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Abstract: In this paper we study control systems whose input sets are quantized, and
in particular �nite or countable but nowhere dense. We speci�cally focus on problems
relating to the structure of the reachable set of such systems, which may turn out to
be either dense or discrete. We report results on the rechable set of linear quantized
systems, and on a particular but interesting class of nonlinear systems, forming
the discrete counterpart of driftless nonholonomic continuous systems. Implications
and open problems in the analysis and synthesis of quantized control systems are
addressed.
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1. INTRODUCTION

In this paper we consider systems of the type

x+ = g(x; u); x 2 IRn; u 2 U � IRm (1)

where the input set, U , is quantized, i.e. �nite
or numerable but nowhere dense in IRm. Quan-
tized control systems arise in a number of appli-
cations because of many physical phenomena or
technological constraints. In the control literature,
quantization of inputs has been considered mainly
as due to D/A conversion, and mostly regarded
as a disturbance to be rejected (Bertram (1958);
Slaughter (1964); Delchamps (1990)). Typical re-
sults in this spirit are those provided by Hou et
al. (1997), who show how a nonlinear system with
quantized feedback, whose linear approximation
(without quantization) has an asymptotically sta-
ble solution, has uniformly ultimately bounded
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solutions; and how such bounds can be made small
at will by re�nig quantization su�ciently.

More recently, some attention has been focused
on quantized control systems as speci�c models of
hierarchically organized systems with interaction
between continuous dynamics and logic (Wong
and Brockett (1999); Elia and Mitter (1999)). In
these papers, quantization of inputs is regarded
as a fundamental characteristic of systems where
the resources for implementing the control scheme
are limited, such as e.g. when communications
between the plant and the controller can only
happen through a �nite capacity channel. As a
consequence of taking such viewpoint, the focal
point of research is to understand how to quantize
the control system best (in some suitable sense),
rather than assessing robustness of design with re-
spect to quantization. In their papers, both Wong
and Brockett (1999) and Elia and Mitter (1999)
focus on the stabilization problem. Authors of
the latter paper provide a result on the optimal
(coarsest) quantization for asymptotically stabi-



lizing a linear discrete{time system, that turns
out to require a countable symmetric set of loga-
rithmically decreasing inputs, namely U = f�ui :
ui+1 = �ui; �1 � i � +1g[ f0g. Although this
choice (and the corresponding partition induced
in the state space) captures the intuitive notion
that coarser control is necessary when far from the
goal, it still needs input values that are arbitrarily
close to each other near the equilibrium.

An observation common to many papers on sta-
bilization with quantized control is that, if the
available quantized control set is �nite, or count-
able but nowhere dense (in the natural topology
of IRm) then stability can only be achieved in a
weak sense | be it ultimate boundedness (Hou
et al. (1997)), containability (Wong and Brockett
(1999)), or practical stability (Elia and Mitter
(1999)).

The focus of our paper is on the study of par-
ticular phenomena that may appear in quantized
control systems, which have no counterpart in
classical systems theory, and that deeply inuence
the qualitative properties and performance of the
control system. These concern the structure of
the set of points that are reachable by system
(1), and particularly its density. We will address
two instances of the general system (1), namely
linear systems, and driftless nonlinear systems.
In particular, among the latter, we will focus
our attention on the (discrete counterpart of)
nonholonomic systems. We report on conditions
under which the rechable set for these systems
is dense in IRn, or otherwise when it possesses a
lattice structure. We will discuss applications to
problems in steering nonholonomic systems, and
discuss possible implications and open problems
in the analysis and synthesis of quantized control
systems.

2. FIRST DEFINITIONS AND EXAMPLES

We will consider systems de�ned as follows

De�nition 1. Let a system be de�ned by a quin-
tuple (X ; T ;U ;
; A), where X denotes the con-
�guration set, T an ordered time set, U a set
of acceptable input symbols (possibly depending
on the con�guration), 
 a set of acceptable in-
put words, and A is a state{transition map A :
T � 
 � X ! X . Denote At;!(x) = A(t; !; x),
with composition by concatenation A(x1; a2; t1) �
A(x0; a1; t0) = A(A(x0; a1; t0); a2; t1).

In particular, we will focus here on T = IN, as
most interesting phenomena relating with quanti-
zation appear as linked to discrete time. A system
as in de�nition 1 with both X and U discrete sets
essentially represents a sequential machine or an

automaton, while for X and U continuous sets,
a discrete{time, nonlinear control system is ob-
tained. We are interested in studying reachability
problems that arise when X has the cardinality
of a continuum, but U is discrete (i.e., �nite or
countable, but nowhere dense), i.e. when inputs
are quantized. The following example motivates
the generality of the de�nition above with a spe-
ci�c robotics application.

Example1. We will consider the discrete ana-
logue of a well known continuous nonholonomic
system, which is the plate{ball system (see e.g.
Brockett and Dai (1993); Jurdjevic (1993); Levi
(1993)). A ball rolls without slipping between
two parallel plates, of which one is �xed and the
other one translates. If the moving plate is driven
along a closed trajectory, in particular e.g. it is
translated to the right by some amount, then
forward, left, and backward by the same amount,
the same will happen to the ball centre, which will
end up in the same initial position. However, the
�nal orientation of the sphere will be changed by
a net amount. Indeed, it can be shown (Marigo
and Bicchi (2000)) that an arbitary orientation in
SO(3) can be reached by rolling arbitrary pairs
of non{isomorphic surfaces, which fact was used
as a basis for building simpli�ed dextrous robot
hands.

Consider now a similar experiment with a polyhe-
dron replacing the ball. For practical reasons, pos-
sible actions on this system (studied in detail in
Ceccarelli et al. (2000)), are only rotations about
one of the edges of the face lying on the plate,
by exactly the amount that brings an adjacent
face on the plate. A generic con�guration of the
polyhedron can be described by giving the index
of the face sitting on the plate, the position of the
projection on the plate of the centroid, and the
orientation of the projection of an inner diagonal
of the cube. Hence, the con�guration set is repre-
sented by the strati�ed manifold X = IR2�S1�F ,
whereF denotes the set of faces of the polyhedron.
Given the discrete nature of input actions, we
take T = IN+, U = F , 
 the (con�guration{
dependent) set of all sequences of adjacent faces
starting with the face of the present con�guration,
and At;!(x) the con�guration reached at the end
of a t{long sequence of tumbles ! 2 
 allowed at
x. �

De�nition 2. A con�guration xf is reachable from
x0 if there exists a time t 2 T and an acceptable
input string ! 2 
 that steers the system from x0
to xf = At;!(x0).

In the following we shall denote by Rx the reach-
able set from x, i.e. the set of con�gurations that



can be reached from x. For di�erentiable systems,
the notion of reachability from x is introduced
when Rx = X . For discrete{time systems with
quantized inputs, however, 
 is a subset of all pos-
sible �nite sequences ! of symbols in the discrete
set U , hence Rx is a countable set and, in the
general case that the con�guration set X has the
cardinality of a continuum, it will not make sense
checking whether Rx equals X .
Example1{b. The set of con�gurations that can
be reached starting from a given con�guration
of the polyhedron of Example 1, in a large but
�nite number of steps N , may have di�erent char-
acteristics. Consider for instance (intutively, or
by simulation) positions reached by the centroid
of di�erent polyhedra after N steps: only points
lying on a regular grid can be reached by rolling a
cube, while for a generic parallelepiped or pyramid
they tend to �ll the plane as N grows. Also,
orientations obtained by rolling the cube or the
parallelepiped are only multiples of �=2, while
orientations reached by the generic pyramid tend
to �ll the unit circle asN grows. Conditions under
which the reachable set is dense, and a description
of the lattice structure in discrete cases, have been
studied by Y.Chitour et al. (1996); Ceccarelli et al.
(2000). �

We introduce a concept of approachability, which
is stated in the further assumption that the state
space is a metric space with distance d(x1;x2):

De�nition 3. A con�guration xf can be approached
from x0 if 8�; 9t 2 T ; 9! 2 
 such that
d(At;!(x0); xf ) < �. We say that the system is
approachable from x0 if the reachable set Rx0 is
dense in X , and is locally approachable from x0
if the closure of the reachable set Rx0 contains
a neighborhood of x0. Finally, the system is ap-
proachable if

closure (Rx) = X ; 8x 2 X :

Lack of density of Rx will be referred to as
discreteness of the reachable set. The term dense
in a subset X 0 � X will be used to indicate that

closure (Rx) \ X 0 = X 0; 8x 2 X ;

Notice that the possibility that the reachable set
of a quantized control system is discrete, sepa-
rates such systems from di�erentiable systems; on
the other hand, the possibility of having a dense
reachable set distinguishes quantized control sys-
tems from classical �nite{state machines.

In practical aplications, it may be important to
measure the coarseness of discrete reachable sets.
We will then say that a con�guration xf is �{
approachable from x0 if 9t 2 T ; ! 2 
, such
that d(At;!(x0); xf ) < �. The set of con�gurations

that are �{approachable from x is denoted by
R�
x. The system will be said �{approachable if

R�
x = X ; 8x 2 X .

Let us consider a quantized control system in
discrete time in the form

x+ = g(x; u); u 2 U; (2)

where x 2 X = M , a manifold, and U a �nite
set. For simplicity, also let 
 be comprised of all
strings of symbols in U . Obviously, such de�nition
is equivalent to assigning a �nite number of maps
gu :M !M .

In this case the reachable set from a point x 2M
is Rx = fgu1 � � � gun(x) : n 2 IN0; ui 2 Ug (IN0

includes the number 0 so that x 2 Rx). Moreover,
we introduce the relation � over the elements of
M by setting x � y, x; y 2M , if y 2 Rx. We want
to focus on a special class of systems that we call
invertible systems.

De�nition 4. The system (2) is said to be invert-
ible if for every x 2 M and u 2 U there exists a
�nite sequence of controls ui 2 U , i = 1; : : : ; n,
such that gu1 � � � gun(g(x; u)) = x.

The following proposition is obvious:

Proposition 1. The relation � is an equivalence
relation if and only if the system is invertible.

If the system is invertible, we can partition the
state space into a family of reachable sets. This
is equivalent to take the quotient M= � with
respect to the equivalence relation �. We call the
set fM = M= � the reachability set of the system

(2) and we endow fM with the quotient topology,

that is the largest topology such that � : M ! fM ,
the canonical projection, is continuous.

Example 2. Consider the system

x+ = x+ u

where x 2 IR and u 2 U , U �nite subset of IR.
If U = f0; 1=2;�1g then the system is invertible.
The reachable set from the origin R0 is the sub-
group of IR generated by 1=2 and the reachability

set fM is homeomorphic to S1. If U = fp2;�1g
then the system is not invertible. For examplep
2 2 R0, but, since

p
2 is irrational, 0 =2 Rp2.

�

Example3. Consider the system

x+ = g(x; u)

where x 2 IR, U = f�1=2;�2g and g(x; u) = u �x.
The system is invertible, R0 = f0g and for every
x 6= 0 Rx = f�2ix : i 2 ZZg. The reachability setfM is homeomorphic to the set S1 [ f�g, where



on S1 there is the usual topology while the only
neighborhood of � is the whole space. �

Notice that in example 3, the reachable set Rx for
x 6= 0 has only one accumulation point, namely
0. If we assume that M is a metric space and the
maps gu are isometries then we have a dicotomy
illustrated by next proposition:

Proposition 2. Consider an invertible system (2).
Let (M;d) be a metric space and assume that
x ! g(x; u) is an isometry for every u 2 U
then each reachable set Rx is formed either by
accumulation points or by isolated points.

Proof. Assume that the set Rx admits an ac-
cumulation point �x 2 Rx. Let xk 2 Rx be such
that xk ! �x and the set fxk : k 2 ZZg is
in�nite. Since the system is invertible, for ev-
ery k there exists ~uk = (u1k; : : : ; u

nk
k ) such that

uik 2 U and gu1
k

� � � gunk
k

(xk) = x. De�ne yk =

limm gu1
k

� � � gunk
k

(xm). For every k andm we have:

d(gu1
k

� � � gunk
k

(xm); x) =

d(gu1
k

� � � gunk
k

(xm); gu1
k

� � � gunk
k

(xk) =

d(xm; xk):

Passing to the limit in m, we have d(yk; x) =
d(�x; xk). Clearly the sequence yk converge to x
and contains in�nitely many distinct points, so x
is an accumulation point for Rx. Now it easily
follows that all points of Rx are accumulation
points for Rx. 2

The system:

x+ = x+ u (3)

with x 2 Rn is an interesting special case. It is
clear that for every x0 2 Rn the reachable set
X(x0) from x0 is equal to x0+X0 where X0 is the
reachable set from the origin. The hypothesis of
the above Proposition are satis�ed. Notice that if
n = 1 and U is simmetric then the set X0 is either
everywhere dense or nowhere dense in IR (since it
is a subgroup of IR), hence presenting a stonger di-
cotomy of the one illustrated by the above Propo-
sition. For n > 1 we may have directions along
which the reachable set X0 is dense and directions
along which is discrete. This is precisely the case
of n = 2 and U = f(�1; 0); (�p2; 0); (0;�1)g.
Notice that if we de�ne �v : IRn ! IR to be
the ortogonal projection on the direction of the
vector v, then �v(X0) is dense in IR for every v not
parallel to (0; 1) (and this corresponds to the fact
that the projection of the reachable set is precisely
the reachable set of the projection of the system).
On the other side, X0 \ f� v : � 2 IRg is discrete
for every v not parallel to (1; 0).

Another key aspect of reachability analysis for
nonlinear control systems is nonholonomy. De�-
nitions for continuous systems are typically for-
mulated in terms of well{known integrability con-
ditions on the constraint codistribution. For a
system such as that in 1, a more general de�nition
is necessary:

De�nition 5. A system is said to be nonholonomic
at x0 if it is possible to decompose X in a projec-
tion or base space B = �(X ) and a �ber F , such
that B � F = X (that is X is a trivial bundle)
and there exists ! 2 
 and t 2 T such that At;!

steers the system from x0 to x? = At;!(x0) with
�(x0) = �(x?) but x0 6= x?.

Example1{c. An illustration of discrete non-
holonomy is obtained by the rolling polyhedron
system. When a sequence of rotations on the right,
hence forward, left and backward is considered,
the center of the die returns to its initial posi-
tion, while the orientation has changed by a �nite
amount. �

3. SYNTHESIS OF LINEAR QUANTIZED
CONTROL SYSTEMS

In this section, we report some results on systems
of the form

x+ = Ax+Bu; u 2 U (4)

with U a quantized set as usual, and (A;B) a
controllable pair. Reachability questions that may
be asked about such system can be divided in two
types:

De�nition 6.

Q1 given a pair (A;B), �nd conditions under
which a quantized control set U exists such that
the reachable set R(0; U), from 0 and correspond-
ing to the set U , is dense in IRn. If possible, �nd
such a U .

Q2 given a pair (A;B), a quantized set U , and
initial conditions x(0), determine whether or not
the corresponding reachable set is dense.

We will refer to question Q1 as to a synthesis
problem, and to Q2 as to an analysis problem.

The synthesis problem has been extensivley stud-
ied in Chitour and Piccoli (2000). Main results are
reported below.

Theorem 1. Necessary and su�cient conditions
for a quantized control set U to exist such that
the reachable set R(0; U) from 0 of (4) is dense in
IRn are that



(1) (A;B) is controllable;
(2) if � is an eigenvalue of A, then j�j � 1.

The necessity of the �rst condition is obvious. If
the second condition does not hold, the reachable
set is bounded in some component. However, a
similar density result can still be obtained (pro-
vided that no eigenvalue of A is zero) if local
approachability at the origin is considered instead.

Remark. Conditions for a positive answer to the
synthesis problem are very weak. Proofs given
in Chitour and Piccoli (2000), though far from
trivial, are constructive, as they provide explicitly
a standard control set U = f0;�u1;�u2; : : :g that
achieves density for a �xed system. Furthermore,
results are shown to be uniform with respect to
both initial conditions and eigenvalues changes.

A further twist to the synthesis problem results
from restricting control values to belong to a sub-
set of IRn. In particular, in applications involv-
ing D/A conversions, inputs will be restricted as
U 2 lQ

n. The case U 2 ZZ
n is also relevant to

many applications. For this case we immediately
have the following:

Theorem 2. Consider the system (4) and assume
that the matrices A and B have integer entries.
Let U = fi � : i 2 ZZg for some � 2 IR. Then the
reachable set R(0; U) is discrete.

In general if we allow the control set U to be
discrete but in�nite then unless we are in the sit-
uation of the above theorem we expect density of
R(0; U) to be generic. The situation is profoundly
di�erent if we consider �nite control set U even
without uniform bound on the cardinality. There
is a special class of algebraic numbers that play
a key role. We recall that an algebraic number �
is a real number that is root of a polynomial P
with integer coe�cients. If, moreover, the leading
coe�cient of P is 1 then � is called an algebraic in-
teger. For an algebraic number � we can determine
the minimal polynomial P� that is the polynomial
of minimal degree such that P�(�) = 0, moreover
if � is an algebraic integer P� can be chosen with
leading coe�cient 1. Given an algebraic number �
we call the other roots of P� the Galois conjugates
of � (obviousy they cannot be real).

De�nition 7. An algebraic integer � > 1 is a Pisot
number if all its Galois conjugates have modulus
strictly less than one.

The following theorem follows form the analysis
of Chitour and Piccoli (2000).

Theorem 3. Consider a system (4) satisfying the
assumptions of Theorem 1 (necessary for density)

and assume that A is in Jordan form, B = I (the
identity matrix). The reachable set R(0; U) is not
dense in IRn for every �nite set U � lQ

n if and only
if there exists an eigenvalue of A whose modulus
is a Pisot number.

Notice the strength of the Theorem implying that
in the case in which an eigenvalue (or its modulus)
is a Pisot number, then whatever choice of a
�nite set U � lQ

n with arbitrarily large �nite
cardinality gives a nondense reachable setR(0; U).
The set of Pisot number is obviously countable
but the surprising fact is that it is close. Hence,
it is not dense in IR and indeed is "small" in
topological sense. Many facts are indeed known
about the set T of Pisot numbers. For example
T admits a minimum value � � 1:33, that is the
unique positive root of x3 � x � 1. The smallest
accumulation point of T is the well known golden
number (1 +

p
5)=2 that is root of x2 � x � 1.

We refer the reader to Chitour and Piccoli (2000)
and references therein for information about Pisot
numbers.

On the other side, if all eigenvalues are not Pisot
then it is possible to obtain density of R(0; U)
choosing a large enough number M (of the order
of the modulus of the biggest eigenvalue) and all
controls with integer coordinates in [�M;M ]. See
Erd�os et al. (1998) and Chitour and Piccoli (n.d.).

We want also to point out that sampled systems
with D/A conversions and usage of computers
naturally lead to system of type (4) with U �nite
subset or lQ

n. It is then clear the importance of
the above result.

4. ANALYSIS PROBLEMS

The analysis question is indeed much more di�-
cult to answer. To understand the di�culty we
refer the reader to Keane et al. (1995) where
the so called f0; 1; 3g-problem is studied. This
corresponds exactly to the analysis of the Haus-
dor� measure of the reachable set for the system
x+ = �x + u, x 2 IR, � < 1, u 2 U = f0; 1; 3g,
if we allow in�nite sequences of controls. The
analysis problem has some partial answer in the
cited paper and references therein.

Another strictly linked number theory problem is
the one considered in Erd�os et al. (1998). We refer
the reader to Chitour and Piccoli (2000) for a
deeper discussion of the links between these hard
mathematical problems. From the results of Erd�os
et al. (1998) it is even more clear the role played
by Pisot numbers.

In this section, we provide some results on the
analysis question concerning some simple exam-
ples of driftless systems of the type



x+ = x+ g(x)u; u 2 U (5)

Given two real numbers r1; r2 2 IR we write
r1 � r2 to indicate that r1; r2 have rational ratio,
that is r1

r2
2 lQ. It is easy to check that � is an

equivalence relation. Consider the control system

x+ = x+ u (6)

where x 2 IR and u takes values in a �nite set
U � IR. Our aim is to prove that the following
condition is necessary and su�cient in order to
have that the reachable set from any initial point
is dense in IR.

(C) There exist u; v 2 U such that u 6� v and
u � v < 0.

First notice that condition (C) is equivalent to the
following

(C 0) There exist u; v 2 U such that u 6� v and
there exist u0; v0 2 U such that u0 � v0 < 0.

Indeed, obviously (C) implies (C 0). On the other
hand, assume that (C 0) is true, then U� = U\R�
are nonempty. If for every u 2 U+ and v 2 U� we
have u � v then, since � is an equivalence relation
we get that all control have rational ratio reaching
a contradiction.

We start noticing the following fact (see e.g.
Chitour and Piccoli (2000)):

Proposition 3. Let R0 be a reachable set for the
system (6) from the origin. Then R0 is dense if
and only if there exist two sequences ck 2 R0

and dk 2 R0 both converging to zero such that
dk < 0 < ck.

Let us now prove the following

Theorem 4. Let R0 be a reachable set for the
system (6) from the origin. Then R0 is dense if
and only if (C) holds true. Moreover, if R0 is not
dense then is nowhere dense.

Proof. Let us �rst assume that (C) holds true
and let u; v 2 U be as in (C). Since the ratio u

v
is

not rational we can consider the sequence pk
qk
2 Q,

pk, qk integers, qk > 0, given by its continued
fraction. We have:

u

v
� pk
qk

= (�1)k"k

where 0 < "k < 1
q2
k

and qk grows to in�nity. We

get immediately:

qk u+ (�pk)v = (�1)kv"kqk:
From u � v < 0 we get �pk > 0, hence qk u +
(�pk)v 2 R0. Now the required sequences are
obtained setting, if v > 0, ck = qk u + (�pk)v

for k even and dk = qk u + (�pk)v for k odd and
the opposite if v < 0.

Assume now that (C) does not hold. Then either
u � v > 0 for every u; v 2 U or u � v for every
u; v 2 U . In the �rst case it is obvious that the set
R0 is contained either in R

+ or in R�. In the latter
case, the proof is as follows. Let U = fu1; : : : ; ung
with u1 6= 0. Then any point of the reachable set
Rx0 from x0 can be written as x0+a, a = m1 u1+
: : : + mn un with ui positive integers. We have
ui
u1

= pi
qi
2 Q (p1

q1
= 1), thus:

a = m1 u1 + : : :+mn un = u1

 
nX
i=1

mi pi
qi

!
=

= u1

�Pn
i=1mi pi q1 � � � qi�1qi+1 � � � qn

q1 � � � qn

�
:

Now if a 6= 0 we have that the numerator of the
above expression is di�erent from zero and being
an integer is at least of modulus 1. Therefore, if
a 6= 0 we get

jaj > ju1j
jq1 � � � qnj

and obviously R0 can not be dense. Moreover,
from the same expression we have that a is always
a multiple of u1=(q1 � � � qn) hence R0 is indeed
nowhere dense. 2

Since the reachable set from a point x0 is exactly
x0 + R0 we have a dicotomy similar to that of
Section 2, even if in this case (due to the possible
non simmetry of U) R0 may fail to be a subgroup
of IR.

Let us consider the system (6) but now with
x 2 IRn, that is

x+ = x+ u (7)

with x 2 IRn, u 2 U � IRn. From the above
analysis we get:

Theorem 5. A necessary condition for the reach-
able set X from the origin to be dense is that
U contains n + 1 controls of which n are linealy
independent. If u1; : : : ; un 2 U are linearly in-
dependent and there exists n irrational negative
numbers �1; : : : ; �n such that vi = �iui 2 U for
every i = 1; : : : ; n then X is dense in IRn.

5. NONHOLONOMIC SYSTEMS

We are interested in studying the structure of the
reachability set for nonlinear system that exhibit
nonholonomic behaviours. To do so, we consider
the discrete{time analog of a much studied class of
continuous{time nonholonomic systems that are
written in chained form



_x1 = u1
_x2 = u2
_x3 = x2u1
... =

...
_xn = xn�1u1

: (8)

The chained form was introduced in R. M. Murray
(1993) because it allows a rather simple steer-
ing method, using sinusoids at integrally related
frquencies. The technique consisted in driving sys-
tem (8) to the desired value of the variables x1; x2;
then applying a low frequency sinusoidal input to
steer x3 while bringing back x1; x2 after a cycle;
and so on iteratively with higher frequency sinu-
soids. At each step, the amplitude of the sinusoids
is adjusted so as to reach the desired value of the
corresponding coordinate.

A di�erent technique for steering continuous non-
holonomic systems that are in strictly triangular
form 2 has been proposed in Marigo and Bicchi
(1998). The idea there was to purposefully intro-
duce quantization of the input space, by de�ning
a set of �xed input functions on compact time
sets. Such control \quanta" can then be concate-
nated, and form a group acting on the left on the
con�guration space. The ST form of the system
guarantees that the action of the subgroup of the
control quanta group that takes the base variables
(x1; x2) back to their initial value, is abelian on
variables x3. Furthermore, the action of proper
subgroups (the derived ag of the control quanta
group) is also abelian on corresponding sections
of the �ber. Although an in�nite number of gen-
erators for the control quanta group should in
principle be considered, authors proposed to use a
�nite set generating a discrete reachable set with
a lattice structure. These properties allow to steer
the system to a desired con�guration variable
after variable, by simply writing the lattice gen-
erators in Hermite normal form, planning on the
lattice, then using the generalized inverse Euclid
algorithm.

Consider now the discrete system

x+1 = x1 + u1
x+2 = x2 + u2

x+3 = x3 + x2u1 + u1u2
1

2

x+4 = x4 + x3u1 + x2u
2
1=2 + u21u2

1

6
... =

...

x+n =

n�2X
i=0

xn�i
ui1
i!

+ un�21 u2
1

(n� 1)!

(9)

2 A system is in ST form if _xi = g(xi+1; � � � ; xn)u. ST
systems include, but are not limited to, nilpotent systems
Marigo (1999), and are hence much more general than
chained form systems.

which can be regarded as system (8) under unit
sampling. Notice that this system is invertible (as
opposed e.g. to the forward Euler approximation
of (8)). Indeed, for any state{independent, sym-
metric set of input symbols U , the group of input
words 
 = fstrings of symbols in Ug with inverse
(w1w2 � � �wm)

�1 = �wm � � � � wb � wa, �wi 2
U ;8i, acts on the con�guration space through the
end{point map such that A(!�1;A(!; x)) = x.

We are interested in studying the reachability set
of system (9), and in providing a steering method
for the system.

One can readily check that the system is non-
holonomic in the sense of de�nition 5, by taking
(x1; x2) as the base variables. Reachability in the
base space can be studied by results reported
above for linear driftless systems. We will hence
focus on the reachability of the �ber correspond-
ing to a given base point (�x1; �x2). Simple calcula-
tions show that the reachable set in the �ber does
not depend on the base variables, hence we may
consider �x1 = 0; �x2 = 0 without loss of generality.

Consider the subgroup ~
 2 
 of control words
that take the base variables back to their initial
con�guration. These are sequences of inputs such
that the sum of the �rst and second components
are zero. The action of this subgroup on the
�ber is commutative: namely, A(~!1;A(~!2; x)) =
A(~!2;A(~!1; x)), 8~!1; ~!2 2 ~
. Notice that this
represents a signi�cant departure from the be-
haviour of the continuous model (8), where the
action of the generic cyclic control is abelian only
on the �rst �ber variable, x3, and more restricted
subgroups should be searched that have the com-
mutative action property on the rest of the �ber.

To be more speci�c, let us consider the case that
U = f�(1; 0);�(0; 1);�(a; b)g. The rechable set
for the base variables is described by

x1 = m1 + am3

x2 = m2 + bm3
(10)

with mi 2 ZZ. If a and b are rational, and a = pa
qa
,

b = pb
qb
, pa; qa; pb; qb integers and pairwise coprime,

the rechable set of base space is clearly a lattice.
The subgroup ~
 is given by all control words with
(m1;m2;m3) = �(paqb; pbqa;�qaqb), � 2 ZZ (this
means, words where the symbol (1; 0) is used mm1

times, (0; 1) is usedm2 times, and (�a;�b) is used
m3 times). For � = 1, there are

N =
(paqb + pbqa + qaqb)!

paqb!pbqa!qaqb!

possible words. The reachable set as a whole is
discrete: the i{th coordinate is an integer multiple
of 1=�i dove �i = (i�1)!q(i�1), q = maxfqa; qbg.
Coordinates of higher index have a �ner resolu-
tion.



6. CONCLUSIONS

In this paper, we have considered reachability
problems in quantized control systems. We have
shown that the reachable set may be dense or
discrete depending on the quantized set of in-
puts, and have provided some results in the anal-
ysis and synthesis problems. We have also pro-
vided a de�nition and some characterization of
nonholonomic phenomena occurring in nonlinear
quantized control systems. Many open problems
remain in this �eld, that is in our opinion among
the most important and challenging for applica-
tions of embedded control systems and in several
other applications. Although some problems have
been shown to hard, we believe that a reasonably
complete and useful system theory of quantized
control system could be built by merging mod-
ern discrete mathematics techniques with classical
tools of system theory.
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