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Abstract— The stiffness ellipsoid, i.e. the locus of task-space
forces obtained corresponding to a deformation of unit norm
in different directions, has been extensively used as a powerful
representation of robot interaction capabilities. The size and
shape of the stiffness ellipsoid at a given end-effector posture
are influenced by both joint control parameters and - for
redundant manipulators - by the chosen redundancy resolution
configuration. As is well known, impedance control techniques
ideally provide control parameters which realize any desired
shape of the Cartesian stiffness ellipsoid at the end-effector in
an arbitrary non-singular configuration, so that arm geometry
selection could appear secondary. This definitely contrasts with
observations on how humans control their arm stiffness, who in
fact appear to predominantly use arm configurations to shape
the stiffness ellipsoid.

To understand this discrepancy, we provide a more com-
plete analysis of the task-space force/deformation behavior
of redundant arms, which explains why arm geometry also
plays a fundamental role in interaction capabilities of a torque
controlled robot. We show that stiffness control of realistic
robot models with bounds on joint torques can’t indeed achieve
arbitrary stiffness ellipsoids at any given arm configuration.
We first introduce the notion of maximum allowable Cartesian
force/displacement (“stiffness feasibility”) regions for a com-
pliant robot. We show that different robot configurations modify
such regions, and explore the role of different configurations in
defining the performance limits of Cartesian stiffness control-
lers. On these bases, we design a stiffness control method that
suitably exploits both joint control parameters and redundancy
resolution to achieve desired task-space interaction behavior.

I. INTRODUCTION

Contact stability in humans and robots is guaranteed by
generating task-adapted restoring forces in response to the
environmental displacements, which can be achieved using
different techniques. For instance, in humans, muscle activa-
tions can modify the joint stiffness matrix via cocontraction
of muscles involved in the task [1], or through modifica-
tions in the sensitivity of reflex feedback [2]. Similarly in
robots, the joint stiffness profile can be adjusted to realize a
desired compliant behavior in Cartesian coordinates through
conservative congruence transformations [3].

Endpoint stiffness in different directions, often represented
by stiffness ellipsoids [4], [5], is also modified by varying
the geometry of the arm; due to this geometric dependence,
endpoint stiffness is subject to variations depending on the
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position of the endpoint in task space, or even on the arm
configuration for the same end-effector position, when the
arm is redundant [5].

Observations in human neuromotor control of the arm end-
point stiffness suggest that due to i) the major contribution of
the limb geometry to efficient modifications in the orientation
of the endpoint stiffness ellipsoid, ii) ergonomic efficiency of
postural adjustments in comparison to cocontractions, and iii)
the existence of cross–joint muscles in limbs, humans tend
to maximize the use of limb postures to realize a desired
endpoint stiffness direction [1]. Concurringly, cocontractions
appear to mostly contribute to modifications in size, rather
than orientation of the stiffness ellipsoid [6].

Relying on the above observations, the Common-Mode
Stiffness (CMS) and Configuration Dependent Stiffness
(CDS) concepts were previously introduced to describe the
effect on end–point stiffness of uniformly stiffening all joints
and of changing the redundancy resolution configuration,
respectively [7], [8]. In these schemes, the CMS control im-
plements a coordinated stiffening profile in robot joints and
contributes to modification in size of the stiffness ellipsoid,
with no or small effect on its shape. On the other hand, the
CDS control regulates redundant joints of the robot arm to
shape its stiffness ellipsoid according to the shape of the
reference ellipsoid. Application of the CDS controller in the
above referenced papers not only obtained good interaction
control, but also generated rather natural motions, similar to
the ones observed in humans executing similar tasks.

In general, CDS control can be usefully adopted to bet-
ter approximate a desired Cartesian stiffness control under
constraints on joint–space stiffness, as e.g. due to underac-
tuation [7], [8], or to the use of decoupled joint stiffness
control when using passive stiffness via Variable Stiffness
Actuators (VSA) at the joints [9]. On the other hand, in a
torque controlled robot (in which no such constraints are
present), it is known [10] that in principle, any arbitrary
endpoint stiffness matrix can be realized in any arbitrary
configuration. With that being said, the CDS control might
appear secondary. However, to realize an arbitrary stiffness
matrix, the desired endpoint force/displacement relationship
must be mathematically mapped to the joint–space (cf.
e.g. (2) below), which requires in general that the torque
commanded at any joint depends on the robot geometry and
the displacement of all joints in a tightly coupled way [11],
[12].

To investigate the effect of robot configuration on task-
force capabilities, force ellipsoid was initially introduced
in [13] as the preimage of the unit sphere in the joint
torque space under a mapping which is defined by the robot



geometry. Thereafter, the concept has been adapted to suit to
different tasks and platforms (e.g. see [14]). Notwithstanding
the widespread use of force ellipsoids, they are known to be
imprecise due to the fact that in such a representation the
dynamic boundaries, i.e. the actuators’ torque limits, are not
taken into account. As an alternative solution, the use of
force polytopes were recommended that account for exact
maximum achievable task space force, subject to the imposed
constraints in the space of joint torques [15].

It is important to note here that both the above repre-
sentations only convey a local picture of the manipulator’s
capabilities. In a compliant robot, where the aim is to
realize a desired Cartesian stiffness matrix, applied external
displacements will modify the robot configuration, and the
realized force polytopes as a consequence. This means that
the maximum allowable deviation in the space of Cartesian
displacements will be defined by the initial configuration,
the desired task force profile and the boundaries in the space
of joint torques. One of the objectives of this paper is to
address this problem and demonstrate that the Cartesian force
boundary of a compliant robot in an arbitrary configuration
has a nonpolytopic shape in general. In addition, a dual but
more intuitive representation of such a performance limit is
presented in the space of Cartesian displacements.

Now assume that a Cartesian stiffness controller in a
torque controlled robot is implemented to realize a desired
stiffness matrix, in a particular configuration. This is asso-
ciated with a maximum allowable displacement region, after
reaching which, some actuators will hit the boundaries in
the space of joint torques and the equilibrium assumption
will no longer be valid. As a consequence, realization of the
stiffness matrix will be subject to uncertainty. Noteworthy,
the actuators’ torque saturation under the Cartesian stiffness
control will occur later for some configurations than for
others: this is the next topic we would like to investigate and
capture with our measure. Here, the desired interaction per-
formance is defined by realizing the “best” boundary region
in Cartesian coordinates that correspond to the maximum
allowable deviation form the initial equilibrium point. We
demonstrate that even though a torque controlled robot in
an arbitrary configuration is capable of realizing any shape
of the stiffness ellipsoid at the end-effector, particular joint
geometry renders the best interaction performance compared
to the others, demonstrating the underlying concept in the
alternative usage of the CDS in Cartesian stiffness control.

II. PERFORMANCE LIMITS OF THE CARTESIAN
STIFFNESS CONTROL – NONREDUNDANT CASE

Consider the robot with forward kinematic map x = Λ(q)
initially at equilibrium E(q0,τ0, f0) with x0 = Λ(q0) and
τ0 = JT (q0) f0, and a nearby equilibrium E(q,τ, f ), with
x = Λ(q) and τ = JT (q) f . Here, x, f , q, and τ denote the
Cartesian position/orientation, Cartesian force, joint angle,
and joint torque vectors, respectively. J ∈ Rm×n is the ma-
nipulator Jacobian with n being the number of joints and m
corresponding to the task space dimension.

Let q= q0+δq, f = f0+δ f , and τ = τ0+δτ , and assume
that the aim is to realize a desired force profile in the task
space, hence δ f = F(δx,x0), with F being an unknown
function. By taking a first order Taylor expansion, we obtain

τ0 +δτ = JT (q0 +δq)( f0 +δ f )
= JT (q0 +δq) f0 + JT (q0 +δq)δ f

≈ JT (q0) f0 +
∂J(q)T f0

∂q

∣∣∣
q0

δq+ JT (q0)δ f

+ ∂J(q)T δ f
∂q

∣∣∣
q0

δq,

(1)

with the last term in the above equation being negligible,

δτ = JT (q0)δ f +
∂JT f0

∂q

∣∣∣∣
q0

δq.

The fundamental idea behind the stiffness control is to
realize a control law δτ such that for a given kinematics
Λ(q), the desired Cartesian force function f is realized. In
general, determining such a function is not easy. However,
this can be done using 1st-order approximations, i.e. δ f =
Kcδx, where x = x0 + δx = Λ(q0 + δq) and Kc denotes
the stiffness matrix. Thus, the corresponding torque to be
commanded at the joints is

δτ = JT (q0)Kcδx+
∂J(q)T f0

∂q

∣∣∣∣
q0

δq. (2)

Note that the above equation is only valid for small displa-
cements around the initial equilibrium point. For a relatively
large deformation of the nonredundant manipulator’s end-
effector, the generally nonlinear association between the
manipulator’s joint torque and Cartesian force vector can
be represented by a series of relinearized equations for
each nearby equilibrium pair within the continuous closed
interval1 [x0 x1 · · · xk · · · xneq ], with τi = JT (qi) fi, and i ∈
Rneq . Using a similar technique as in (1) and (2), at each
step, the supplementary joint torque can be calculated using
the current measurements as follows

δτk = JT (qk−1)Kcδxk +
∂J(q)T fk−1

∂q

∣∣∣
qk−1

δqk, (3)

with k− 1 and k denoting the index numbers which cor-
respond to the two nearby equilibriums. Equation (3) must
comply with the maximum achievable task space forces and
velocities for given limits in the joint space2 [17]. Otherwise,
certain values of external disturbance will cause torque
saturation and as a consequence, the equilibrium condition
assumption will no longer be valid and the realized stiffness
behavior will not be desired.

To illustrate the underlying concept, let’s consider a two-
link manipulator in configuration A as depicted in Fig. 1,
left plot. Assume that the aim is to realize a desired stiffness
matrix Kcd =

[
1 0.2

0.2 2

]
kN
m , at the end-effector of the robot.

For small values of δy along the negative direction, restoring

1Assuming that no singularity occurs in this boundary and the final point
xneq is reachable.

2In this paper we only consider the dynamic boundaries of the robot.
A detailed discussion on the mobility and manipulability of the robots
regarding kinematic constraints can be found in [16].
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Fig. 1: Two-link manipulator in configuration A (left) and B (midd-
le). qA = [10o,110o], qB = [31o,59o], L1 = 0.14 m, L2 = 0.12 m,
|τ1| ≤ 3 Nm, and |τ2| ≤ 2 Nm. Desired stiffness ellipsoid is plotted
on the most right.

forces will demonstrate a linear trend. However, at a certain
point (y = yA, see Fig. 2), the actuator torque will saturate
and from this point on, the force-displacement relation will
not satisfy the equilibrium condition and the realized task
stiffness will not be desired.

Now, consider the same manipulator in another configu-
ration (B, Fig. 1, middle plot), exposed to a similar external
displacement profile. In this configuration, joint torques will
hit the limits at y = yB > yA, highlighting the fact that
the actuation torque saturation while realizing a desired
compliant profile will happen later for some configurations
than for others.

Force capabilities of the manipulator in a given configu-
ration is classically represented by the force manipulability
ellipsoid [13], and is defined as the image of the unit sphere
in the joint torque space, i.e.

τ
T

τ ≤ 1 ⇒ f T J(q)JT (q) f ≤ 1.

Directions and magnitudes of the principal axes of the
force ellipsoid correspond to the eigenvectors and (reciprocal
of) eigenvalues of J(q), respectively. It is well known that
such a graphical representation does not fully illustrate the
force capabilities of the manipulator since boundary limits in
the space of joint torques are not taken into account. Alterna-
tively, the concept of force polytopes was introduced in [15]
to address the maximum achievable task space force profile
that comply with manipulator’s torque polytopic boundary.
If the manipulator is nonredundant (i.e. J(q) is full rank if
not singular), due to the linearity of the mapping between
the joint and Cartesian space and the convex properties
of the torque polytopes, resulting force polytopes are also
convex with vertices being the images of the vertices of
the torque polytopes under the J−T (q) mapping. However,
such a property only holds under the assumption that the
manipulator configuration is fixed. In other circumstances
such as tracking a desired task space stiffness profile, applied
external displacements will alter the manipulator configura-
tion, and the task space force boundaries of the manipulator
as a consequence. This conveys that for any initial equili-
brium point in workspace, the force/displacement boundary
region has a non-polytopic shape in general. Traditional force
polytope is only a linear estimate of such a region, while the
force ellipsoid is even less accurate.

To realize a desired compliant profile at the end-effector
of a robot, efficient restoring forces must be generated in
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Fig. 2: Endpoint forces vs. displacements along −y direction in
manipulators A and B (upper plot), and the corresponding joint
torques (lower plot).
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Fig. 3: The locus of || f || for the growing displacement norm for
the two-link manipulator in configuration A (left plot), and B (right
plot) hit the limits caused by two configuration dependent force
boundaries. Traditional force polytopes are also plotted for each
configuration in red.

response to environmental displacements. Traditionally, the
stiffness ellipsoid is defined as the locus of forces obtained
|| f ||, corresponding to a deformation of unit norm. The
directions of the principal axes of the stiffness ellipsoid
are given by the set of orthonormal output vectors of the
singular value decomposition (SVD) of this ratio, while their
magnitudes are given by reciprocal of the corresponding
singular values. It is important to note that stiffness ellipsoid
only conveys a “local” picture of operational stiffness, i.e.
for small forces and displacements. If larger displacements
are applied, however, at a certain point the manipulator will
get out of the feasibility polytope in joint torques. Thus, for
a displacement profile with a growing norm, we will realize
families of growing force ellipsoids which at some point will
get cut by a boundary region at different places.

Considering our two-link example in Fig. 1, we calculate
and plot the stiffness ellipsoid for Kcd (see Fig. 1, most
right plot). On the other hand, if we plot the locus of
|| f || for the desired Cartesian stiffness matrix and different
scales of the unit circle displacement profile, we realize
that the ellipsoids are cut by two non-polytopic profiles
corresponding to the task space force boundaries of the
manipulator in configurations A and B (Fig. 3, left and
right plot, respectively). For the sake of comparison, classical
force polytopes are also plotted in red (dashed).
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Fig. 4: Blue (solid) plots illustrate the SFRs for configuration A
(left) and B (right), while corresponding polytopes are plotted in red
(dashed). SFEs are plotted in black (dotted), for both configurations.

A. Stiffness Feasibility Region

Stiffness feasibility region (SFR) is here defined by a
boundary (non-polytopic in general) in the space of Car-
tesian displacement (or force as a dual representation) that
correspond to the maximum allowable deviation (external
force) from the initial equilibrium point, where within this
boundary, the realization of the desired Cartesian stiffness
matrix is feasible. Overreaching this boundary signifies that
at least one of the actuators has hit the limits in the space
of joint torques and as a consequence, the realization of
the desired stiffness matrix will be subject to uncertainty.
Fig. 4 demonstrates SFRs of the two link manipulator in
configuration A (left) and B (right) for Kcd , mentioned above.

It is important to note that although SFRs provide ac-
curate representation of the imposed performance limits
while realizing a desired stiffness matrix, their calculation
is computationally expensive. In particular, concerning re-
dundant manipulators, described in the following sections,
both representations (SFR and stiffness feasibility polytopes
(SFP)) require several steps to account for the task space
boundary regions. To that end, we propose and calculate the
stiffness feasibility ellipsoids (SFE), a fast and intuitive, but
local estimate of the stiffness feasibility regions.

To do so, a proper scaling of the joint torques due to the
imposed actuator boundaries3 is defined by τ̂ = Wτ τ , with
Wτ = diag[ 1

τlim1

1
τlim1

. . . 1
τlimn

], and τlimi denoting the torque
limit of the joint number i, that is |τi| ≤ τlimi . Thus

τ
TWτWτ τ ≤ 1 ⇒ f T J(q)WτWτ JT (q) f ≤ 1, (4)

which under the mapping in (2) becomes

δxT KcJ(q)WτWτ JT (q)Kcδx≤ 1. (5)

The set of orthonormal outputs of the SVD of KcJ(q)Wτ

indicate the direction of the principal axes of the SFE,
with the magnitudes calculated by the reciprocal of the
corresponding eigenvalues. Such ellipsoids for the two-link
example are plotted in Fig. 4 in black (dotted).

Above discussions highlight the fact that even though any
desired task-space stiffness matrix can be realized via a
Cartesian stiffness controller, the feasibility of realizing such

3Antisymmetric boundaries of the joint torques can be treated with a
proper mapping to result in a symmetric inequality [16].

a profile under higher external forces/displacements requires
a predictive control of the manipulator configuration.

III. PERFORMANCE LIMITS OF THE CARTESIAN
STIFFNESS CONTROL – REDUNDANT CASE

It is well known that for a redundant manipulator, the
transformation between the joint and task spaces does not
ensure the uniqueness of the solution for the task space forces
[17]. Minimization of the norm ‖τ− JT (q) f‖ is commonly
carried out by using the pseudo-inverse solution, that is
f = J+(q)τ . However, the only condition ensuring that this
norm equals zero, is that all joint torques are associated
to the image of the Jacobian transpose. For this reason,
to account for the task space performance limits of the
redundant manipulator for a given torque boundary, only
vector of joint torques that do not generate internal motions
must be taken into account. This will produce reduced force
boundary region, which is basically the intersection of the
joint torque boundary region with the image of JT (q).

An algorithm is proposed in [17] to account for the
force manipulability polytope in a certain configuration of a
redundant robot. This is important, however, to note here that
this algorithm estimates for the reduced force manipulability
polytope for a fixed end-effector position in the Cartesian
space. Once the robot configuration is altered (e.g. under
external disturbance), the corresponding force polytope must
be recalculated. This results in a generally non-polytopic
shape, while sweeping the Cartesian space to appoint to the
boundary region of the task force/displacement.

Another issue in computation of the force boundary region
for a redundant manipulator is that any applied displacement
in the task space can be transformed into non-unique solu-
tions in the space of joint velocities. This indicates that the
chosen policy regarding the update of the joint velocities
can potentially revise the resulting performance limits of the
Cartesian stiffness control to realize a task-appropriate size
and/or isotropy of the SFR.

A. Stiffness Feasibility Region - Redundant Case

As mentioned earlier, SFE is a fast but somewhat inac-
curate tool that conveys some intuitive information on the
space of maximum allowable deviation from the initial equi-
librium point of a compliant robot. Especially, the direction
of the maximum allowable displacement and the isotropy
index (ratio between the maximum and the minimum axis
[18]) of the ellipsoid are profitable properties which can be
potentially used to define and realize a desired performance
through the predictive control of the configuration.

To visualize the SFE for a redundant manipulator, the unit
sphere in joint torque space is transformed into the task space
and it’s intersection with the image of the Jacobian transpose
is calculated. It is well known that such a transformation can
be performed by J+J which leads to a similar equation as
in (5), for a redundant manipulator4, since JJ+JJT = JJT .

4The torque antisymmetry scaling can be performed by introducing the
scaled Jacobian as ĴT (q) =Wτ JT (q) [17].
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Fig. 5: 4-link planar manipulator. The SFEs are plotted in solid and
dashed which correspond to a similar Cartesian stiffness matrix,
but different interaction performances regarding the task space
boundaries (see text for details).

IV. INCREASED PERFORMANCE OF THE CARTESIAN
STIFFNESS CONTROLLER THROUGH OPTIMAL

REDUNDANCY RESOLUTION

It was shown that the SFRs for both redundant and non-
redundant manipulators strongly depend on the manipulator
configuration and the desired stiffness matrix. This points
to the task dependency of the to be utilized optimization
algorithm to adjust the configuration of the robot and render
a desired performance. For instance, the redundant joints of
the robot can be controlled in a way to realize the most
isotropic shape or biggest size of this region. In this direction,
we propose and implement an on-line strategy to possibly
align the “best” direction of the stiffness feasibility region
with the applied external disturbance.

Consider a redundant robot with the aim to realize a
desired Cartesian stiffness matrix Kcd , subject to a certain
boundary in the space of joint torques. To achieve this, the
desired joint torque vector τd is calculated by

τd = τcd + τNd , (6)

with τcd
5 and τNd , corresponding to the Cartesian stiffness

and nullspace torque vectors, respectively.
Now assume that a disturbance profile in a particular

direction δx, is being applied to the end effector of the
robot in a certain configuration (e.g. the four-link planar
robot as depicted in Fig. 5, with the SFE depicted in
red (solid line)). A desired orientation of the SFE can be
illustrated by coinciding the major axis of the realized SFE
(dashed line, σ = σd) with the direction of the applied
displacement. To achieve this, we calculate the maximum,
locally allowable displacement σ , along the direction of the
external displacement δx

‖δx‖ , on the SFE

[σ
δx
‖δx‖

]T Kc J(q)W 2
τ JT (q) Kc [σ

δx
‖δx‖

] = 1, (7)

with ‖.‖ denoting the vector norm operator. Solving for σ

we obtain

σ = [
δxT

‖δx‖
Kc J(q)W 2

τ JT (q) Kc
δx
‖δx‖

]
−1
2 . (8)

5Details of the implementation of τcd can be found in [10].

The nullspace torque vector can be adjusted to re-orient
the major axis of the SFE towards the direction of δx

‖δx‖ . To
do so, τNd is calculated by projecting the gradient of the cost
function

V =
l

∑
i=1

wiσi
2 (9)

into a dynamically consistent nullspace of the Jacobian
transpose [19],

δτNd = [I− JT (q)J̃T (q)]
∂V (q)

∂q
, (10)

where I, l and w denote the identity matrix, considered
number of axes in the SFE and the corresponding scale,
respectively. J̃(q) can be defined using the mass matrix M(q),
as follows

J̃(q) = M−1(q) JT (q) M̂(q),
M̂(q) = [J(q) M−1(q) JT (q)]−1.

(11)

Eventually, to be commanded joint motor torque τm, can
be calculated as

τm = τd−Kτ(τ− τd)−Kτ̇ τ̇ (12)

with positive definite controller matrices Kτ and Kτ̇ , and τ̇

denoting the torque derivative. It has been demonstrated that
the implementation of (12) can stabilize the torque dynamics
around the equilibrium point τ = τdk [10], with τdk being
updated using (3) and (10).

V. RESULTS

A. Simulation Results: Four Link Manipulator

In this section, we evaluate the efficiency of the proposed
algorithm for the 4-link planar redundant robot in Fig. 5.
The aim is to realize a desired Cartesian stiffness matrix,
subject to specific boundaries in the space of joint torques:
|τ1| ≤ 5 Nm, |τ2| ≤ 4 Nm, |τ3| ≤ 3 Nm, and |τ4| ≤ 2 Nm.
Kcdes is considered similar to the 2-link example. Links are
assumed to have the same length, that is 0.2m. The position
of the end effector is assumed to be fixed on the plane.

Starting from any initial configuration (Fig. 6, dashed
plots), for a given external disturbance vector, (δx, Fig. 6,
green arrows), and Kcdes , the manipulator configuration is
adjusted (Fig. 6, solid plots) to possibly align the initial
SFE (Fig. 6, blue-dotted) with the desired one (Fig. 6, red-
solid). As a result, even if the Cartesian stiffness profile
is equal for all configurations, the optimized configurations
provide more efficient interaction performance, meaning that
the joint torque actuation saturation will occur for larger
external displacements/forces, compared to the starting con-
figurations. Figs. 7. a and b illustrate the calculated SFRs
for configurations A and D of Fig. 6, respectively. The
blue (dashed) regions correspond to the initial configuration,
while the solid (black) ones are realized consequent to the
optimization of the redundancy. A comparison between Fig.
6 and Fig. 7 illustrates that directions of the maximum
allowable displacement in SFRs agreeably coincide with the
ones in the corresponding SFEs.
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Fig. 6: Initial (dashed) and optimized (solid) configurations and SFEs of the four link example to render the best performance for the
disturbance profile applied along a specific direction. The optimization algorithm utilizes the direction of the maximum SFE to orient the
boundary region towards the direction of the applied disturbance.
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Fig. 7: Stiffness feasibility regions for initial (blue, dashed) and
final (black, solid) configurations A(a) and D(b) in Fig. 6. In both
plots the external disturbance is assumed to be applied along x
direction.

B. Simulation Results: Compliant Humanoid Robot

In this section, the efficiency of the proposed controller
in rendering a desired interaction performance is evaluated
on a compliant humanoid robot arm COMAN [20]. A
model of the COMAN robot is developed and simulated
in Gazebo (http://gazebosim.org). In our simulation model,
to highlight more the effect of configuration control during
interaction, the joint torque limits were considered one
third of the nominal values. Details of the kinematic and
dynamic models of the robot and the utilized interfaces
for joint torque/impedance/position control can be found
in [21]. A postural task is defined to track a desired po-
sition and orientation of the left arm in the workspace
(Fig. 8, left side). A diagonal desired stiffness matrix, with
[2.5 2.5 2.5 0.25 0.25 0.25] kNm

rad , being the stiffness values
along the main diagonal is tracked by the proposed Carte-
sian stiffness controller. Consequently, various displacement
profiles were implemented and applied to the left hand of
the COMAN robot.

A typical result of the proposed redundancy resolution
for improved interaction performance is illustrated in Fig. 8,
right side. In this example, an external displacement profile
along y direction (the yellow/dashed vector) is applied to
the left hand of the robot. Corresponding SFRs for both
configurations in xy plane are demonstrated in Fig. 9. As
observed in these plots, an efficient elongation of the SFR
towards the external disturbance vector is achieved, even if
only one degree of redundancy is available for this fully
constrained task. Optimized configuration provides bigger
displacement region along the direction of the disturbance
while realizing the desired stiffness matrix. Outside of the

y 

x 

y 

x 
δy 

Fig. 8: COMAN robot in the initial configuration on left. The arm
configuration (right side) has been optimized (consequent to the
optimization of τNd ) to re-orient the direction of the major axis
of the realizes SFE towards the direction of the applied external
disturbance (y direction, yellow/dashed). Observed behavior looks
natural.
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Fig. 9: Stiffness feasibility regions for initial (blue, dashed) and
optimized (black, solid) configurations of Fig. 8, projected in xy
plane. In this example, the displacement profile is along y direction.

corresponding regions, at least one of the arm joints will
hit the joint torque limit boundary and as a consequence,
realization of the desired Cartesian stiffness matrix will be
subject to uncertainty.

C. Experimental Results

Preliminary experiments were carried out to further eva-
luate the efficiency of the proposed interaction controller. A
Cartesian impedance controller was developed for KUKA
lightweight robot to realize a diagonal stiffness matrix with
3 kN

m and 0.3 kNm
rad being the translational and rotational

components. Once an external disturbance is applied (e.g.
along y direction), the proposed algorithm optimizes the



redundant degrees of freedom from an initial configuration
(e.g. Fig. 10, left side) to a configuration (Fig. 10, right side)
in which the realized SFR is elongated more towards the
external disturbance. Fig. 11 illustrates the achieved initial
(blue) and optimal (red) SFPs for this experiment. Dark to
light grey plots demonstrate geometric variations of SFPs
while the null space torque vector drives the redundant dof
towards the optimal configuration.
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Fig. 10: KUKA robot in initial (left side) and optimized (right side)
configurations.
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Fig. 11: Experimental verification of the proposed control law
in extending the realized SFR towards the direction of applied
disturbance (y). SFP is projected into xy, xz, and yz planes for initial
(blue) and final (red) configurations (units in meters). Color map
from black to light grey demonstrates the geometric variations of
the realized SFP, consequent to the iterative redundancy resolution.

VI. CONCLUSIONS

In this paper, we provided a detailed analysis of the
task-space force/deformation behavior of redundant arms
to explain why arm geometry plays a fundamental role
in interaction capabilities of a torque controlled robot. We
demonstrated that due to the imposed boundaries in the
space of joint torque, we can’t indeed realize an arbitrary
stiffness ellipsoids at any given arm configuration. In this
direction, we introduced the notion of maximum allowable
Cartesian force/displacement (“stiffness feasibility”) regions
for a compliant robot and demonstrated that different robot
configurations modify such regions. Eventually, a control
framework to realize a task-appropriate stiffness feasibility
region by optimizing the redundancy was proposed and
experimentally evaluated.

REFERENCES

[1] T. Milner, “Contribution of geometry and joint stiffness to mechanical
stability of the human arm,” Experimental Brain Research, vol. 143,
pp. 515–519, 2002.

[2] K. Akazawa, T. Milner, and R. Stein, “Modulation of reflex EMG and
stiffness in response to stretch of human finger muscle,” Journal of
Neurophisiology, vol. 49, pp. 16–27, 1983.

[3] S.-F. Chen and I. Kao, “Conservative congruence transformation for
joint and cartesian stiffness matrices of robotic hands and fingers,”
The International Journal of Robotics Research, vol. 19, no. 9, pp.
835–847, 2000.

[4] J. K. Salisbury and J. J. Craig, “Articulated hands: Force control and
kinematic issues,” The International Journal of Robotics Research,
vol. 1, no. 1, pp. 4–17, 1982.

[5] F. Mussa-Ivaldi, N. Hogan, and E. Bizzi, “Neural, mechanical, and
geometric factors subserving arm posture in humans,” Journal of
Neuroscience, vol. 5, no. 10, pp. 2732–2743, 1985.

[6] A. Ajoudani, N. G. Tsagarakis, and A. Bicchi, “Tele-Impedance:
Teleoperation with impedance regulation using a body-machine in-
terface,” International Journal of Robotics Research, vol. 31(13), pp.
1642–1655, 2012.

[7] A. Ajoudani, M. Gabiccini, N. G. Tsagarakis, A. Albu-Schäffer, and
A. Bicchi, “TeleImpedance: Exploring the role of common-mode and
configuration-dependant stiffness,” in IEEE International Conference
on Humanoid Robots, 2012.

[8] A. Ajoudani, N. Tsagarakis, J. Lee, M. Gabiccini, and A. Bicchi, “Na-
tural redundancy resolution in dual arm manipulation through configu-
ration dependent stiffness (cds) control,” in International Conference
of Robotics and Automation - ICRA, 2014.

[9] A. Albu-Schaffer, M. Fischer, G. Schreiber, F. Schoeppe, and G. Hir-
zinger, “Soft robotics: what cartesian stiffness can obtain with
passively compliant, uncoupled joints?” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2004.

[10] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger, “Cartesian
impedance control of redundant robots: Recent results with the dlr-
light-weight-arms,” in IEEE International Conference on Robotics and
Automation, 2003.

[11] A. Pashkevich, A. Klimchik, and D. Chablat, “Enhanced stiffness mo-
deling of manipulators with passive joints,” Mechanism and machine
theory, vol. 46, no. 5, pp. 662–679, 2011.

[12] C. Huang and I. Kao, “Geometrical interpretation of the cct stiffness
mapping for serial manipulators,” in Robotics Research. Springer,
2003, pp. 419–431.

[13] T. Yoshikawa, “Manipulability of robotic mechanisms,” The inter-
national journal of Robotics Research, vol. 4, no. 2, pp. 3–9,
1985.

[14] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Global
task space manipulability ellipsoids for multiple-arm systems,” IEEE
Transactions on Robotics and Automation, vol. 7, no. 5, pp. 678–685,
1991.

[15] T. Kokkinis and B. Paden, “Kinetostatic performance limits of
cooperating robot manipulators using force-velocity polytopes,” in
Proceedings of the ASME Winter Annual Meeting, 1989, pp. 151–155.

[16] A. Bicchi, C. Melchiorri, and D. Balluchi, “On the mobility and mani-
pulability of general multiple limb robots,” Robotics and Automation,
IEEE Transactions on, vol. 11, no. 2, pp. 215–228, 1995.

[17] P. Chiacchio, Y. Bouffard-Vercelli, and F. Pierrot, “Force polytope
and force ellipsoid for redundant manipulators,” Journal of Robotic
Systems, vol. 14, no. 8, pp. 613–620, 1997.

[18] J. Angeles and C. S. López-Cajún, “Kinematic isotropy and the
conditioning index of serial robotic manipulators,” The International
Journal of Robotics Research, vol. 11, no. 6, pp. 560–571, 1992.

[19] O. Khatib, “Motion/force redundancy of manipulators,” in Proceedings
of Japan-USA Symposium on Flexible Automation, vol. 1, 1990, pp.
337–342.

[20] N. G. Tsagarakis, S. Morfey, G. Medrano Cerda, L. Zhibin, and
D. G. Caldwell, “Compliant humanoid coman: Optimal joint stiffness
tuning for modal frequency control,” in IEEE Robotics and Automation
(ICRA), 2013.

[21] A. Ajoudani, J. Lee, A. Rocchi, M. Ferrati, E. M. Hoffman, A. Settimi,
D. Caldwel, A. Bicchi, and N. Tsagarakis, “A manipulation framework
for compliant humanoid coman: Application to a valve turning task,”
in IEEE International Conference on Humanoid Robots, 2014.


