
Choosing Poses For Force and Stiffness Control

Arash Ajoudani, Nikos G. Tsagarakis, and Antonio Bicchi

Abstract— In humanoids and other redundant robots inte-
racting with the environment, one often can choose between
different configurations and control parameters to achieve a
given task. A classical tool to describe specifications of the
desired force/displacement behavior in such problems is the
stiffness ellipsoid, whose geometry is affected by the choice of
parameters in both joint control and redundancy resolution -
namely, gains and angles. As is well known, impedance control
techniques can regulate gains to realize any desired shape of
the Cartesian stiffness ellipsoid at the end-effector, so that robot
geometry selection could appear secondary. However, humans
do not use this possibility: to control the stiffness of our arms,
we predominantly use arm configurations. Why is that, and
does it make sense to do the same in robots?

To understand this discrepancy, we provide a more com-
plete analysis of the task-space force/deformation behavior of
compliant redundant arms to illustrate why the arm geometry
plays a dominant role in interaction capabilities of robots. We
introduce the notion of allowable Cartesian force/displacement
(“stiffness feasibility”) regions (SFR) for compliant robots
with given torque boundaries. We show that different robot
configurations modify such regions and explore the role of
robot geometry in achieving an appropriate SFR for the task
at hand. The novel concepts and definitions are first illustrated
in simulations. Experimental results are then provided to verify
the effectiveness of the proposed Cartesian force and stiffness
control.

I. INTRODUCTION

Impedance control is a well-known technique to guarantee
contact stability in robots by generating task-adapted resto-
ring forces in response to the environmental displacements.
In a quasi-static setting, the desired response in different
directions, often represented by the stiffness ellipsoid [1],
can be achieved by varying the joint control parameters and
the geometry of the robot. Due to this geometric dependence,
endpoint stiffness is subject to variations depending on the
position of the endpoint in task space, or even on the robot
configuration for the same end-effector (e-e) position, when
the robot is redundant.

It is known that in principle, any arbitrary endpoint
stiffness matrix can be realized in any arbitrary robot con-
figuration [2]. With that being said, the control of robot
configuration might appear unnecessary at first. However, to
achieve an arbitrary stiffness matrix, the desired endpoint for-
ce/displacement relationship must be mathematically mapped
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Fig. 1: Humans intuitively choose the configuration of their arms
to obtain a desired impedance: e.g. to oppose more rigidly to an
object motion, the configuration on the right is preferred to the one
on the left. The second row shows a robot arm in roughly similar
poses. Although, in principle, the robot’s stiffness ellipsoid can be
the same for both poses [2], there are reasons why the configuration
on the right is better also for robots. This paper discusses why.

to the joint–space which requires in general that the torque
commanded at any joint depends on the robot geometry
and the displacement of all joints in a tightly coupled way
[3], [4]. On the other hand, a dense body of literature
reports on the tendency of humans to explore the major
role of configuration to achieve a certain physical interaction
behavior [5]–[7]. A simple example in which a particular arm
configuration (right posture) is intuitively chosen by humans
over the other possible solutions (e.g. left posture) to oppose
to the deformations with high restoring forces in a certain
direction is demonstrated in Fig. 1 top two plots.

To investigate the effect of robot configuration on task-
force capabilities, force ellipsoid was initially introduced in
[8] as the preimage of the unit sphere in the joint torque space
under a mapping which is defined by the robot geometry.
The effect of robot mass and payload which contribute to
a pure translation of the force ellipsoid in the task space
has also been addressed [9]. Notwithstanding the widespread
use of force ellipsoids, they can be imprecise due to the



fact that in such a representation the dynamic boundaries,
e.g. the actuators’ torque limits, are not taken into account.
As an alternative solution, the use of force polytopes was
recommended that account for exact maximum achievable
task space force, subject to the imposed constraints in the
space of joint torques [10].

It is important to note here that both the above representa-
tions only convey a local picture of the robot’s capabilities.
In a compliant robot, where the aim is to achieve a desired
displacement-force relationship, applied external disturbance
will modify the robot configuration, and the corresponding
force polytope as a consequence. This implies that linear
bounds on joint torques will not be translated into linear
bounds on Cartesian forces: one of the objectives of this
paper is to address this problem and demonstrate that the
Cartesian force boundary of a compliant robot in an arbitrary
configuration has a nonpolytopic shape in general.

Now assume that a Cartesian stiffness controller in a
torque controlled robot under gravity is implemented to
achieve a desired stiffness matrix, in a particular confi-
guration. This is associated with a maximum allowable
displacement region, after reaching which, some actuators
will hit the boundaries in the space of joint torques and the
equilibrium assumption will no longer be valid. Noteworthy,
the actuators’ torque saturation under the Cartesian stiffness
control will occur later for some configurations than for
others1: this is the next topic we would like to investigate
and capture with our measure. We demonstrate that even
though a torque controlled robot in an arbitrary configuration
is capable of realizing any shape of the stiffness ellipsoid at
the e-e, a particular joint geometry renders the most effective
interaction performance compared to the others. Here, the
desired interaction performance is defined by the robot
capability to confront large disturbance force/displacement
profiles prior to the occurrence of torque saturation. This
is achieved by realizing a displacement boundary region in
Cartesian coordinates which is maximally aligned with the
direction of the external disturbance and minimally translated
due to the effect of gravity.

It is important to note here that a preliminary version
of this work has been presented in [11]. The current study
introduces significant improvements to the previous results
by i- reformulation of the manipulator dynamics in the
presence of external load and gravity, ii- providing deeper
discussions on the proposed concepts and techniques, and
iii- presenting new experimental results in a realistic task.

The rest of the paper is structured as follows: performance
limits of the Cartesian stiffness control for nonredundant and
redundant manipulators are described in Sections II and III,
respectively. The use of robot redundancy to achieve a task-
appropriate interaction performance is discussed in section
IV and experimentally validated in section V. Finally, section
VI presents the conclusions.

1For instance, for a similar Cartesian stiffness matrix, the robot configu-
ration on the right in Fig. 1 can generate higher restoring forces in response
to the environmental displacement in y direction, compared to the one on
the left.

II. INTERACTION BOUNDARIES OF THE CARTESIAN
FORCE AND STIFFNESS CONTROL – NONREDUNDANT

CASE

Consider the robot with forward kinematic map x = Λ(q)
initially at equilibrium E(q0,τ0, f0) with x0 =Λ(q0) and τ0 =
JT (q0) f0 +τg(q0), and a nearby equilibrium E(q0 +δq,τ0 +
δτ, f0 + δ f ), with x0 + δx = Λ(q0 + δq) and τ0 + δτ =
JT (q0 + δq)( f0 + δ f ) + τg(q0 + δq). Here, x, f , q, τ , and
τg denote the Cartesian position/orientation, Cartesian force,
joint angle, joint torque and gravity vectors, respectively. The
infinitesimal increment of these variables are expressed by δ .
The manipulator Jacobian is represented by J ∈ Rm×n, with
n being the number of joints and m corresponding to the task
space dimension (where for nonredundant case m = n).

Assume that the aim is to achieve a desired restoring force
profile, δ f (x,x0), in the task space. By taking a first order
Taylor expansion, we can write

τ0 +δτ = JT (q0 +δq)( f0 +δ f )+ τg(q0 +δq)

≈ JT (q0) f0 +
∂J(q)T f0

∂q

∣∣∣
q0, f0

δq+ JT (q0)δ f

+ ∂J(q)T δ f
∂q

∣∣∣
q0, f0

δq+ τg(q0)+
∂τg(q)

∂q

∣∣∣
q0, f0

δq,

(1)
with the fourth term in the above equation being negligible,
hence

δτ = JT (q0)δ f +
∂JT f0

∂q

∣∣∣∣
q0

δq+
∂τg(q)

∂q

∣∣∣∣
q0

δq.

In addition, as regards the gravitational term, we can write

τg(q) =
n

∑
i=1

JT
comi

fgi , (2)

with fgi = gmi, where Jcomi , mi and g are the centre of mass
Jacobian, the mass of the ith link, and vector of gravitational
accelerations, respectively. Therefore

δτ = JT (q0)δ f +
∂JT f0

∂q

∣∣∣∣
q0

δq+
n

∑
i=1

∂JT
comi

(q)gmi

∂q

∣∣∣∣∣
q0

δq.

The basic idea of the impedance control is to find a control
law (δτ) such that the desired force profile (δ f ) is realized.
Even though it is difficult to determine such a generally
nonlinear update law, it can be done using 1st-order appro-
ximations, i.e. δ f = Kcδx, with Kc denoting the stiffness
matrix. Thus, the corresponding torque to be commanded at
the joints can be computed by

δτ = [JT (q0)Kc +
∂J(q)T f0

∂q

∣∣∣
q0

J−1(q0)

+
n
∑

i=1

∂JT
comi

(q)gmi

∂q

∣∣∣∣
q0

J−1(q0)]δx.
(3)

Note that the above equation is only valid for small di-
splacements around the initial equilibrium point. For a
relatively large deformation of the manipulator’s e-e, the
generally nonlinear association between the manipulator’s
joint torque and Cartesian force vector can be represented
by series of re-linearized quasi-static equations for each
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Fig. 2: Two-link manipulator in configuration A (left) and B
(middle). Even if both configurations realize a similar desired
Cartesian stiffness profile (most right plot), interaction Boundaries
of the Cartesian force/stiffness control in the presence of external
disturbance are different.

nearby equilibrium pair within the continuous closed inter-
val2 [x0 x1 · · · xk · · · xneq ], with τi = JT (qi) fi + τg(qi), and
i = 1,2, ...,neq. Using a similar technique as in (1) and (3),
at each step, the additional joint torque can be calculated
using the current measurements as follows

δτk = [JT (qk−1)Kc +
∂J(q)T fk−1

∂q

∣∣∣
qk−1

J−1(qk−1)

+
n
∑

i=1

∂JT
comi

(q)gmi

∂q

∣∣∣∣
qk−1

J−1(qk−1)]δxk,
(4)

with k− 1 and k denoting the index numbers which corre-
spond to the two nearby equilibriums E(qk−1,τk−1, fk−1) and
E(qk,τk, fk). Equation (4) at each point must comply with
the maximum achievable task space forces and velocities for
given limits in the joint space3 [8], [10]. Otherwise, cer-
tain values of external force/displacement will cause torque
saturation and as a consequence, the equilibrium condition
assumption will no longer be valid and the realized stiffness
behavior will not be as desired.

To illustrate the underlying concept, let’s consider a two-
link manipulator in configuration A as depicted in Fig. 2,
left plot. Assume that the aim is to realize a desired stiffness
matrix Kcd =

[
1 0.2

0.2 2

]
kN
m , at the e-e of the robot. Here,

qA = [10o,110o], L1 = 0.14m, L2 = 0.12m, |τ1| ≤ 3Nm, and
|τ2| ≤ 2Nm. The mass (m) of each link is assumed to be
a point mass and located at the centre of mass of each link
with m1 = 4 and m2 = 2 Kg. For small values of displacement
profile along −y, restoring forces will demonstrate a linear
trend. However, at a certain point (y = yA, see Fig. 3), the
actuator torque will saturate and from this point on, the
force-displacement relation will not satisfy the equilibrium
condition and the realized task stiffness will not be as
desired. The computation of the Cartesian forces is achieved
through the inverse of the Jacobian matrix (J ∈ R2×2, when
invertible), in F = J−1(τ − τg). When the computed torque
of an actuator (using (4)) is saturated, its closest value
(maximum or minimum torque) is used for that component
in the τ vector.

Now, consider the same manipulator in another configu-
ration (B, qB = [31o,59o], Fig. 2, middle plot), exposed to a

2Assuming that no singularity occurs in this boundary and the final point
xneq is reachable.

3In this paper we only consider the dynamic boundaries of the robot.
A detailed discussion on the mobility and manipulability of the robots
regarding kinematic constraints can be found in [12].
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Fig. 3: Endpoint forces vs. displacements along −y direction in
manipulators A and B (upper plot), and the corresponding joint
torques (lower plot). Initial force offsets refer to the effect of gravity
at y direction of the endpoint.

similar external displacement profile. In this configuration,
joint torques will exceed the limits at y = yB > yA, hi-
ghlighting the fact that the actuation torque saturation while
realizing a desired compliant profile will happen later for
some configurations than for others. This simple example
demonstrates why the choice of arm geometry can play an
important role in interaction boundaries of the task force or
stiffness control.

Stiffness Feasibility Region (SFR), Polytope (SFP) and
Ellipsoid (SFE)

Traditionally, the stiffness ellipsoid is defined as the locus
of the forces obtained || f ||, corresponding to a deformation
of unit norm. The directions of the principal axes of the
stiffness ellipsoid are given by the set of orthonormal output
vectors of the singular value decomposition (SVD) of this
ratio, while their magnitudes are given by reciprocal of the
corresponding singular values (the stiffness ellipsoid for the
two-link example is illustrated in Fig. 2, most right plot).

It is important to note that the stiffness ellipsoid only
conveys a “local” picture of the operational stiffness, i.e. for
bounded forces and displacements that do not result in the
saturation of joint actuation drives. If larger displacements
are applied, however, at a certain point the manipulator will
get out of the feasibility boundaries in joint torques. Indeed,
for a displacement profile with a growing norm, we will
realize families of growing force ellipsoids which at some
point will get cut by a boundary region at different places.
For instance, if we plot the locus of || f || for the two-link
example for different scales of the unit circle displacement
profile, we realize that the ellipsoids are cut by two non-
polytopic profiles corresponding to the task space force boun-
daries of the manipulator in configurations A and B (Fig. 4,
left and right plot, respectively). In addition, the translational
effect of gravity, which varies due to the change in robot
configuration, will also contribute to the modifications in the
geometry of such a boundary region. This is generally an
undesired effect since it will influence symmetric properties
of the SFR with respect to the initial equilibrium point.
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Fig. 4: The locus of || f || for the growing displacement norm for
the two-link manipulator in configuration A (left plot), and B (right
plot) hit the limits caused by two configuration dependent force
boundaries. The spatial translation of the centre of the ellipsoids
w.r.t. the origin can be observed in the plots.

Stiffness feasibility region (SFR) is here defined by a (non-
polytopic) boundary in the space of Cartesian displacement
that corresponds to the maximum allowable deviation from
the initial equilibrium point. Overreaching this boundary
signifies that at least one of the actuators has exceeded the
limits in the space of joint torques and as a consequence, the
generated restoring force profile is different from the desired
one. The SFRs for the two-link example in configuration A
(left plots) and B (right plots) are illustrated in Fig. 5 in blue
(solid).

Although SFR provides the most accurate representation
of the imposed performance limits of a Cartesian stiffness
controller, its calculation is computationally expensive4, thus
not suitable for real-time applications. Alternatively, the
stiffness feasibility polytope (SFP) can be computed by pro-
jecting the force polytope [10] of the manipulator in a certain
configuration into the space of Cartesian displacements. To
that end, we first define a proper scaling of the joint torques5

τ̂ =Wτ τ, (5)

where Wτ = diag[ 1
τlim1

1
τlim2

. . . 1
τlimn

], and τlimi denote the
torque limit of the joint number i, that is |τi| ≤ τlimi . The
SFP is defined as

δx | |τ̂|∞ ≤ 1, (6)

with | |∞, denoting the infinity norm. As a result, in order
to check if δx is within the SFP, n inequalities must be
examined. In addition, one possible computational difficulty
in the computation of the SFP lies in transforming the
halfspace representation (H-representation) of the polytope
to vertex representation (V-representation) [10], [13].

To simplify this problem, the L∞ norm can be replaced
by the L2 norm to reduce the number of inequalities to one.
Using the definition of the force manipulability ellipsoid [8],

4For example, the calculation of the SFR using (4) for the two-link
manipulator in configuration A took 1.12 seconds (to sweep the whole
space), compared to the SFE (described next) that required 0.0013 seconds
to be computed, in MATLAB.

5Non-symmetric boundaries of the joint torques can be treated with a
proper mapping to result in a symmetric inequality [12].
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Fig. 5: Blue (solid) plots illustrate the stiffness feasibility regions
(SFRs) for configuration A (left) and B (right), while corresponding
polytopes are plotted in red (dashed). Stiffness feasibility ellipsoids
(SFEs) are plotted in black (dotted), for both configurations. The
units are in [m].

i.e. |τ̂|2 ≤ 1 we have

[Wτ(JT (q) f + τg)]
T [Wτ(JT (q) f + τg)]≤ 1, (7)

with τg being the gravitational vector where τg = JT (q)Gq,
we can write

( f +Gq)
T J(q)WτWτ JT (q)( f +Gq)≤ 1, (8)

which under the mapping f = Kcδx becomes

(δx+K−1
c Gq)

T KcJ(q)WτWτ JT (q)Kc(δx+K−1
c Gq)≤ 1. (9)

The set of orthonormal outputs of the SVD of KcJ(q)Wτ

indicate the direction of the principal axes of the stiffness
feasibility ellipsoid (SFE), with the magnitudes calculated
by the reciprocal of the corresponding eigenvalues. The term
K−1

c Gq indicates a pure translation in the space of Cartesian
displacements. The SFP (red, dashed) and SFE (black, dot-
ted) for the two-link manipulator in configuration A (left)
and B (right) are illustrated in Fig. 5. The approximation
is more accurate near the axes of the ellipsoids, and less
accurate away from them (the intuition is to approximate a
unit ball under L∞ norm, with a unit ball under L2 norm).
The spatial translation of the regions due to the effect of
gravity can be observed by comparing the centres of initial
(rectangle) and translated (cross) ellipsoids. Results explain
that even though both configurations achieve a similar end-
point stiffness matrix, their capabilities to confront external
force/displacement differ.

III. INTERACTION BOUNDARIES OF THE CARTESIAN
FORCE AND STIFFNESS CONTROL – REDUNDANT CASE

The transformation between the joint and task spaces in
a redundant manipulator does not ensure the uniqueness of
the joint torque solution for a given task space force 6. In
this case, the minimization of the norm ‖τ−τg−JT (q) f‖, is
commonly carried out by using the pseudo-inverse solution,

6In redundant manipulators, the joint torques that can be used to
produce a given Cartesian force vector are not unique. The joint torque
vector τ = JT (q) f represents one of these solutions. f = J+T (q)(τg) with
J+(q) a dynamically consistent generalized inverse of the Jacobian matrix
corresponds to the solution that minimizes the robot’s kinetic energy [14].



that is f = J+T (q)(τ − τg). However, the only condition
ensuring that this norm equals zero, is that the torque
vector τ − τg is associated to the image of the Jacobian
transpose [10], [15]. For this reason, to account for the task
space performance limits of the redundant manipulator for
a given torque boundary, only vector of joint torques that
do not generate internal motions must be taken into account.
This will produce reduced torque boundary region, which is
basically the intersection of the joint torque boundary region
(including the effect of gravity) with the image of JT (q).

Another issue in computation of the force boundary region
for a redundant manipulator is that any applied displacement
in the task space can be transformed into non-unique solu-
tions in the space of joint velocities. This indicates that the
chosen policy regarding the update of the joint velocities
can potentially revise the resulting interaction boundaries
of the Cartesian stiffness control to realize a minimally
translated and task-appropriate geometry of the SFR. In
this direction, due to the complexity of the SFR and SFP
calculations for real-time applications, we compute the SFE
by transforming the unit sphere in joint torque space into the
task space and calculate its intersection with the image of the
Jacobian transpose. It is well known (see e.g. [10]) that such
a transformation can be performed by J+J which leads to
a similar equation as in (9), for a redundant manipulator7,
since JJ+JJT = JJT .

IV. ENHANCING THE SFR OF THE CARTESIAN
STIFFNESS CONTROLLER THROUGH OPTIMAL

REDUNDANCY RESOLUTION

As mentioned earlier, stiffness feasibility ellipsoid is a fast
and intuitive tool that conveys some information on the space
of maximum allowable deviation from the initial equilibrium
point of a compliant robot. Especially, the directions of the
maximum/minimum allowable displacement and the isotropy
index (ratio between the maximum and the minimum axis
[16]) of the ellipsoid are profitable properties which can pro-
vide insight into the role of robot configuration in Cartesian
stiffness control capabilities. For instance, if the maximum
axis of the realized SFE is elongated towards the direction
of the external disturbance, the robot’s Cartesian stiffness
controller will be able to encounter larger deformation/force
profiles prior to the occurrence of actuation torque saturation.

Our objective in this section is to explore the role of
on-line redundancy resolution techniques in enhanced in-
teraction performance of the Cartesian stiffness controllers:
first, we propose an algorithm to adjust robot redundancy to
maximally align the direction of the maximum axis of the
SFE with the external disturbance. Next, we explore the role
of robot configuration to weaken the effect of gravity on the
SFE’s spatial translation. A modest acquaintance with the
subjects in Cartesian impedance control of torque controlled
robots (e.g. see [2]) and the underlying redundancy resolution
[17] is required for a better comprehension of the following
section.

7The torque non-symmetric scaling can be performed by introducing the
scaled Jacobian as ĴT (q) =Wτ JT (q) [10].
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Fig. 6: 4-link planar manipulator. The SFEs are plotted in solid
(realized) and dashed (desired) which correspond to a similar
Cartesian stiffness matrix, but different interaction performances
regarding the task space boundaries: the desired SFE is defined by
(a) elongating the direction of the maximum axis of the SFE with
the direction of the external disturbance, and (b) minimizing the
effect of gravity in spatial translation and geometric variations of the
SFE. In general, the overall geometry of the initial and optimized
SEFs are different.

A. Optimizing the SFR geometry

Consider a redundant robot subject to a certain boundary
in the space of joint torques. To realize a Cartesian stiffness
matrix Kcd , the desired joint torque vector τd is calculated
by

τd = τcd + τNd , (10)

with τcd and τNd , corresponding to the Cartesian stiffness and
null space torque vectors, respectively.

Now assume that a disturbance profile in a particular
direction δx, is being applied to the e-e of the robot in
a certain configuration (e.g. the four-link planar robot as
illustrated in Fig. 6. a, with the SFE depicted in solid red).
The length of the vector from the origin to the surface of the
ellipsoid in the direction of δx

‖δx‖ specifies the maximum allo-
wable e-e displacement prior to the actuation saturation. To
compute this vector (σ ∈R6), following a similar technique
as described in [18], we can write(

σ
δx
‖δx‖

)T

Kc J(q)W 2
τ JT (q) Kc

(
σ

δx
‖δx‖

)
= 1, (11)

with ‖.‖ denoting the vector norm operator. Solving for σ

we obtain

σ =

(
δxT

‖δx‖
Kc J(q)W 2

τ JT (q) Kc
δx
‖δx‖

)−1
2

. (12)

To enlarge the maximum allowable displacement profile (σ ),
we define the cost function

Vge =
l

∑
i=1

σi
2 (13)

and maximize it by projecting its gradient into a dynamically
consistent null space of the Jacobian transpose,

δτNd = [I− JT (q)J̃T (q)]
∂Vge(q)

∂q
, (14)



where I and l denote the identity matrix and the considered
number of axes in the SFE (here l = 6), respectively. σi
corresponds to the ith component of vector σ . The above
notations are calculated using the manipulator mass matrix
M(q), and Jacobian as follows

J̃(q) = M−1(q) JT (q) M̂(q),
M̂(q) = [J(q) M−1(q) JT (q)]−1.

(15)

The resulting null space torque profile (τNd ) will modify the
geometry of the SFE, eventually coinciding its major axis
with the direction of the applied displacement (Fig. 6. a,
ellipsoid with dashed line where the maximum allowable
displacement profile is illustrated by σd). Consequently, the
command for the motor torque τm can be calculated as

τm = τd−Kτ(τ− τd)−Kτ̇ τ̇, (16)

with positive definite controller matrices Kτ and Kτ̇ , and τ̇

denoting the torque derivative. It has been demonstrated that
the implementation of (16) can stabilize the torque dynamics
around the equilibrium point τ = τdk [19], with τdk being
updated using (4) and (14).

It is important to note here that, since the SFE and its
major axes directions are updated at each iteration of (14),
we expect to achieve a desirable elongation of the maximum
displacement region on the SFR towards the direction of the
external disturbance.

B. Minimizing the gravity effect on the SFR translation and
geometry

A similar technique can be used to reduce the effect of
gravity on the translation (∆x in Fig. 6. b) of the achieved
SFR in the task space. To do so, we calculate δτNd by
defining the cost function

Vt = ∆xT
g ∆xg, (17)

with ∆xg = K−1
c Gq, and implement a similar update law as

in (14). Iterative minimization of Vt will contribute to the
reduction of the spatial translation of the SFE and the SFR,
as a consequence.

In case of the robots with high degrees of freedom (dof),
such as humanoids, both the above costs can be minimized
using a priority based optimization algorithm or by defining
an overall cost function VO, using a weighted (o1 and o2)
average of Vge and Vt

VO = o1Vge +o2Vt . (18)

V. RESULTS

A. Simulation Results: Four Link Manipulator

In this section, we evaluate the efficiency of the proposed
algorithms for the 4-link planar redundant robot in Fig. 6.
The aim is to achieve a desired Cartesian stiffness matrix,
subject to specific boundaries in the space of joint torques:
|τ1| ≤ 5 Nm, |τ2| ≤ 4 Nm, |τ3| ≤ 3 Nm, and |τ4| ≤ 2 Nm.
Kcdes is considered similar to the 2-link example. Links are
assumed to have the same length, that is 0.2m. The mass (m)
of each link is assumed to be a point mass and located at
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Fig. 8: SFR (dark) and SFE (light) for initial (blue, dashed) and
final (red, solid) configurations A(a) and D(b) in Fig. 7. In both plots
the external disturbance is applied along x direction. The units are
in [m]. The ratios between the magnitude of the maximum axis of
the SFE and SFR are a) 0.64 (initial) and 0.65 (final), and b) 0.78
(initial) 0.68 (final).

the centre of each link, with m = 2.5 Kg. The position of the
e-e is assumed to be fixed on the plane.

The first set of simulation experiments evaluates the use
of the proposed redundancy resolution technique in enhanced
capabilities of the manipulator to confront higher disturbance
force/displacement profiles. This is achieved by maximal
alignment of the major axis of the realized SFE with the
direction of the external disturbance. As seen in the plots,
starting from any initial configuration (Fig. 7 A-C, dashed
plots), for a given external disturbance vector, (δx, Fig. 7
A-C, green arrows), and Kcdes , the manipulator configuration
is adjusted (Fig. 7 A-C, solid plots) to align as much as
possible the initial SFE’s major axis (Fig. 7 A-C, blue-dotted)
with the direction of external disturbance. Resulting SFEs are
illustrated in solid red.

Second set of simulations aims at minimizing the transla-
tional shift of the SFE due to the effect of gravity, in addition
to the alignment of the SFE’s major axis with the direction
of the disturbance. Using (18) and a similar update law as
(14), redundant dof of the robot are controlled to realize a
new configuration (Fig. 7 D, solid lines) which contributes
to the reduction of the translational effect of gravity (‖τg‖
and ‖∆xg‖ reduced to 47% and 65% of the initial values,
respectively) while extending the allowable displacement
profile along the direction of the applied disturbance.

Figs. 8. a and b illustrate the calculated SFRs (dark)
and SFEs (light) for configurations A and D of Fig. 7,
respectively. For the sake of comparison, SFRs and SFEs for
both cases are plotted in the origin. The blue (dashed) regions
correspond to the initial configuration, while the red (solid)
ones are realized consequent to the optimal redundancy
resolution. Results suggest that



A B C D D 

Fig. 7: Initial (dashed) and optimized (solid) configurations and the SFEs (initial: blue, optimized: red) of the four link example. The
optimization algorithm utilizes the direction of the maximum SFE to orient the boundary region towards the direction of the applied
disturbance (A-C). In addition, in D, the effect of gravity in translational shift of the SFE is minimized according to (18). Blue and red
dots correspond to the location of the centre of initial and optimized ellipsoids, respectively.

• the proposed algorithm effectively extends the SFR
towards the direction of the external disturbance; and

• even if the SFE is a rather inaccurate representation
of the SFR in terms of geometry, the directions of the
maximum allowable displacement in SFRs agreeably
coincide with the ones in the corresponding SFE.

B. SFE vs. Force Manipulability Index

Force manipulability index (FMI) has been traditionally
utilized to enhance force capabilities of a redundant mani-
pulator to confront an external disturbance through redun-
dancy resolution. It is commonly achieved by computing a
similar cost function as in (13), while excluding Kc from
the optimization process. This implies that, the effect of the
desired Cartesian stiffness matrix in such an optimization
is neglected (as if Kc were the identity matrix), thus for
any desired Kc, results will be the same. To illustrate this
point, consider the four-link manipulator in an arbitrary
initial configuration (Fig. 7 A, dashed), exposed to the
external disturbance vector d = [−1 −1], while realizing two
Cartesian stiffness matrices

Kca =
[

2 0.4
0.4 0.5

] kN
m

, Kcb =
[

0.5 0.4
0.4 1.5

] kN
m

.

Optimization of the robot redundancy using FMI results in
an identical configuration for both Kca and Kcb (dashed blue
4-links in Figs. 9 a and b), whose corresponding SFRs are
illustrated in the same figures (dotted-blue). Now, if a similar
optimization is carried out using the SFE, the resulting
configurations differ (solid black 4-links) depending on the
stiffness matrix, with the SFRs illustrated in Fig. 9 in a
similar order, this time in black-solid plots. These results
highlight the advantage of utilizing the SFE over traditional
indexes to confront large disturbance force/displacement
profiles prior to the occurrence of the actuation saturation.

C. Experimental Results: Peg-in-Hole

The Peg-in-the-Hole task, a classical benchmark for spatial
planning with the environmental uncertainties, was conside-
red to evaluate the efficiency of the proposed technique in en-
hanced Cartesian stiffness control capabilities of a redundant,
torque controlled robotic arm. In this direction, a Cartesian
impedance controller (see details in [2]) was developed for
the KUKA lightweight robot arm, with its torque limits being
programmed one-fifth of the nominal values to simulate
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Fig. 9: SFRs of the four-link manipulator, subject to the opti-
mization of the redundancy using FMI (blue, dotted) and SFR
(black, solid) for the desired stiffness matrices a) Kca and b) Kcb .
The direction of the external disturbance is similar for both cases
and illustrated in dashed (red) line with the arrows. The final
configurations as results of optimizing FMI (blue, dotted) and SFR
(black, solid) are plotted in bottom right corner of each plot.

a weaker robot. A peg (total mass: 1.6 kg) was attached
to a 6 axis FT sensor (ATI Inc.), and mounted on the e-
e of the robot along the z direction. A desired diagonal
stiffness matrix, with [1 1 2] kN

m and [50 50 50] Nm
rad being the

translational and rotational components, was realized using
τcd in (10). This profile achieves a stiff behavior along the
peg insertion, to overcome frictional forces between the peg
and the hole, while being compliant along the others, to avoid
the generation of unnecessary high interaction forces.

Starting from an arbitrary configuration (e.g. see Fig. 10.
A), the robot was planned to move along the direction of
the hole (Fig. 10. B) to perform the assembly (insertion, 5s),
to hold (2s), and to move the e-e back to its initial position
(pull-off, 5s). Fig. 11 illustrates the results of this experiment.
As observed in the upper plots, measured (Fz using FT
sensor, plotted in solid-black) and desired (δ z×Kz, plotted in
dashed-red, with δ z= zm−zd , and Kz = 2 kN

m ) endpoint forces
along the z direction demonstrate a linear trend until the pull-
off phase, where the actuation saturation occurs (illustrated
by the dashed window). As a result, the endpoint forces are
different from the desired one, thus the Cartesian stiffness
behaviour is not as planned. On the other hand, if the null-
space torque vector is optimized to maximally align the
corresponding SFE with the direction of the insertion/pull-
off, the resulting configuration during assembly (Fig. 10. C)



FT sensor

weight (0.5 kg) 

peg

hole

A B C

Fig. 10: KUKA robot in initial (A) and during the assembly task
without (B) and with (C) the optimization of the SFE geometry.
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Fig. 11: Peg-in-the-Hole experimental results without the optimi-
zation of the null-space torque. Forces (measured: using FT sensor
in black-solid, and desired δ z×Kz in red-dashed) and joint torques
are illustrated in upper and lower plots, respectively.
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Fig. 12: Similar arrangement of the plots as in Fig. 11, this time
with the optimization of the τNd using (14).

enables the robot to confront larger external forces and as
a consequence, no actuation saturation takes place and the
compliant behavior of the robot is desirable (see Fig. 12).
Eventually, when the peg is detached from the hole, both
displacement and interaction forces converge to zero.

VI. CONCLUSIONS

This paper provided a comprehensive analysis of the
task-space force/deformation behavior of redundant arms
to illustrate why arm geometry plays a fundamental role
in force/stiffness capabilities of a torque controlled robot.
This analysis was motivated by previous studies on human
motor control that demonstrated the importance of geome-
tric factors in providing stability of hand position [5]–[7].
We introduced the notions of stiffness feasibility regions,
polytopes and ellipsoids for compliant robots and explored
the role of robot configuration in task-related modifications

of such measures for enhanced Capabilities of the robot’s
Cartesian stiffness controller. In addition, the effect of gravity
in geometric properties of the corresponding regions (SFE
and SFR) was explored. Eventually, a control framework was
proposed to regulate the null space torque and realize a task
appropriate SFE (and SFR as a consequence) for an enhanced
physical interaction behavior.
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