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Abstract. In this paper we consider generalizations of dynamical systems that
are based on the Fibonacci sequence. We first study stability properties of such
systems for both the continuous and discrete–time case. Then, by considering
the Kronecker operator, a further class of dynamical systems is introduced whose
outputs can be used to define possible generalization of the golden section. Appli-
cations of such system may range from realization of digital filters, manufacturing
of tissue with fractal property, etc. Properties of sequences generated by these
systems are partially considered and has to be further addressed.

1. Introduction

There is a large amount of literature on Fibonacci numbers and their general-
izations. Biographical information about Fibonacci can be found at the MacTutor
History of Mathematics Archive at [1]. A compendium of information about the
Fibonacci numbers can be found at [2], whereas their applications to art, architec-
ture, and music can be found at [2]. A quarterly journal since 1963 is dedicated
to research related to Fibonacci numbers and related questions: the website for the
Fibonacci Quarterly can be found at [3]. Also useful are the books in [4–8]. A large
variety of generalizations is available including Fibonacci polynomials, tribonacci
numbers, k–nacci or multinacci numbers [9, 10]. Many properties of Fibonacci and
related sequences are discussed in [11].

In this paper we consider generalizations of dynamical systems that are based
on the Fibonacci sequence. We first study stability properties of such systems for
both the continuous and discrete–time case. Then, by considering the Kronecker
operator, we introduce a further class of dynamical systems whose outputs can
be used to define possible generalization of the golden section. Applications of
such system may range from realization of digital filters, manufacturing of tissue
with fractal property, etc. Properties of sequences generated by these systems are
partially considered and has to be further addressed.

2. The discrete–time case

The Fibonacci sequence, {fi}, for i = 0, 1, . . . , is described by the iterative rule:






fk+2 = fk+1 + fk ,

f0 = 0 ,

f1 = 1 ,
(2.1)

but may be considered also as the impulsive response of the basic discrete–time
Fibonacci dynamic system:

x(k + 1) = F x(k) + b u(k) ,

y(k) = C x(k) ,
(2.2)

1



2 ALDO BALESTRINO, ADRIANO FAGIOLINI, AND GIANCARLO ZINI

where x ∈ R
2 is the system state, u ∈ R is the system input, y ∈ R is the system

output, and

F =

(

0 1
1 1

)

, b =

(

0
1

)

, C =
(

1 0
)

. (2.3)

Indeed, starting from the state origin, i.e. x(0) = (0, 0)T , and applying the impulsive
input:

u(k) =

{

1 k = 0 ,

0 otherwise ,
(2.4)

the state x(k) evolves as follows:
(

0
1

)

,

(

1
1

)

,

(

1
2

)

,

(

2
3

)

,

(

3
5

)

,

(

5
8

)

,
(

8
13

)

,

(

13
21

)

,

(

21
34

)

,

(

34
55

)

,

(

55
89

)

, . . .

(2.5)

and the system output y(k) is indeed the Fibonacci sequence. Clearly, starting with
different initial states x(0), other sequences are obtained. E.g. with x(0) = (2, 1)T ,
we obtain the Lucas’ sequence [2].

In systems theory, the transfer function G(z) of a given time–invariant linear
system is introduced to characterize the relation between the system input u(k) and
the corresponding output y(k). For a discrete–time system, the transfer function
G(z) can be computed as the ratio between the Z–transform of the input signal u(k)
and the Z–transform of the output signal y(k). For a discrete–time signal x(k) being
defined only for k ≥ 0, its (unilateral) Z–transform X(z) is defined as follows [12]:

X(z) =

∞
∑

k=0

x(k) z−k . (2.6)

The transfer function G(z) of the system in Eq. 2.2 can easily be obtained by direct
computation. This gives the following result:

G(z) = C (z I − F )−1 b =
1

z2 − z − 1
. (2.7)

Moreover, given the basic Fibonacci matrix F, its k–th power is:

F k =

(

fk−1 fk

fk fk+1

)

, (2.8)

that is very useful in computing the explicit evolution of the system (2.2).
Furthermore, the same approach applies to so–called tetranacci and even to k–

nacci systems. A very simple generalization of the system (2.2) is indeed the follow-
ing:

x(k + 1) = α(k)

(

0 In−1

1 1n−1

)

x(k) +

(

0n−1

1

)

u(k) ,

y(k) = C x(k) ,

(2.9)

where x ∈ R
n is the system state, u ∈ R is the system input, and y(k) is the system

output. Moreover, given the matrix

Fn =

(

0 In−1

1 1n−1

)

, (2.10)
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the choice

|α(k)λmax(Fn)| < 1, (2.11)

assures the asymptotic stability of the system (2.9). Furthermore, vector C may be
chosen as

C =
(

γ 0n−1

)

(2.12)

to realize the following transfer function:

G(z) =
Y (z)

U(z)
=

γ αn−1

zn − αzn−1 · · · − αn−1 z − αn
, (2.13)

or as

C =
(

δ δ 0n−2

)

(2.14)

to realize the following transfer function with enhanced low–pass characteristics:

G(z) =
Y (z)

U(z)
=

δ αn−1(z + 1)

zn − α zn−1 · · · − αn−1 z − αn
. (2.15)

The parameter δ is chosen so that the filter gain is 1, i.e. G(1) = 1.
Moreover, matrix Fn is positive, and thus the existence of a dominant eigenvalue

— and of the corresponding positive eigenvector — is assured by Perron–Frobenius
Theorem [13]. An estimation of the maximum eigenvalue is given by:

λmax(Fn) ≃ 2 − Φ − 1

Φn − 1
= 2 − ϕ

Φn − 1
, (2.16)

where Φ is the golden section and is given by:

Φ = 1 + ϕ =
1 +

√
5

2
. (2.17)

3. The continuous–time case

The same procedure allows us to introduce generalized Fibonacci systems in the
continuous–time case. Indeed, the eigenstructure of Fibonacci systems is retained
by the following class of models:

ẋ(t) =

(

−β I + α

(

0 In−1

1 1n−1

))

x(t) +

(

0n−1

1

)

u(t) ,

y(t) =
(

γ 0n−1

)

x(t) ,

(3.1)

where x ∈ R
n is the system state, u ∈ R is the system input, y ∈ R is the system

output, and α, β ∈ R are parameters to be chosen. Clearly, we are interested in
those models of this class that are asymptotically stable, which is guaranteed by the
following choice:

β > |α λmax(Fn)| . (3.2)

For the case with n = 2, given an initial state x(0), the evolution of the unforced
system, i.e. the state trajectory obtained when u(t) = 0, is:

x(t) =
e−β t

1 + 2ϕ

(

1 1
1 + ϕ −ϕ

) (

eα(1+ϕ) t 0
0 e−ϕαt

) (

ϕ 1
1 + ϕ −1

)

x(0) . (3.3)

The transfer function G(s) of a continuous–time system characterizes the relation
between the system input u(t) and its output y(t). This can be computed as the
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ratio between the Laplace transform of u(t) and that of y(t). For a continuous–time
signal x(t) being defined for t ≥ 0 its Laplace transform X(s) is defined as [12]:

X(s) =

∫

∞

0
x(t) e−stdt . (3.4)

In our case, the transfer function G(s) is given by:

G(s) =
Y (s)

U(s)
=

γ α2

(s + β)2 − α (s + β) − α2
= (3.5)

=
β2 − α β − α2

s2 + (2β − α) s + β2 − α2 − α β
,

where γ is chosen so that G(0) = 1. The system poles can be computed as the roots
of the transfer function’s denominator and are given by:

λ1 = −β + αΦ ,

λ2 = −β − αϕ .
(3.6)

Investigation of properties of digital as well as analogous filters based on Fibonacci
structure are out of the scope of this work and can be found in [14].

4. Generalizations via Kronecker products and sums

Kronecker products and sums can be used to introduce further generalizations of
Fibonacci systems. Consider a discrete–time system with a dynamic matrix A that
is described by the following Kronecker product:

A = α (Fn ⊗ Fm) , (4.1)

where Fn ∈ R
n×n and Fm ∈ R

m×m, and α ∈ R is a given constant that have to be
fixed.

Since we know that the maximum eigenvalue of Fk is estimated as in Eq. 2.16,
then we may estimate the maximum eigenvalue of the system matrix A. Indeed we
have:

λmax(A) ≃ α

(

2 − Φ − 1

Φn − 1

) (

2 − Φ − 1

Φm − 1

)

. (4.2)

Therefore the discrete–time system

x(k + 1) = α (Fn ⊗ Fm) x(k) +

(

0n+m−1

1

)

u(k) ,

y(k) =
(

γ 0n+m−1

)

x(k) ,

(4.3)

where x ∈ R
n+m, u ∈ R, y ∈ R, by choosing

|αλmax(A)| < 1, (4.4)

is asymptotically stable. Furthemore, a choice such that α > 0 makes the realization
also positive.

The analysis of the dynamics is greatly simplified by taking into account the
following property [13]:

(α (Fn ⊗ Fm))k = αk
(

Fn
k ⊗ Fm

k
)

. (4.5)
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By using the same procedure, generalized Fibonacci systems in the continuous–
time case can also be introduced. Indeed, the eigenstructure of Fibonacci systems
is generalized by the following class of models:

ẋ(t) = (−β I + α (Fn ⊗ Fm)) x(t) +

(

0n+m−1

1

)

u(t) ,

y(t) =
(

γ 0n+m−1

)

x(t) .

(4.6)

The choice of

β > α

(

2 − Φ − 1

Φn − 1

) (

2 − Φ − 1

Φm − 1

)

, (4.7)

assures the asymptotic stability of the system.

4.1. The Multi–dimensional Case. Consider the following class of discrete–time
autonomous systems with multi–dimensional state Xk that evolves according to the
following rule:

Xk+1 = (γ F ) ⊗ Xk ,

yk = g(Xk) ,
(4.8)

where yk is the system output, γ ∈ R can be interpreted as a fading factor, F is the
Fibonacci matrix, ⊗ is the Kronecker matrix operator, and g is an output function.

Given an initial state value X(0) (X(0) ∈ R
p(0)×q(0)), the system evolution evolves

according to:

Xk = (γ F⊗)k X(0) , (4.9)

where Xk ∈ R
p(k)×q(k), with p(k) = 2k p(0) and q(k) = 2k q(0), and the k–th power

is to be interpreted in the Kronecker sense. The first values of the state sequence
are the following:

X0 = X(0) ,

X1 =

(

0 X(0)
X(0) X(0)

)

,

X2 =

(

0 X1

X1 X1

)

=









0 0 0 X(0)
0 0 X(0) X(0)
0 X(0) 0 X(0)

X(0) X(0) X(0) X(0)









.

The initial state value X(0) can be interpreted as a base pattern, or seed, that is
somehow repeated so as to grow a more complex object. Fig. 1 shows a graphical
representation of the system state after 5 steps by starting from X(0) = 1 and
X(0) = [1, 0; 1, 1], respectively. Elements of X5 that are equal to 1 are represented
as circles, whereas null elements are represented as blank space. A fractal structure
is clearly revealed in the figure.

Furthermore, one possible choice for the output function g is the row sum of Xk,
i.e.

yk =







∑

j Xk(1, j)
...

∑

j Xk(p(k), j)






. (4.10)

Clearly, we have yk ∈ R
p(k). Let us define vector σ as the column sum of X(0),

i.e. σi =
∑

j X(0)(i, j). Clearly, we have σ ∈ R
p(0). The first values of the output
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Fig. 1. Graphical representation of the system state after 5 steps by
starting from X(0) = 1 and X(0) = [1, 0; 1, 1], respectively. Elements
of X5 that are equal to 1 are represented as circles, whereas null
elements are represented as blank space.
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sequence are the following:

y0 = σ ,

y1 =

(

y0

2 y0

)

=

(

σ

2σ

)

,

y2 =

(

y1

2 y1

)

=









σ

2σ

2σ

4σ









.

Indeed, it can be proved that the following the recurrent formula holds:

yk =

(

yk−1

2 yk−1

)

. (4.11)

4.1.1. The Integer Case. An interesting interpretation of the behavior of systems
of Eq. 4.8 can be obtained by considering evolutions starting from non–negative
integer initial states X(0) ∈ N

p(0)×q(0), i.e. where the elements of the matrix X(0)
are non-negative integers. Indeed, the systems can be considered as generators of
integer output sequences. As examples, let us assume γ = 1 and consider the system
output after k = 3 steps for varying initial states X(0). According to (4.10), the
output is given by the following vectors:

y3(X(0) = 0) = (0, . . . , 0)T ,

y3(X(0) = 1) = (1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16)T ,

y3(X(0) = [0, 1]T ) = (1, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 8, 0, 4, 0, 8, 0, 8, 0, 16, 0)T ,

y3(X(0) = [1, 0]T ) = (0, 1, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 8, 0, 4, 0, 8, 0, 8, 0, 16)T ,

y3(X(0) = [1, 1]T ) = (1, 1, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16)T .

(4.12)
Under the hypothesis that X(0) 6= 0, consider vector zk = (α1, . . . , αp(k))

T , where
αi is obtained by summing the elements of yk group–wise from index (i − 1) p(0)
to index i p(0). Elements of zk represent another positive integer sequence. With
reference to the initial states of the examples in Eq. 4.12, we obtain:

z3(X(0) = 1) = (1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16)T ,

z3(X(0) = [0, 1]T ) = (1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16)T ,

z3(X(0) = [1, 0]T ) = (1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16)T ,

z3(X(0) = [1, 1]T ) = (2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32)T ,

(4.13)
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It is worth observing that such sequences present similar repeating patterns. Fur-
thermore, at any discrete time k, consider the following approximation of the con-

tinued fraction:

sk = α1 +
1

α2 +
1

α3 +
1

α4 +
1

. . .
1

αp(k)

. (4.14)

Given an initial state X(0), the sequence {sk} converges to a number that depends
on the initial state itself. In particular, we have the following examples:

s(X(0) = 1) = (1.00000, 1.5000, 1.40000, 1.40909, 1.408163, 1.40825, . . . ) ,

s(X(0) = 2) = (1.0000, 2.2500, 2.2353, 2.2357, 2.2357, 2.2357, . . . ) .

(4.15)
There is a large amount of studies in the literature on number theory that consider

generalizations of the golden section via the continued fraction [15]. In this vein,
we can interpret the sequences of Eq. 4.15 as other possible generalization of the
golden section Φ. To this aim, the repeating patterns of the sequence zk must be
further investigated.

5. Conclusion

Generalization of dynamical systems based on the Fibonacci sequence was pre-
sented in this work. Stability of such systems have been studied for both the contin-
uous and discrete–time case. A further generalization of dynamical system based on
the Kronecker operator and the Fibonacci sequence was also presented. This class
contains systems generating converging sequences, that are related to the golden sec-
tion. Properties of these sequences merit further investigations and will be studied
in future work.
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salvi 2, 56126 Pisa, Italy

E-mail address: zini@dsea.unipi.it


