain of¢(A, T') is {(AD) | TeT(A)}.
Ay . Hence, f must penalize realizationd differing from We hence start with the determination of the SBtA) .
the desired target. E.gf(A ) — 1804 . The may_n step is thg following

120] ) Proposition 2: Consider system(a,¢,w,T’) and assume
Let len( ) Zz 1 mln( ) where Rfmn(Ai) is the that & = eZ, then
smallest bit rateR; ensuring that there exists a choice of) if <0, I(A) is controlled invariant if and only if

T; such that(R;,T;,A;) is feasible. It is immediate to

check that the minimum of problem (4) is equal to A> mind 5% T (e +W)} =
m&in f(A) = min %;%(e—i—w)};
A 5
subj. to: Ac Dﬁ ®) u) if a>0, I(A) is controlled invariant if and only if
Rmin(A) S R

T-(e+w) if a=0

ea%;l(e—kw) if a>0.
Proof: Omitted. [ ]

Therefore, the solution of the problem is significantly aided A>T (e+w) =
by the availability of the functionR:; (A) for each
plant. For instance the feasibility problem becomes almost
straightforward if such a function is available. Thereby, th& (A), and hence the domain of the functiof{A,T),
computation of this function is one of the most relevanis determined by solving fofl" the invariance conditions
contribution of the paper. provided by Proposition 2:

We end this section with an example to be regarded asGorollary 1: Consider system(a,e,w,T), assume that
aid for the understanding of the problem setting. U =¢€Z and let A > 0. The following facts hold:



1) if a <0 and A > TaT » I(A) is controlled invariant Xu,

VT >0;if A<, I(A) is controlled invariant if — Xu, .
and only if | — !
| |
. A 1 ! | o
7 <min{ Log (1- 192 Lo (14 W) 1 A Bus | B
a c+w/’ |a| | € -3 o A
w) if a=0, I(A) is controlled invariant if and only if 1 5
T< =
e+w’ Fig. 2. Construction of/ in the proof of Proposition 4.
w) if >0, I(A) is controlled invariant if and only if
1
T < - log ( ) . a .
a e+w Remark 1:When w = 0 and a > O Proposition 3.

Before we proceed to the exact calculation &fA,T"), provides the well- known bound? > %5 2 (see [2]). The
we derive a lower bound for? from which necessary same bound is approached wheéns F(T)

conditions for the feasibility of a triple(R,7,A) are The condition provided by Proposition:3.shows explicitly
obtained. To this aim, amvariance criterionholding for that an arbitrarily fast sampling is not allowed.

systems (a,¢,w,T) is introduced (more in general, we We pass now to the explicit calculation of the function

could assume that/ C R). ¢(A,T): we will mainly address the case of an unstable
Given A > 0, Yu € R let X, := {z € R|z" = plant (a > 0), which indeed is the most significant as far
Pz +Tu+w e I(A), Vw € IT -w)} = {z € as the design of the sampling interval is concerned.
R| - 3(5+Tu—-5Y) <2< 3(§ -Tu—-59}.  Proposition 4: Consider system(a, e, w,T), assume that
Let LA - a>0 and let A >0 be such thatl’ € 7(A). Then
{ oo e ©
Bu = 5(3 u— ), (AT) = AA/’y o4 111 02 ] (®)
if X, #0,then X, = [a,; B,] with measure\(X,) = 15— %] 15— %]
%. It is immediate to check that a control s#tC R LA w N
rendersI(A) controlled invariant if and only if wheré y=T"-¢, 61 = [3(5(®-1)+ )] - 3(5(® -
D+ x) ando, = (352 ).
UMX” 21(4). ™ Proof: We construct a control sed C ¢Z making
ue

I(A) controlled invariant and such th#i{ = I . Then we
A lower bound for £(A,T) is provided by the following  show that a control set,,;, C €Z of minimal cardinality
Lemma 1:Consider system(a,e,w,T) and suppose that (with respect to all sets renderinf(A) controlled invari-
U C R.If I(A) is controlled invariant, then#/ >  ant) is such tha# Unmin = #U .

[Aﬂ?ww > [®]. o o _ _ To simplify the notation we restrict to the cage=e =1
Proof: By the invariance criterion given in Equa- and w =0 the proof in the general case is analogous. Let
tion (7) it holds that us construct/ recursively (see Fig. 2), we use the notation
A—T introduced in Equation (6):
aa(Ux) shu- =22 auation (9
o - .
uel o Let U :={u} where u; € Z is such that
from which the first inequality follows. The second inequal-  Bu, = o Htli% a Bu ;
ity is obvious. n LR sy - -
Proposition 3: Consider system(a, e, w): necessary con- While ay, > =5, let t:=U U {u.”l} where
ditions for the feasibility of a triple(R. T, A) are it € Z is such that B, =  min G
A 2o,
) R> gz T 7 7 log, AT(T)w

The algorithm terminates in a finite number of steps because

If moreover, : A e ; ;
ver,a >0 T € T(A). By construction,l/ satisfies the invariance

u) T> % ; criterion given by Equation (7). Let us show th&t/ = I:

w) A > (ed/R_1), it is easy to verify thatu; = —[3A(® — 1)], hence we
Proof: 2) By Theorem 1,R > log2 ¢(A,T) > calculate the measure of,, N I(A) whichis £ —a,, =
+log, © + 7 log, ﬁ = ez + 7108 a7 23% . The measure of the overlapping of two consecutive
(the second inequality follows by Lemma 1). intervals associated to the elementsiofis 3,,,, — ay,; -
w) SinceT >0 anda >0, 2 < [e*T| < U(A,T) < simple calculations show that,,; — u; = [A]| and
27T (the second inequality follows by Lemma 1). Bugsy — Oy = %2 . Hence, the cardinality of/ is obtained

w) Apply Proposition 3«2 to the condition provided by
Proposition 2:z . | 1The dependence frorfi” is implicit in &, ~, 6, and 65 .



looking for the smallest integes such that 7 [log, (A, T)]
A;01+(s—1)A5922A: )

solving the inequality fors € R we haves > <=5~ 0 D + \\

Qg2 — LAchH-elL % thus the smallest integer satisfying

the mequallty (9) |s%

Lejt.us suppose thaﬂ_/{m_in Cc Z is a control set of . ; ;

minimal cardinality within the family of the setd/ C T Tinax

Z rendering I(A) controlled invariant. Suppose that the
elements ofUyin = {u; (min) (mi“)} are ordered so
that 3, (min) > B, (min) > 0 > B (min) Because of
the invariance critérion (7) and by construction of it
holds that 3, (min) > Bu, : this implies that3, min) > Bus

Fig. 3. An example of the graph o [ log, £(A,T)] (for a fixed A).

Given A > 0, the mapping¢(A,T) is piecewise constant
with 7'. Hence, the local minima of thechannel occu-

becauses, “‘““) Z @ Gmin) 2 Qg and by definition 0fu, - patior function [ log, /(A,T)] are taken in correspon-
iterating the same afgument it 'S shown thift i) > fu,.  dence of discontinuity points of(A, T') . The discontinuity
and henceaum < « wmin) < —%, since by construction pomts T, < Ty, < --- < Ty, can be determined using
ay, < —% only for 4 Z ] then l =m = # Unin - m Equation (11), thus the local minima of the channel occu-

Remark 2: The proof of Proposition 4 also yields an al-pation function can be listed. However, a closed formula
gorithm to construct a control set of minimal cardinalityfor R,.;,(A) is difficult to work out. We hence provide an
realizing the invariance of (A). expression which is a good estimate Bf,i,(A).

The formula for¢ given in Equation (8) can be manipulatedProposition 5: Consider system(a, e, w) and assume that
to obtain a more treatable expression. We shall make uge> 0. For A > 0, a sufficient condition onR in order

of the following that the triple (R, T, A) is feasible for somel” > 0 is
Lemma 2:Vz € R and Vn € N\ {0}, [[z]] =[%]. » a
Proof: Omitted. n R>RyL(A) = — :
Let y := %(%(cb — 1)+ ¥) and plug in Equation (8) the log (1 + 4‘{0A+ww+w>
explicit expression ford; and 65, then Proof: Indeed Rfff(A) [logQ (Aleﬂ . where

(A7) — (w/e Ay — (w)e)] calculate Ty : for a given A > 0, the argument of the

P { y+ [y -‘ . { [y + y]] " Ty is the first discontinuity pomt of (A, T). Let us
)] L( floor in the denominator of Equation (11) is a decreasing

by Lemma 2; sincely + [y]] = 2[y] we get function of T, in particular¢(A, T') is non-decreasing with
9 l(é(q) 1)+ ﬂ) T . To determineT} it is sufficient to find the largest’
UAT) =1 2 v\ 3l (10) Such that the denominator in Equation (11) is greater than
L(A/v) = (w/e)] or equal to the numerator, that is to solve
Let us make explicit the dependenceffrom the sampling alA W _s[a A+w
period T' (for a > 0): e(edT —1) € [ 2¢€ W
2 [%1 Hence,
L(aaT_l)—:J 11) B al
i Tl = — log 1 + T
TeT(A) ie, 0<T<1llog(l+2%). a 2e[e8tV] 4w
B. Determination of R, (A) and WA y
We pass now to the determination of the smallest bit rate (A,T) =2 T elo;nl.
R ensuring that, for a givem\ > 0, there exists a choice The thesis follows. ]

of T such that the triple R, T, A) is feasible. For the sake Remark 3:The effect of the noise on the system is go-
of brevity, the analysis will henceforth be restricted to theserned by the functionl'(7') which grows exponentially:
casea > 0 . Let hence, as the sampling intervdl increases, the system is
1 alA more and more affected by the noise. It is then natural to
Tnax(A) 1= a log (1 ™ €+ W) expect that the local minimum in correspondence of the first

. ; ; discontinuity point7; is close to the actual minimum of
min (A) == 3T s.t. (R, T,A) is feasiblg . ) ; ) - -
Fmin(3) mm{R >0l (R ) I @ the function (see Fig. 3) . This fact can be explicitly verified

By Theorem 1 and Corollary 1z, for a A > max {e, w}, in fact (see also Fig. 4):
1 a
Rmin A) = i — 11 V4 A,T . 12 suf
( ) TG]O;HT%EEX(A)] T|V 082 ( )—‘ ( ) AEIJI: len(A) 10g2



Ry and Z,,(t) be the solution of the same system with;

\ in place of —3 . For any integrable functior : [0; T'] —
I(w) the solutionZ(t) of system (3) is such that,,(t) <
z(t) < Tpm(t), in fact:

\\\\\\\ F(t) — Et) = / et (@(s) + 5 )ds = 0

log 2
) because the integrand is positive. The other inequality
is analogous. It is then sufficient to show thatt €
A [0;:T], Zm(t) € I(A) and Zp(t) € I(A). By hypoth-
esis, Z.,,(T) € I(A). Since &, (t) is the solution of the
Fig. 4. The graph ofR=“/(A) for the system of Fig. 3. differential equationz = az+u— T = f(z) not depending

explicitly on ¢, then it is a monotonic function and the
thesis consequently follows. The same holdsfgy(¢). B
namely, asA — +oo0, R%%/ (A) approaches the theoretical

min

lower bound onR (see Proposition 3.and Remark 1).
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Proof: [Proposition 1] Letz,,(t) be the solution of
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