
Abstract— The correct estimation of human hand kinematics 
has received a lot of attention in many research fields of 
neuroscience and robotics. Not surprisingly, many works have 
addressed hand pose reconstruction (HPR) problem and several 
technological solutions have been proposed. Among them, 
Inertial and Magnetic Measurement Unit (IMMU) based systems 
offer some elegant characteristics (including cost-effectiveness) 
that make these especially suited for wearable and ambulatory 
HPR. However, what still lacks is an exhaustive characterization 
of IMMU-based orientation tracking algorithms performance for 
hand tracking purposes. In this work, we have developed an 
experimental protocol to compare the performance of three of the 
most widely adopted HPR computational techniques, i.e. extended 
Kalman filter (EKF), Gauss-Newton with Complementary filter 
(CF) and Madgwick filter (MF), on the same dataset acquired 
through an IMMU-based sensing glove. The quality of the 
algorithms has been benchmarked against the ground truth 
measurement provided by an optical motion tracking system. 
Results suggest that performance of the three algorithms is 
similar, though the MF algorithm appears to be slightly more 
accurate in reconstructing the individual joint angles during 
static trials and to be the fastest one to run. 

I. INTRODUCTION

The hand is one of the most important tools that humans 
use to interact with the environment. It not only represents 
the primary end-effector for object manipulation and 
grasping, but also the cognitive organ of the sense of touch 
and a major means of non-verbal communication. 
Understanding and studying how hands are used in tasks of 
daily living is important for various reasons, including human 
motion analysis, rehabilitation, neuro-prosthetics, advanced-
human -machine interaction, tele-robotics and robotics [1,2]. 
Indeed, accurate hand pose reconstruction (HPR) can provide 
crucial information not only to assess manipulative task 
performance in humans, but also for design and control of 
humanoids, e.g. to devise suitable guidelines for the 
development of artificial hand systems, including prostheses 
[3]. However, ideal HPR is difficult to achieve due to the 
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complex biomechanics of the hand and a large number of 
degrees of freedom (DoFs) involved. Over the years, many 
different systems for monitoring and quantifying hand 
motion have been proposed, such as camera-based marker 
systems and instrumented gloves (equipped, for instance, 
with piezo-resistive, fibro-optic or inertial-magnetic sensors). 
Interested readers can refer to [4] for more details. All these 
systems rely on different sensing technologies and apply 
different mathematical models to decode the pose of the hand 
and the task being performed. This constitutes one of the 
major obstacles to compare study results obtained by 
different studies and to provide reliable benchmarking. 
Although optical systems are widely considered the gold 
standard in motion tracking, non-vision based wearable 
systems are more suitable (and commonly employed) for 
ambulatory and daily life monitoring, providing an ecological 
tool to study human behavior [4]. Among wearable solution, 
Inertial and Magnetic Measurement Unit (IMMU) based 
systems offer some elegant characteristics, including but not 
limited to a more effective integration with soft-robotic hands 
hand bodies [5]. Despite the fact that IMMU-based 
orientation tracking algorithms have been compared 
extensively in literature, no comparative studies have been 
carried out in the context of HPR. Note that IMMU are 
sometimes also referred to as IMU (Inertial measurement 
unit) or MARG (Magnetic, Angular Rate, and Gravity unit). 
In this paper, we will consistently use the acronym IMMU. 

The aim of this study is to make a step further towards 
standardization and benchmarking of the three mostly widely 
used state of the art IMMU-based hand pose reconstruction 
algorithms. The three HPR algorithms considered in this 
study are: Extended Kalman Filter (EKF), Gauss-Newton 
method combined with the Complementary Filter (CF) and 
Madgwick Filter (MF). In the comparison, we focused on 
algorithms’ repeatability; static hand pose reconstruction and 
dynamic hand pose reconstruction. We assessed accuracy of 
the pose reconstruction and computational complexity. 
Quality of the algorithms was benchmarked against the 
ground truth measurement provided by an optical motion 
tracking system. 

II. METHODS

A. Kinematic Hand Model
In this article, a 20 DoF kinematic hand model is used as

shown in Figure 1. In this model, each digit has a proximal, 
intermediate and distal phalanx. Each proximal 
interphalangeal (PIP) and distal interphalangeal (DIP) joint 
has a single flexion-extension axis (1 DoF), while the 
metacarpophalangeal (MCP) joint at the base of the digit has 
both flexion-extension and abduction-adduction axes (2 
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DoFs). The thumb is modeled with 4 DoFs corresponding to 
rotation and abduction/adduction at the carpometacarpal 
(CMC) joint (2 DoFs), flexion/extension at the MCP joint (1
DoF) and flexion/extension at the interphalangeal (IP) joint
(1DoF). In this model, no pronation/supination of the fingers
is considered and the position of the metacarpals is
considered fixed. All the joints are assumed to be ideal
hinge/universal joints whose axes are fixed relative to their
associated links. This model is the same as proposed in [6].
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Figure 1.  20 DoF kinematic hand model and reference frame. 
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Figure 2.  IMMU-based power glove and placement of optical markers. 
Two optical markers were placed on each of the finger segments with three 
markers on each of the hand units. An additional marker was placed over 
the styloid ulnar process to create a stable, and always visible, hand base 
frame. 

B. Hand Tracking Experimental Setup
Hand tracking data was acquired simultaneously with two

independent systems. The IMMU-based motion tracking data 
was recorded with the PowerGlove system [7]. Optical 
motion tracking data was acquired with VICON system and 
used as a ground truth measurement. These two systems are 
described in more detail in the following subsections. 

1) IMMU System
To capture the data used for the algorithm comparison, a

PowerGlove system was used. The PowerGlove (Figure 2) is 
an IMMU-based device that uses inertial (gyroscopes and 
accelerometers) and magnetic sensors placed on various hand 
and finger segments to accurately assess full 3D hand 
kinematics. An explanation of the anatomical acronyms used 
is given in TABLE I. The device acquires 100 samples per 

second from the accelerometers and magnetometers and 200 
samples per second from the integrated gyroscopes. This 
device has been developed at the University of Twente and 
previously validated against an optical tracking system [7]. 
During this study eighteen inertial sensor units, each 
containing a 3D gyroscope and a 3D accelerometer (MPU-
9150) were attached to the dorsal side of the right hand (3 
sensors), to the metacarpal, proximal and distal phalanges of 
the thumb (3 sensors) and to the proximal, middle and distal 
phalanges of the digits (12 sensors). The sensors were 
secured in place using double-sided and single-sided medical 
tape. The 3 sensors on the dorsum of the hand, as well as all 
the sensors on the distal segments of the fingers were 
additionally equipped with 3D magnetometers. The data 
captured by the PowerGlove was used as dataset on which 
the performance of the three HPR algorithms have been 
evaluated. 

TABLE I. EXPLANATION OF ANATOMICAL ACRONYMS 

2) Optical Tracking System
The optical motion tracking setup consisted of 6 infrared

cameras (MX-13, VICON) arranged around a wooden table 
to create a relatively small capture volume appropriate for 
hand kinematic measurements. The arrangement and 
configuration of the cameras was optimized in terms of 
minimum coverage of the measurement volume and 
maximum marker visibility by adjusting the camera focus 
and IR-strobe intensity. Each subject’s hand was equipped 
with thirty-six hemispheric 4mm retro-reflective markers and 
four spherical 9mm markers placed on top of the IMMUs 
(Figure 2), markers were placed on the IMMUs which 
ameliorated distortions due to e.g. tissue artifact. The 
kinematic data was recorded, reconstructed and labeled using 
VICON Nexus Software (version 1.8.5) with the video frame 
rate of 100 frames/second. To remove fluctuations of the 
markers and high-frequency drift, labeled trajectories were 
low-pass filtered (4th order Butterworth filter with 1.5Hz cut-
off frequency for the static poses and 3Hz cut-off frequency 
for the dynamic pointing task) using the same software. The 
cut-off frequency was selected based on the fact that the 
performed hand poses were meant to be stationary, and on 
the earlier research pointing out that the bandwidth of most of 
the common activities of daily living is around 1Hz [8]. 
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C. Hand Pose Reconstruction Algorithms
In this study, we tested three algorithms commonly used for 
HPR: Extended Kalman Filter, Gauss-Newton method 
combined with the Complementary Filter and Madgwick 
Filter, and comparatively evaluated them against the optical 
tracking system. Optical tracking systems are known for 
their high accuracy and are used as a gold standard for the 
HPR throughout the literature [1]. The performance of the 
chosen HPR algorithms was tested using a common dataset 
acquired with the experimental setup described above. See 
below for the description of the used HPR algorithms.  

1) Extended Kalman Filter
EKF computes the state of the dynamic system in a two-

step process. First, it estimates the current state variables, 
along with their uncertainties. Once the outcome of the next 
measurement (distorted by a measurement error) is observed, 
these estimates are updated using a weighted average 
(Kalman gain), with more weight being given to the estimate 
with the higher certainty. EKF uses multivariate Taylor 
Series expansion to linearize the model about current mean 
and covariance. In this study, a separate EKF has been used 
for each IMU sensor. The implemented filter uses a general 
state space model for system’s dynamics and measurements. 
The state vector x consists of the single rotation quaternion 
(q) and tri-axial gyroscope bias vector ([ : 

  (1) 

The process model is based on the gyroscope integration 
and thus during the state update, state estimates are updated, 
based on the new gyroscope readings, according to: 

(2) 
(3) 

where is the current quarternion estimate of the 
orientation,  is the previous quarternion estimate of the 
orientation,  is the quarternion multiplication operator,  
is the angular velocity measured at time k,  is the sampling 
period,   is the current gyroscope bias vector,  is the 
previous gyroscope bias vector and  is the change in the 
gyroscope bias. 

The measurement model is constructed by stacking 
together the accelerometer and magnetometer measurement 
vectors. The a posteriori error state and corresponding 
covariance estimate, given the a priori state and covariance, 
is determined using the linearized matrix of the measurement 
function and the calculated Kalman gain. Finally, during the 
time update, error states are set to zero and the corresponding 
covariance matrix P is propagated according to discretized 
process model F and process noise Q. 

2) Gauss-Newton combined with Complementary Filter
This algorithm exploits the quaternion-based method

presented by Comotti et al. in [9].  It consists of two phases. 
In the first phase, accelerometer and magnetometer data are 
used to estimate the orientation. In the second phase, this 
estimation is fused with the orientation computed through 
integration of the gyroscope data. 

The algorithm estimates the orientation using inertial and 
magnetic data, by minimizing a cost function. Exploiting the 

Gauss–Newton minimization procedure, the algorithm 
processes the measurement of gravity and Earth’s magnetic 
flux to evaluate the current sensor orientation with respect to 
a fixed global reference frame. As suggested in [10], a 
compensation for magnetic distortion is performed. 

The second step of the algorithm integrates the angular 
rate, measured by the gyroscope, and fuses the result with the 
output of the previous step using a complementary filter. It is 
worth pointing out that the gyroscope orientation is obtained 
using the last quaternion computed by the whole algorithm. 
Finally, the complementary filter merges together the 
outcome of the Gauss-Newton method and the angular rate 
integration. For further details refer to [11]. 

3) Madgwick Filter
The Madgwick Filter [10] is a constant gain filter adapted

to estimate the orientation of a rigid body in quaternion form 
using data from the IMMU sensors. In this algorithm, the 
gyroscope measurements are first processed with a correction 
algorithm in order to minimize the effects due to the 
gyroscope bias and the drift error. They are then represented 
as quaternions, integrated and used to compute the absolute 
body orientation with the quaternion propagation starting 
from the orientation estimated at the previous timestamp. In 
the second step, the accelerometer and magnetometer 
measurements are fused together and converted to the 
quaternion representation through the gradient descent 
algorithm. The gradient descent algorithm aims to find a 
single, optimal sensor orientation solution that aligns the 
predefined direction of the magnetic field of the earth frame 
with the measured field in the sensor frame. The output of the 
gradient descent algorithm is then used to correct the 
orientation estimated by considering only the gyroscope 
measurements. 

4) Filter Settings
In the simplified EKF implementation the process and

measurement noise covariance matrices were initialized using 
the gyroscope and accelerometer noise values reported in the 
MPU 9150 datasheet [12], and gyroscope bias stability and 
magnetometer noise values reported in [13]. The Madgwick 
Filter was initiated with β = 0.041 and ζ = 0.02, as suggested 
by the author of the filter [2]. Note however that the initial β 
value was set to 2 for the first second of every trial, to ensure 
the convergence of the algorithm states from the initial 
conditions.  Finally, the Complementary Filter was run with α 
= 0.85. The value of α was chosen experimentally, after some 
pilot experiments, as the value that allows for the attenuation 
of the gyroscope related drift without impacting the quality of 
the data.  

D. Study Population & Design
The study design was approved by the internal review

board of the faculty of Electrical Engineering, Mathematics 
and Computer Science of the University of Twente. The 
study protocol was executed at Laboratories of Roessingh 
Research and Development, Enschede, the Netherlands. 
Eight healthy right-handed adults (1 female, 7 males, age: 
25.5±1.3 years, hand length: 19.4±1.1cm), studying at the 
University of Twente participated in this research. None of 
the subjects suffered from any movement disorders. Written 
informed consent was obtained from all subjects included in 



the study. Three types of experiments were performed, each 
addressing specific aspects of the HPR, as described below. 

Repeatability: to investigate the repeatability of the 
estimation of the finger joint orientations, two hand postures 
were used: open hand posture and clenched hand posture. 
Thermoplastic material (ProtoPlast) was used to create two 
subject specific molds (one for each hand posture). A 
standardized protocol previously proposed by Wise et al. [14] 
has been partially adopted here to allow for easier 
comparison between this and similar studies. Starting with 
the open hand position, subjects were asked to place their 
hand flat in the mold and hold it still for 5 seconds, then to 
raise it up, flex all the fingers for 5 seconds, and return to the 
flat hand position. This flexion/flat cycle was repeated 10 
times. Similarly, in the clenched hand position, subjects were 
asked to clench the mold for 5 seconds, then to release it and 
hold their hand still for 5 seconds. This clench/release cycle 
was repeated 10 times. 

Static accuracy: to investigate the static accuracy of the 
algorithms, ten static hand poses were used. The included 
poses are shown in Figure 3 and are based on the GRASP 
taxonomy by Feix et al. [15] and the work of Ciotti et al. [4]. 
During the task subjects were asked to grab and hold real 
objects associated with each of the hand poses (see Figure 3). 
To avoid disturbances of the magnetic field no metal objects, 
except for the hammer head, were used, e.g. the key was 3D 
printed, the bag handle was textile. The hammer head was 
never located in the close vicinity of the IMMU sensors. 
Subjects performed each grasp 5 times maintaining the static 
hand pose for 5 seconds and placing their hand flat on the 
table for 5 seconds in between each two repetitions of the 
grasp. The order of the grasps was randomized across 
subjects.  

Dynamic accuracy: to investigate algorithms’ ability to 
keep track of rapid finger movements, a circular pointing task 
was included in the research protocol. This task was adopted 
from Noort et al. [7]. During this task, subjects made circular 
movements with a stretched index finger, keeping the hand 
still in a static posture such that the abduction/adduction 
angle of the index finger MCP joint was maximized. Five 
repetitions of this cyclical movement constituted a trial (one 
trial lasted 3 to 3.5 s). The task consisted of 10 trials. 

E. Data Processing and Analysis
1) Optical Data
Labelled and filtered optical data was read into MATLAB

using Biomechanical ToolKit. To correct for marker’s 
flickering and occlusions, gaps in marker positions smaller 
than 20 frames were interpolated using a spline function. 
Only the frames in which all the finger markers were visible 
were analyzed further. 

To calculate the flexion/extension and 
adduction/abduction angles, local reference system had to be 
established. Since the hand is not perfectly flat and curves in 
so called hand arch, two separate local coordinate systems 
were created (IM for index and middle fingers, and RL for 
ring and little fingers) and embedded at the sensors placed at 
the dorsum of the hand (Figure 2). Three markers placed at 
each of the hand sensors (H_IM_1, H_IM_2, H_IM_3 and 

H_RL_1, H_RL_2, H_RL_3, see Figure 2 for markers 
definitions) denoted its local reference frame as follows:  

• The x-axis is perpendicular to the plane containing
H_IM_1, H_IM_2 and H_IM_3 markers (H_RL_1,
H_RL_2 and H_RL_3 markers for RL coordinate
system);

• The y-axis is defined by the vector created by H_IM_1
and H_IM_2 markers (H_RL_1 and H_RL_2 markers
for RL coordinate system);

• The z-axis, is formed by the cross product of the x- and
y-axes.

33 3.5. STUDY POPULATION

Figure 17: The grasps executed within this study: a) book grasp (a book); b) pencil grasp (a pencil); c) open
hand d) hook grasp (a bag); e) pinch grasp (a nail); f) spherical grasp (a small wooden ball); g) credit card
grasp (a plastic card); h) power grasp (a hammer); i) lateral grasp (a key); j) cylindrical grasp (a glass)

To avoid magnetic field disturbance, extra care was taken for the used objects not

to contain metallic elements. Thus, the key used in this study was 3D printed from

a plastic material, and the metal needle from the pin, used for the pinch grasp, was

removed. The only object that contained metal elements was a hammer. The head of

the hammer was never located in the close vicinity of the IMU sensors.

• Circular pointing task

In order to investigate algorithms’ ability to keep track of rapid finger movements,

a circular pointing task was included in the research protocol. This task, which has

previously been employed in the validation study of the PowerGlove [100], nicely

compliments the assessment of the static reconstruction of the hand poses and allows us

to see how different algorithms behave in more dynamic tracking settings. During this

task, participants were asked to make circular movements with stretched index finger

while the hand maintained a static posture such that the abduction/adduction angle of

the MCP joint was maximized. Five repetitions of the cyclical movement constituted a

trial. The task consisted of 10 trials.

3.5. Study Population

Thirteen healthy right-handed adults (2 females, 11 males, age: 25.08±1.65 years,

hand length: 19.6±1 cm), studying at the University of Twente participated in

this research. None of the participants suffered from any movement disorders.

Written informed consent was obtained from all participants included in the study.

Figure 3.  The grasps executed within this study: a) book grasp (a book); b) 
pencil grasp (a pencil); c) open hand d) hook grasp (a bag); e) pinch grasp 
(a pin); f) spherical grasp (a small wooden ball); g) credit card grasp (a 
plastic card); h) power grasp (a hammer handle); i) lateral grasp (a key); j) 
cylindrical grasp (a glass)  (from: http://www.oandplibrary.org) 

Next, for each finger, three vectors, one for each segment, 
were defined using the markers placed on the corresponding 
IMMU units. For each of the triangle marker clusters at the 
dorsum of the hand, three base vectors were constructed 
using the markers positions, the geometric center and the 
repeated cross-products. The angles between the vectors 
projected onto the local sagittal plane (IM for index and 
middle finger, RL for ring and little finger) described the 
flexion/extension movement. Similarly, the angles between 
the vectors projected onto the local coronal plane described 
the adduction/abduction of the MCP joints. Joint angles were 
measured for each of the static positions, dynamic circular 
pointing task as well as for the baseline flat hand position. 

2) IMMU Data 
Processing the IMMU data involved five basic steps: 1) 

signal filtering; 2) sensor calibration; 3) anatomical 
calibration, 4) computation of segments’ orientations and 5) 
computation of joint angles. 

The PowerGlove data was read and processed using 
custom made MATLAB scripts. The data was first filtered 
using the 4th order Savitzky-Golay filter with a window 
length of 15 samples for the accelerometer and 31 samples 
for the gyroscope. Next, sensor calibration and anatomical 
segment calibration (see below) were applied.  

As the MEMS based IMMUs often suffer from non-
accurate scaling, sensor axis misalignment and non-zero 
biases, IMMU sensor calibration was performed and used to 
correct the recorded PowerGlove data. The employed sensor 
calibration procedure was adapted from the work of Tedaldi 
et al. [16]. It is based on the assumption that in a static 
position, the norm of the measured acceleration is equal to 



the magnitude of the gravity acceleration plus a multi-source 
error factor (including bias, misalignment, noise, etc.). All 
those can be estimated via minimization over a set of static 
attitudes. After the calibration of the accelerometer, the 
gravity vector position measured by the accelerometer can be 
used as a reference to calibrate the gyroscope. Integrating the 
angular velocities between two consecutive static positions, 
we can estimate the gravity vector position in the new 
orientation. The gyroscope calibration is obtained by 
minimizing the errors between these estimates and the gravity 
reference given by the calibrated accelerometer. To this 
extend, to calibrate the IMMUs, the PowerGlove sensors 
were secured in a flat position within a tightened frame. The 
sensors were left running inside the frame for about 5 
minutes for the temperature of the IMMUs to stabilize. The 
frame was then placed in about 40–50 different static 
positions to obtain the scale, misalignment and bias 
parameters of all accelerometers and gyroscopes. Those 
parameters were then used to calibrate the recorded data.  

Magnetometer measurements, which often suffer from 
hard and soft iron artifacts were calibrated using the ellipsoid 
fitting method [17]. This method is based on the fact that the 
error model of the magnetic compass is an ellipsoid and thus 
a constraint least-square algorithm can be adopted to estimate 
the parameters of this ellipsoid by rotating the magnetic 
compass in various (random) orientations. Those parameters 
can then be used to compensate for the artifacts and 
transform the measurement surface into a sphere.  

Furthermore, since during the experiments PowerGlove 
sensors were attached to the hand and finger segments, 
anatomical calibration procedure was performed to align 
sensor coordinate frames with the finger’s segments’ 
coordinate frames. For this reason, during each experimental 
session additional subject-specific calibration dataset was 
acquired. First, the subjects were asked to place the hand flat 
on the table, in such a way that the gravity vector was 
perpendicular to the palm of the hand, the fingers in neutral 
position with the phalanges aligned to each other, and the 
thumb in abduction. Secondly, the thumb was placed on the 
table with the dorsal side of the thumb and the nail positioned 
horizontally, in such a way that the gravity direction was 
perpendicular to the long axis of the thumb. The x-axes of the 
hand and finger segments, were determined from the 
accelerometer output during static postures of hand and 
thumb: 

(4) 

To find the z-axes of the finger segments, subjects were 
asked to flex the thumb couple of times in the IP joint, place 
the hand flat on the table and subsequently flex all the fingers 
in the MCP joints. A little book was used as a support for this 
task. The z-axes were then determined from the gyroscope 
output during the flexion/extension movements: 

(5) 

The sensor to segment transformation was then defined 
as: 

(6) 

Finally, the hands were placed together and moved in an 
eight-shaped movement for five seconds. Angular velocity 
measured on various hand segments were assumed equal 
during this movement but measured in different coordinate 
frames. Relative orientation was deduced, to express the 
signals of all units on the hand (thumb, index/middle and 
ring/little) in a common reference frame.  

Calibrated PowerGlove data was fed to the three 
algorithms. The algorithms returned the orientation of each of 
the finger segments in quaternion form. Obtained quaternions 
were transformed into Euler angles. Due to problems with 
magnetometer data calibration/quality, the analysis was 
restricted to flexion/extension angles that were calculated as a 
difference in roll angles of the two adjacent finger segments. 

3) Outcome Parameters and Statistical Analysis
To assess the repeatability of the estimated finger joint

angles in both flat and clenched positions, following the 
original protocol of Wise et al. [14], two different measures 
were calculated for each DoF (joint angle). Those measures 
were:  

• range: refers to the difference between the highest and
lowest joint angle value measured during the flat
hand/clenched hand phase, in degrees

• standard deviation of the joint angle values measured
during the flat hand/clenched hand phase, in degrees

Those measures were then averaged across all joints,
separately for each subject and each algorithm. To quantify 
the computational complexity of the compared algorithms, 
the repeatability datasets were also used to measure the time 
needed to obtain orientation estimation of each finger 
segment, separately for each subject and each algorithm.  

To compare the performance of the chosen algorithms 
against the optical tracking system, the joint angles measured 
during the static hand poses experiment were analyzed. The 
algorithm performance was evaluated in terms of the 
estimation errors as compared to the ground truth results 
obtained with the VICON optical tracking system. Absolute 
DoF estimation errors, that is the absolute differences 
between joint angle values returned by the algorithm and the 
ground truth measurement provided by the VICON system: 

(7) 

and pose estimation errors, that is the mean of the DoF 
absolute estimation errors computed separately for each pose: 

(8) 

were considered and averaged over all of the trials [18]. 
These metrics were computed separately for each subject and 
each algorithm. Due to problems with optical markers’ 
visibility, bag grasp and hammer grasp were excluded from 
the analysis. Likewise, due to limited visibility of the 
markers, thumb data was not analyzed. In case of some 
subjects and grasps, optical data of the ring and/or little finger 
was also missing. Those trials were thus not used for the 
calculation of the pose estimation error, and were included 
only in the calculation of the DoF absolute errors. 



In order to evaluate the algorithm’s performance during 
dynamic finger movements, the circular pointing task data 
was analyzed. The estimated flexion/extension angle of the 
MCP joint of the index finger was compared to the 
measurement output of the optical tracking system. Posthoc 
cross-correlation of the calculated joint angles was used to 
synchronize the PowerGlove data with the optical data. The 
accuracy of the algorithm was then estimated using root 
square mean (RMS) difference between both measurement 
systems averaged over all trials. This metric was computed 
separately for each subject and algorithm.  

All statistical analyses were performed with SPSS 
(Statistical Package for Social Science, IBM, Armonk, New 
York, USA) with significance level set at α = 0.05. At first 
the data was checked for normality using Shapiro-Wilk test. 
All the data, apart from the computational times data, proved 
to be distributed in the Gaussian fashion, allowing for the 
parametric statistics to be used. To assess the effect of the 
algorithm on the joint angles repeatability, static pose 
estimation errors and dynamic trial RMS differences, 
repeated measures ANOVAs were conducted separately for 
each metric of interest. To assess the differences in 
computational complexity, nonparametric Friedman test was 
employed. In cases where the assumption of sphericity was 
not met, Greenhouse-Geisser correction was used. Post-hoc 
analyses were carried out with Bonferroni correction for 
multiple comparisons (3 comparisons – significance level α = 
0.017). To support the statistical interferences drawn based 
on the p-values, subsequent Bayesian statistical analysis was 
carried out using JASP [19]. Bayesian analysis allowed for 
quantification of the evidence in favor of the null hypothesis 
(H0: no difference between the algorithms). To this extend 
Bayesian repeated measures ANOVAs were used and 
followed by post-hoc Bayesian paired t-tests. The prior was 
set to follow Cauchy’s distribution with the width equal to 
0.707 [20]. To assure the robustness of the statistical test to 
the choice of the prior’s width, the same analysis was 
repeated for prior widths ranging from 0 to 1.5. Since the 
choice of prior width did not influence the results, only the 
Bayesian Factors associated with Cauchy’s prior width of 
0.707 are reported here.  

III. RESULTS

A. Calibration
The sensor calibration corrected sensor scaling,

misalignment and bias errors in the accelerometers, 
gyroscopes and magnetometers. Sensor to segment 
calibration measurements were carried out for each subject, 
allowing transformation of sensor data from sensor frame to 
segment frame. 

B. Repeatability Results
To compare repeatability of the algorithms’ outcomes, the

range (mean difference between highest and lowest joint 
angle value obtained in each trial) and standard deviation of 
those joint angles have been calculated across n=10 trials, 
separately for each subject and each algorithm. Within-
subjects comparisons allowed us to look at the differences 
between algorithms while accounting for intra-subject 
variability. 
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Figure 4.  A) Repeatability range and B) standard deviation for the flat 
hand scenario. Significant differences at p<0.017 between the algorithms 
are marked with *. Error bars represent standard deviations. 

Figure 5.  A) Repeatability range and B) standard deviation for the 
clenched hand scenario. No significant differences between the algorithms 
were found. Error bars represent standard deviation. 

To look for significant differences between algorithms, 
repeated measures ANOVA and Bayesian repeated measures 
ANOVA were used. In the flat hand scenario, the 
repeatability of the algorithms was found to be significantly 
different between the algorithms (Figure 4) in terms of range 
(F(2,14) = 8.885; p=0.003, BF=10.64) but not in terms of 
standard deviation. Post-hoc pairwise comparison with 
Bonferroni adjustment (α = 0.017) revealed that the 
repeatability range of the CF was significantly smaller 
(p<0.005) than the same metric calculated for the two other 
algorithms. This result was further confirmed by the 
Bayesian analysis, where for range CF<Madgwick: 
BF=10.62; CF<EKF: BF=13.84; Madgwick≠EKF: 
BF=0.33. No significant differences were found in the 
clenched hand scenario, with the Bayesian analysis providing 
substantial evidence in favour of the null result (no 
differences between algorithms) for the clenched hand 
repeatability range (BF=0.25) (Figure 5). 

C. Static Hand Poses
The estimation accuracy of the algorithms was evaluated

in terms of the estimation errors, as compared with the 
optical tracking system. Both individual DoF (joint angle) 
estimation errors and pose estimation errors (average of all 
joint angle estimation errors for a given grasp, see Methods 
section) were considered (Figure 6). Statistical analysis 
revealed significant effect of the hand pose on the pose 
estimation error (F(7,14)=2.74, p=0.017, BF>3000), with 
glass and open hand poses associated with the lowest 
reconstruction accuracy. No significant effect of the 
algorithm was found, with Bayesian analysis providing 
support for the null hypothesis (no differences between the 
algorithms, BF=0.27). Similarly, no significant interaction 
between the pose and the algorithm has been observed 
(BF=0.012). 



Figure 6.  Pose estimation errors (average joint angle estimation error for a 
given grasp). No significant differences between algorithms were found. 
Glass and open hand pose were associated with significantly higher errors 
than other poses. Error bars represent standard deviation. 

As shown in Figure 7, statistical analysis revealed 
significant effect of the DoF on the DoF estimation errors 
(F(3.15,22.08)=3.46, p=0.032, BF>3000), with largest errors 
associated with the MCP joints of the middle, ring and little 
fingers as well as with the DIP joints of the ring and little 
fingers. Similarly, algorithm choice also proved to hold a 
significant effect on the DoF estimation errors 
(F(1.008,7.054)=21.26, p=0.002, BF=230), with Madgwick 
algorithm performing significantly better than the other two 
algorithms (p<0.01, CF≠K: BF=0.45, M<CF: BF=34.23, 
M<CF: BF=18.31). Closer look at the data revealed that the 
differences between algorithms’ performance were largely 
driven by DoF estimation errors in the MCP joints of the 
index, middle and little fingers as well as in the DIP joint of 
the little finger. No significant interaction between the DoF 
and the algorithm was found (BF=0.005).  

Figure 7.  DoF estimation errors, as compared to optical tracking system. 
DoFs for which significant effect of the algorithm was found at α = 0.05 are 
marked with *. Error bars represent standard deviation. 

D. Circular Pointing Task
To assess algorithms’ performance in more dynamic

conditions, a circular pointing task was employed (see 
Methods). Index finger MCP flexion/extension angle was 
calculated using the three algorithms, as well as optical 
tracking data. RMS errors between the output of the 
algorithms and the VICON data were calculated and 
averaged over all trials (Figure 8). The CF algorithm was on 
average associated with 8.34±2.64 degrees RMSE, 
Madgwick algorithm with 8.74±3.04 degrees RMSE and 
EKF with 8.46±2.14. No statistical difference between the 
algorithms was found (BF=0.44).  

Figure 8.  A) Representative reconstruction of the index finger’s MCP joint 
flexion/extension angle during the circular pointing task. Data from one trial 
and one subject. Madgwick algorithm’s reconstruction is plotted in blue, 
CF’s in red and EKF’s in yellow. Reference data from the Vicon system is 
plotted as a dashed black line. B) Average RMSE, as compared to the 
optical tracking data, for each of the algorithms during the circular pointing 
task. Error bars represent standard deviation 

E. Computational Complexity
The computational complexity of the algorithms was

assessed by measuring the CPU time needed to compute the 
segment orientations from the repeatability tasks. The 
computer system used was a MacBook Pro, 2.66GHz Intel 
Core 2 Duo processor, 8GB RAM, OS El Capitan. Results of 
the Friedman test indicated significant statistical differences 
between computation times obtained with different 

algorithms (χ2(2,574)=472.11, p<0.0001, BF> 3000). Post-
hoc analysis proved Madgwick algorithm to be the fastest (on 
average 3.18±1.91s), EKF algorithm to be the second best 
(on average 4.36±0.42s), and CF algorithm to be the slowest 
one (on average 17.47±3.34s). Those results were 
corroborated by the Bayesian post-hoc testing, with BF 
always above 10.15.  

IV. DISCUSSION

This work provides an overview of the performance of 
the three most commonly employed IMMU-based HPR 
algorithms. Outcomes of the algorithms are comparable, 
however MF outperforms the other algorithms in terms of 
accuracy in individual DOF reconstruction and reduced 
computational complexity. An overview of the main results is 
given in Table II.  

It is worth mentioning that the outcomes presented here 
are dependent on the choice of the tuning parameters of the 
filters. If different parameters will be chosen, the results of 
the comparison might also be different. Furthermore, it needs 
to be remembered that the EKF implementation used in this 
study was very much simplified when compared to the more 
elaborate EKF implementations proposed in other HPR 
studies. With only seven states included in the states vector 
(see Methods section), the used implementation did not take 
full advantage of EKF’s probabilistic nature. The original 
implementation of Kortier et al. [21], with larger state vector, 
biomechanical constraints update and hierarchical overlay of 
multiple Kalman Filters would likely perform better than its 
simplified counterpart. However, it would also likely increase 
the computation load, which may become an issue depending 
on the context in which the algorithm is being used. For 
instance, if HPR is used for therapeutic assessment, feedback 
based training or when integrated as sensory pathway in a 
humanoid, real-time HPR processing, and hence low 
computational load, would typically be required.  



TABLE II. OVERVIEW OF PEROFRMANCE OF HPR ALGORITHMS 

Characteristic EKF CF MF 
Repeatability in flat hand 
scenario: range (degrees) 

and std (degrees) 

4.11±1.64 
0.79±0.11 

3.37±1.23 
0.78±0.11 

4.13±1.28 
0.9±0.16 

Repeatability in clenched 
hand scenario: range 

(degrees) and std 
(degrees) 

17.05±9.17 
8.03±3.88 

16.19±8.56 
8.39±4.33 

16.03±3.25 
10.68±11.04 

Static hand DoF error 
(degrees) 

11.22±1.95 11.23±2.02 9.7±1.28 

Static hand pose error 
(degrees) 

10.63±1.75 10.66±1.75 10.45±1.25 

Circular pointing task 
RMSE (degrees) 

8.46±2.14 8.34±2.64 8.74±3.04 

Average CPU time (s) 4.36±0.42 17.47±3.34 3.18±1.91 

To compare the algorithms, an optical tracking system 
has been used here as the ground truth reference. Internal 
consistency of the HPR in an optical and IMMU-based 
systems has been investigated in [7] with inaccuracies 
attributed to the skin movement artifacts. However, in this 
study optical markers were placed directly on top of the 
IMMU sensors, so skin movement artifact affected both 
measurement systems in the same way.  

V. CONCLUSIONS

Objective and accurate analysis of hand kinematics plays 
a critical role in many fields including clinical practice, 
robotics, rehabilitation and neuroprosthetics. In light of many 
different strategies used to reconstruct the pose of the hand, 
the aim of this study was to compare three different HPR 
algorithms. The three algorithms compared in this study 
obtained very similar scores on most of the considered 
metrics, suggesting no gross differences in their HPR 
performance. Yet, the MF algorithm proved to be slightly 
more accurate in reconstructing the individual joint angles 
during static trials (its static absolute DoF error was 
significantly lower than those of the CF and EKF algorithms) 
and was the fastest one to run. In future studies it may also be 
interesting to look into internal consistency of reconstruction 
(ICC), and kinematic hand synergies as another potential 
comparison metrics. As muscle synergies have recently been 
shown to be affected by the pre-processing pipeline [22], 
investigating robustness of the kinematic synergies to the 
choice of the sensor fusion algorithm could be an important 
issue to tackle. Hand synergies could also be used to study 
minimal sensing approaches [1,18], where the posture of the 
hand is deducted from an incomplete and imperfect subset of 
data. In other words, it can be used to examine the 
predictability of a subset of joint movements in respect of the 
movements of other joints. This is of fundamental interest in 
the human hand tracking, e.g. in the rehabilitation-assessment 
field, where the need for wearability imposes constraints to 
the number of sensors. Towards this goal, dynamic accuracy 
of the here discussed algorithms will be evaluated in daily-
living tasks, trying to minimize marker occlusions that may 
occur when acquiring optical-based ground truth data. 
Finally, to generalize the results of this work, testing these 
techniques with other hardware platforms is also envisioned. 
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