
Iterative Learning in Functional Space for Non-Square Linear Systems

Cosimo Della Santina1,2, Franco Angelini3

Abstract— Many control problems are naturally expressed in
continuous time. Yet, in Iterative Learning Control of linear
systems, sampling the output signal has proven to be a convenient
strategy to simplify the learning process while sacrificing only
marginally the overall performance. In this context, the control
action is similarly discretized through zero-order hold - thus
leading to a discrete-time system. With this paper, we want to
investigate an alternative strategy, which is to track sampled
outputs without masking the continuous nature of the input.
Instead, we look at the whole input evolution as an element
of a functional subspace. We show how standard results in
linear Iterative Learning Control naturally extend to this context.
As a result, we can leverage the infinite-dimensional nature of
functional spaces to achieve exact tracking of strongly non-square
systems (number of inputs less than outputs). We also show that
constraints - like those imposed by intermittent control - can be
naturally integrated within this framework.

I. INTRODUCTION

Iterative Learning Control (ILC) [1] identifies a class of
control strategies devised to deal with repetitive motions. By
closing the loop in the iteration domain rather than in time,
these techniques can learn the feedforward action necessary to
perform tasks with high precision. The application of ILC to
square Multi-Input-Multi-Output (MIMO) systems is a widely
studied topic [2]–[4]. The non-square case received instead
far less attention. The few works dealing with this case focus
on systems having more inputs than outputs [5], [6]. This
condition is far less challenging than the other way around
- i.e., more outputs than inputs. Indeed, dropping some of the
inputs always brings the system into a square form. To the best
of the Authors knowledge, the application and validation of
ILC to systems with more outputs than inputs is still missing.

This work aims at tackling this challenge for continuous lin-
ear systems with sampled outputs. When applying ILC to such
a system, the model is typically discretized using a zero-order
hold. This simple action removes any requirement on high
order derivatives which would instead be present if attacking
the problem directly in continuous time [7]. Nevertheless, by
constraining the input to be a piece-wise constant function, we
are arbitrarily restraining the space of exploration of a learning
strategy. Fig. 1 summarizes the proposed control framework.
The idea is to track sampled outputs without imposing a piece-
wise behavior on the input. Instead, we select the feedforward
control action as an element of a functional subspace. This
way, we can always pick a large enough functional space to
deal with input and output spaces of any dimension.

This work has been supported by the EU project 101016970 NI.
1Department of Cognitive Robotics, Delft University of Technology,
Delft, The Netherlands. 2Institute of Robotics and Mechatronics,
German Aerospace Center (DLR), Wessling, Germany. 3Centro
di Ricerca “Enrico Piaggio” and Dipartimento di Ingegneria
dell’Informazione, Università di Pisa, Pisa, Italy. Contact emails:
c.dellasantina@tudelft.nl,frncangelini@gmail.com.

+

+

Memory

System

ẋj = Axj + Buj ,

yj = Cxj

↵j

↵j�1

↵1
j

↵mo
j

L

t

t

y1
j

ym
j

t

t

y1
j

ym
j

Sampling

ej

t

t

⇡1
1

⇡l
1

t

t

⇡l
mo

⇡1
mo

T 1 . . . T o

T 1 T o
T 2

T 1 T oT 2

uj yj

Reference

�

ȳ1 . . . ȳo

Fig. 1. Block scheme of the proposed Iterative Learning Control algorithm;
j is the iteration index. We have access to the continuous input signal uj and
discrete samples of the output yj(T 1) . . . yj(T

o). The goal is to learn the
former so that the latter is equal to ȳ1 . . . ȳo. We split the learning strategy
into two phases. First, we express the control action as a linear combination of
iteration-independent basis functions π1 . . . πmo. Then, we learn iteratively
the weights α1

j . . . α
mo
j through single-stage proportional error feedback.

Learning in a functional space has been investigated in [8]–
[10] to improve the extrapolation properties of ILC. These
works do not deal with non-square systems. Another key
difference is that the functional expansion is operated directly
on the discrete system rather than as an alternative to zero-
order holding. In terminal ILC (TILC) [11]–[13] and Point-to-
Point ILC (P2PILC) [14]–[16], the input signal is still a piece-
wise constant function but sampled with higher frequency
w.r.t. the output. The control action is updated using only the
tracking error measurements of the samples of interest rather
than the entire error signal. The extra input points are used to
improve the performance of the tracking task. For example, in
[17], the sampling of reference points of a P2PILC algorithm
is optimized to minimize energy consumption. An analogous
concept is proposed by [18], which considers a generic convex
cost function. The connection between TILC, P2PILC, and
ILC with incomplete information are discussed in [19], [20].
However, none of these works exploit the oversampling of the
input to learn control actions for systems with fewer inputs
than outputs.

To summarize, this work proposes a novel ILC framework
for non-square MIMO systems which learns a continuous con-
trol action directly in functional space. We present necessary
and sufficient conditions for its convergence. We also provide
a general choice of the functional subspace, which assures
convergence of the learning process for all controllable linear
systems. Finally, we show that we can embed constraints on
the input (limited bandwidth, impulsive control, exerting con-
trol only in specific intervals) directly into the basis functions.

A. Units and index notation

We will not explicitly specify units in the rest of the paper.
All physical units may be assumed to be expressed in the MKS
system and angles in radian. In equations, we use subscripts to
refer to iterations and superscripts to identify elements within
vectors and matrices.

II. FUNCTIONAL ITERATIVE LEARNING CONTROL

A. Problem statement

Consider the linear non-square continuous system

ẋj = Axj +Buj , yj = Cxj , (1)

with iteration index j, A ∈ Rn×n, B ∈ Rn×l, C ∈ Rm×n,
xj ∈ Rn, uj ∈ Rl, yj ∈ Rm, with the usual meaning. We
say that a system is non-square if l 6= m. The case l < m is
particularly challenging, while we can always treat l > m as
l = m by dropping some inputs. Consider also a finite set of
time instances {T 1, . . . , T o}, where the superscript is intended
as an index and thus not as a power. We take without loss of
generality times ordered from the smaller to the larger, and
all greater than 0. We take T 0 = 0 as starting time. We call
ȳ1 . . . ȳo ∈ Rm the desired values for the output at the given
times. Our goal is to find a learning rule for uj(t) such that

lim
j→∞

yj(T
k) = ȳk, ∀k ∈ {1 . . . o}. (2)

Note that we do not impose any constraint on the control action
at this stage. For example, we do not ask that it is piecewise
constant as in standard ILC algorithms.

Remark 1. All the results provided in this paper generalize
easily to linear systems subject to iteration-independent dis-
turbances. This happens in the usual way, by incorporating the
effect of disturbance with the unforced evolution of the system.
The required derivations are therefore not reported here for the
sake of space.

B. Main Result

Statically, the input-output characteristic of (1) is not square.
But in ILC we have the opportunity of looking at the whole
evolution of the control action uj - and the space of all
possible continuous functions is infinite-dimensional. This
simple perspective shift allows us to make the problem square
by selecting the control action from a large enough subspace
of the functional space. We can parametrize a generic element
of this space as follows

uj(t) = π(t)αj , (3)

and

π =
[
π1 . . . πo

]
∈ Rl×mo, (4)

with πi(t) ∈ Rl×m and αj ∈ Rmo. In this way, we have
achieved two goals. First, we have separated the components of
uj(t) that are time-dependent from the ones that are iteration-
dependent. Second, we recast the challenge of finding a generic
u into the more straightforward task of finding a learning rule
for the vector αj . The following Theorem introduces such a
learning rule and provides conditions for convergence.

Theorem 1. Consider the linear learning rule

αj+1 = αj + L

ȳ
1 − yj(T 1)

...
ȳo − yj(T o)

 , (5)

with L ∈ Rmo×mo. The combination of (3) and (5) fulfills (2)
with xj(0) = x0 for all j, if and only if

ρ (I − LH) < 1, (6)

where ρ is the spectral radius of the argument, and

H =


∫ T1

0
CeA(T1−τ)Bπ(τ)dτ

...∫ To

0
CeA(To−τ)Bπ(τ)dτ

 ∈ Rmo×mo. (7)

Proof. The closed form solution of (1) is

yj(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)Buj(τ)dτ. (8)

We want to express how the i−th output of interest is affected
by an input as (3). Thus, we evaluate

yj(T
i) = CeAT

i

x(0) +

(∫ T i

0

CeA(T i−τ)Bπ(τ)dτ

)
αj . (9)

In the spirit of the super-vector notation, we collect all the
outputs of interest in the vector Y , obtaining

Yj = dj +Hαj , (10)

where dij = CeAT
i

x(0), and the i−th set of m rows of H is∫ T i

0
CeA(T i−τ)Bπ(τ)dτ . Now that we have an equation which

is formally akin to standard time discrete ILC literature, we
can proceed in the typical way. Plugging (10) into (5) yields

αj+1 = αj + L(Ȳ − d−Hαj)
= (I − LH)αj + L(Ȳ − d),

(11)

where Ȳ ∈ Rmo has as elements (i − 1)m + 1 to im
the i−th desired output ȳi. This equation represents a time
discrete system in the only time variable j. A linear time
discrete system is asymptotically stable if and only if all the
eigenvalues of its dynamic matrix are within the unit circle.
For (11) this is represented by condition (6).

This is enough to prove that the learning rule is convergent.
We now must look for the asymptotic behavior. The steady
state equilibrium of (11) is

α∞ = (LH)−1L(Ȳ − d), (12)

which combined with (10) yields

Y∞ − Ȳ = −(Ȳ − d) +H(LH)−1L(Ȳ − d). (13)

Note now that both L and H are full rank by hypothesis.
Indeed if this was not the case then det(LH) = 0, and
therefore at least one eigenvalue of I − LH would be equal
to 1, contradicting (6). Thus (LH)−1 = H−1L−1, which in
turn implies

Y∞ − Ȳ = 0. (14)

The proof is concluded by noticing that this equation is the
direct super-vector reformulation of (2).

Remark 2. The matrix H can be evaluated from lab ex-
periments without deriving an explicit model of the system.

Indeed, the i−th set of m columns can be obtained by
exciting the system through πi and recording the responses
at {T 1, . . . , T o}.

We have two design choices in defining the learning rule:
the learning gains L and the set of functions π(t). For what
concerns the latter, any choice of π such that H is full rank
is fine. This leaves open the challenge of finding L. Eq. (5) is
formally equivalent to classic linear learning rules, and condi-
tion (6) bears a clear resemblance to convergence conditions
commonly found in the literature [1]. As a consequence, usual
ILC algorithms can be ported in this framework with minimal
changes. For example, for γ ∈ R, the gain L = γI generates a
completely model-free proportional rule, which is convergent
if and only if ρ(I − γH) < 1. If H � 0, then a small
enough gain exists such that the learning is successful. If we
hypothesize a more accurate knowledge of the plant, we can
use the following damped pseudo-inverse as learning gain

L = (H>H + S)−1H>, (15)

where S � 0. Following the same steps as in [21], we can
prove that in this way at each step the learning process mini-
mizes the cost function

∣∣∣∣∑o
k=1(ȳk − ykj)

∣∣∣∣2 + ||αj−αj−1||2S .
If S = 0 then L = H−1 which always convergences in one
step for a nominal plant (deadbeat learning).

C. Simulations: N -masses system
We test here the proposed strategy in the extreme case of

controlling the full state of a system by using a single input.
Fig. 2 shows the considered mechanical system, which obeys
to (16). This can be regarded as a simple template of soft
robot [22]. For these simulations, we take m = 1, κ = 2,
β = 1. The system is heavily under-actuated, having just
one input and the full 2N -dimensional state as output. We
sample the output at the three instants T 1, T 2, T 3. The latter
two are fixed to 18 and 20 seconds respectively. We perform
simulations for increasing values of N and T 1 = 8 or for
N = 3 and T 1 ∈ {2, 5, 8, 11, 14}. The desired outputs are
ȳ1 = (1/N, 2/N, . . . , 1, 0, . . . , 0), ȳ2 = (0, . . . , 0, 0, . . . , 0),
and ȳ3 = ȳ2. Note that since y = x, then the first N
outputs are the positions of the masses, and the remaining
N are the velocities. As base functions π we take a set of
6N Gaussians, with variance T 3/(12N) and shifted in time
such that they homogeneously cover the interval [0, T 3]. The
resulting H function is non singular for all the tested values,
but its condition number gets too large when N > 5. We set
the learning gain as prescribed by (15), with S = 10−2I . Fig. 3
reports the evolution of the error across iterations. The learning
process converges after few iterations to error close to zero in
all the conditions tested - with the exception of T 1 = 2 and
T 1 = 14. This can be interpreted by considering that in a two
seconds span the number of Gaussians being in their variance
range is less than three. Fig. 4 reports the full evolutions for
N = 5 and T 1 = 8. The desired output is matched with an
high level of precision, and with a reasonably regular control
action.

III. GENERAL SELECTION OF THE FUNCTIONAL SPACE

We already discussed in the previous section that any choice
of π such that det(H) 6= 0 is fine, and also that a positive

defined H is advantageous. A natural question is therefore
when and how these conditions can be achieved. The following
Lemma provides a general answer to these questions.

Lemma 1. If [A,B] is controllable, then the base functions

πi(t) =

{
B>eA

>(T i−t)C> if T i−1 ≤ t < T i

0 ∈ Rl×m otherwise,
(17)

are such that H is a block lower triangular and strictly positive
definite matrix.

Proof. Consider the sub-matrix Hi,j composed of the i−th
block of m rows and j−th block of m columns. According to
the definition, its value is

Hi,j =

∫ T i

0

CeA(T i−τ)Bπj(τ)dτ ∈ Rm×m. (18)

Plugging (17) in it yields Hi,j = 0 if j > i. This proves that
H is lower block triangular. Algebraic manipulations allow to
write the other blocks as

Hi,j = C eA(T i−T j)GT j−T j−1 C
>, (19)

where we introduced the finite time controllability gramian

GT =

∫ T

0

eA(T−τ)BB>eA
>(T−τ)dτ ∈ Rn×n. (20)

We have already proven that H is block triangular. Thus,
to check the rank of H we can focus on the rank of diagonal
blocks Hi,i = C GT i−T i−1 C>. Since [A,B] is controllable
by hypothesis, then GT is full rank and positive definite for
all T > 0. Furthermore, C ∈ Rm×n is full rank by definition,
i.e. Rank{C} = m ≤ n. Thus, Hi,i � 0.

Remark 3. Despite having the classical upper triangular
structure, H is not block Toeplitz. This only happens when
the output sampling rate is constant, i.e. T j − T j−1 = T for
all j.

Note that (17) simplifies the assessment of decentralized
learning rules. Thanks to the block triangular structure we
can say that ρ(I − γCGT j−T j−1C>) < 1, ∀j ∈ {1 . . . l}.
Furthermore, since CGT j−T j−1C> � 0 then a small gain
always exists such that the learning process is convergent.

A. Simulations: N -masses system (Cont’d)

We repeat the simulations discussed in Sec. II-C when using
(17) instead of Gaussians. The gain L changes consequently.
With this choice we can achieve good performance up to
N = 7, corresponding to 14 outputs and 42 values controlled
with a single input. Fig. 5 reports the evolution of the total
error at each iteration. Again, the algorithm learns to achieve
the goal in few steps. With this choice of π, the case T 1 =
14 does not show any qualitative difference w.r.t. the other
considered times. The case T 1 = 2 is still challenging for
the algorithm, but this time a clear decreasing pattern can be
observed. Note that this lower pace is justified by the fact that
2 seconds is a very short time for taking the system so far
from its equilibrium and locally stop it there (zero velocity).
As a consequence, the necessary control action is high and
the optimal gain (15) favours slow convergence over too large



ẋ1j
ẋ2j
ẋ3j
...
ẋNj
ẋN+1
j

ẋN+2
j

ẋN+3
j

...
ẋ2Nj



=



0 0 0 . . . 0 1 0 0 . . . 0
0 0 0 . . . 0 0 1 0 . . . 0
0 0 0 . . . 0 0 0 1 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 0 0 . . . 0 0 0 0 . . . 1
− 2κ
m

κ
m

0 . . . 0 − 2β
m

β
m

0 . . . 0
κ
m

− 2κ
m

κ
m

. . . 0 β
m

− 2β
m

β
m

. . . 0
0 κ

m
− 2κ
m

. . . 0 0 β
m

− 2β
m

. . . 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 0 0 . . . − κ
m

0 0 0 . . . − β
m





x1j
x2j
x3j
...
xNj
xN+1
j

xN+2
j

xN+3
j

...
x2Nj



+



0
0
0
...
0
0
0
0
...
1
m


uj , yj = xj . (16)

m m m
uj

x1
j

x2
j

xN
j

 

� �

Fig. 2. An interconnection of N masses, interacting through equal linear
springs and dampers, and actuated through a single force uj applied at the
N−th body. Each mass is free to move only in one direction. The variable xij
measures the absolute position of the i−th mass. The remaining parameters
are the mass m, the stiffness κ, and the damping β.

(a) Varying N with T 1 = 8 (b) Varying T 1 with N = 3

Fig. 3. Evolution of tracking errors across iterations, when Gaussian base
functions are used, together with an optimal tuning of the learning gain. Panel
(a) shows the performance when the number of masses N varies, and panel
(b) depicts how learning evolves when the timing of the first goal is changed.

changes of αj . Fig. 6 shows the evolution of salient variables
during the 10−th iteration of the algorithm. The evolution of
the output is similar to the one in Fig. 4. A main qualitative
difference is that the evolution that we obtain now present
lower frequency and higher amplitudes oscillations compared
to the Gaussian case. The base functions π are generated
using (17) and as a result they are automatically scaled to
the different time windows. The resulting control action is of
similar amplitude to the Gaussian case. Again, we observe
here low frequency oscillations. Since each time window has
its set of base functions, the resulting evolution of u10 is only
piece-wise smooth. Interestingly though, this property equips

Fig. 4. Evolution of salient variables of the 5-masses systems, at the 10th

iteration of the algorithm. Gaussian base functions π are used together with
an optimal tuning of the learning gain. The first target is placed at T 1 = 8.
Black crosses refer to the desired values of the outputs.

the algorithm with the ability of understanding that the system
is at the equilibrium in T 2 and no action is needed to keep it
there.

IV. CONSTRAINTS ON THE INPUT:
INTERMITTENT CONTROL

The proposed framework allows imposing some constraints
on the input in a natural way. For example, we may want our
control action to have a maximum frequency content so that
we do not incur in the speed limits of actuators, that the action
is continuous up to some derivative order, or that the control is
impulsive. These properties can all be achieved by selecting an
appropriate family of base functions π. In the interest of space,
we consider here only one type of constraint, which we believe
is particularly relevant. In some experimental conditions, the
control may be possible only in limited intervals of time. For
the sake of space, we consider here the case in which we
always have some actuation time from one sample and the

(a) Varying N with T 1 = 8 (b) Varying T 1 with N = 3

Fig. 5. Evolution of tracking errors across iterations, when (17) is used to
define the base functions, and the learning gain is optimally tuned. Panel (a)
shows the performance when the number of masses N varies, and panel (b)
depicts how learning evolves when the timing of the first goal is changed.

Fig. 6. Evolution of salient variables of the 5-masses systems, at the 10th

iteration of the algorithm. We use base functions π generated according to
(17), together with an optimal tuning of the learning gain. The first target is
placed at T 1 = 8. Black crosses refer to the desired values of the outputs.

following one. Yet, the result could be easily extended to a
subsequent intervals without actuation if ma ≤ n.

Corollary 1. Consider {T̃ 1, . . . , T̃ o} such that T j−1 < T̃ j ≤
Tj . If [A,B] is controllable then the base functions

πi =

{
B>eA

>(T i−t)C> if T i−1 ≤ t < T̃ i

0 ∈ Rl×m otherwise.
(21)

are such that H is an upper triangular, positive definite, full
rank matrix.

Proof. The proof follows the one of Lemma 1 up to (19),
which becomes

Hi,j = C eA(T i−T̃ j)GT̃ j−T j−1 e
A>(T j−T̃ j) C>. (22)

Thus the i−th diagonal block is Hi,i =
C eA(T i−T̃ i)GT̃ i−T i−1 eA

>(T i−T̃ i) C>. In turn, this matrix
is strictly positive definite since GT̃ i−T i−1 � 0 and
det(CeA(T̃j−Tj−1)) 6= 0.

Therefore, we can apply the same base function that we
applied before whenever the control is allowed and drop the
value to 0 when needed. Note, however, that the final H matrix
is different, implying different learning gains L.

A. Simulations: basketball in the wind

We take inspiration from a basketball player who learns
how to juggle and dunk when the unknown constant wind
is present. Also, the gravity constant is considered unknown.
Both are supposed to be iteration-independent. The following
equations describe the dynamics
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



x1

x2

x3

x4

x5

x6

+


0 0 0
0 0 0
0 0 0
1
m

0 0
0 1

m
0

0 0 1
m


u1

j + w1

u2
j + w2

u3
j −mg

 , (23)

where m = 0.5 is the mass of the ball, w1 and w2 are constant
forces exerted by the wind, and g is the gravitational constant.
We take as output y = (x1, x2, x3), which are the three
Cartesian positions expressed w.r.t. the chest of the player.
The goal is to learn four juggles followed by a 3-points dunk.
We encode this task as ȳi = (0, 0, 0) for i ∈ {1, 2, 3, 4}
and ȳ5 = (6.75, 0, 1.55). The timing is T 1 = 1, T 2 = 2,
T 3 = 3, T 4 = 4, T 5 = 5.5. The control action can be
exerted in the time window [T i, T i + δT̃]. We enforce this
behavior by selecting the base functions according to (21).
The learning gains L is optimally tuned through (15) with
S = 10−2. We perform two sets of simulations. In the first
set we fix the wind to (w1, w2) = (0.5,−0.9) and we vary
δT̃ . In the second, we take δT̃ = 0.5 and we vary w1. Fig.
7 shows the resulting evolutions of the error across iterations.
Fig. 8 shows the evolution of the output (positions) and control
action for δT̃ = 0.2 and w1 = 0.5. The desired targets are
closely matched, by relying on very simple intermittent control
actions. Note that since the control is intermittent the only
way that the controller has to bring back the ball at the initial
condition every second is to push it in the air and then rely on
the open loop dynamics. The trajectory is coherent with what

(a) Varying δT̃ with w1 = 0.5 (b) Varying w1 with δT̃ = 0.2

Fig. 7. Evolution of tracking errors across iterations for system (23), when
(21) is used to define the base functions, and the learning gain is optimally
tuned. Panel (a) shows the performance when the time available for exerting
control changes, and panel (b) depicts what happens when the direction of the
wind is varied. We cut the error at the first iteration since it is two degrees
of magnitude higher than the current scale.

Fig. 8. Evolution of salient variables of the basketball example, at the 8th

iteration of the algorithm. We use base functions π generated according to
(21), together with an optimal tuning of the learning gain. In this simulations
the algorithm has δT̃ = 0.5 seconds to push the ball at the beginning of each
interval, and the unkown frontal wind force is w1 = 0.5. Black crosses refer
to the desired values of the outputs.

we can observe in real world scenarios. Note that the ball is
always pushed slightly side way to compensate for the wind.

V. CONCLUSIONS

This work introduced an iterative learning control frame-
work suited for learning continuous control actions that reg-
ulate the output of a linear system at discrete points. By
exploiting the virtually infinite degrees of freedom provided by
the continuous signals, we can deal with strongly non-square
systems. We can also assure that the control action respects
some constraints at each iteration, for example, non-null only
during prescribed intervals. Future work will extend the theory
towards time-varying systems and non-fixed sampling times by
using arguments as in [23]. We then plan to test the resulting
algorithms in fine-tuning control strategies in robotics.

REFERENCES

[1] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE control systems magazine, vol. 26, no. 3, pp.
96–114, 2006.

[2] B. J. Driessen and N. Sadegh, “Multi-input square iterative learning
control with input rate limits and bounds,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 32, no. 4,
pp. 545–550, 2002.

[3] B. J. Driessen and N. Sadegh, “Convergence theory for multi-input
discrete-time iterative learning control with coulomb friction, continuous
outputs, and input bounds,” International Journal of Adaptive Control
and Signal Processing, vol. 18, no. 5, pp. 457–471, 2004.

[4] M.-B. Radac, R.-E. Precup, and E. M. Petriu, “Model-free primitive-
based iterative learning control approach to trajectory tracking of mimo
systems with experimental validation,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 26, no. 11, pp. 2925–2938, 2015.

[5] W. Hoffmann and A. G. Stefanopoulou, “Iterative learning control of
electromechanical camless valve actuator,” in Proceedings of the 2001
American Control Conference.(Cat. No. 01CH37148), vol. 4. IEEE,
2001, pp. 2860–2866.

[6] L. Noueili, W. Chagra, and M. Ksouri, “New iterative learning control
algorithm using learning gain based on σ inversion for nonsquare multi-
input multi-output systems,” Modelling and Simulation in Engineering,
vol. 2018, 2018.

[7] L. Cenceschi, F. Angelini, C. Della Santina, and A. Bicchi, “Piσ - piσ
continuous iterative learning control for nonlinear systems with arbitrary
relative degree,” in 2021 European Control Conference (ECC). IEEE,
2021.

[8] J. van de Wijdeven and O. H. Bosgra, “Using basis functions in iterative
learning control: analysis and design theory,” International Journal of
Control, vol. 83, no. 4, pp. 661–675, 2010.

[9] J. Bolder and T. Oomen, “Rational basis functions in iterative learning
control—with experimental verification on a motion system,” IEEE
Transactions on Control Systems Technology, vol. 23, no. 2, pp. 722–
729, 2014.

[10] L. Blanken, G. Isil, S. Koekebakker, and T. Oomen, “Flexible ilc:
Towards a convex approach for non-causal rational basis functions,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 12 107–12 112, 2017.

[11] R. Chi, D. Wang, Z. Hou, and S. Jin, “Data-driven optimal terminal
iterative learning control,” Journal of Process Control, vol. 22, no. 10,
pp. 2026–2037, 2012.

[12] R. Chi, Y. Liu, Z. Hou, and S. Jin, “Data-driven terminal iterative
learning control with high-order learning law for a class of non-linear
discrete-time multiple-input–multiple output systems,” IET Control The-
ory & Applications, vol. 9, no. 7, pp. 1075–1082, 2015.

[13] X. Dai, Q. Quan, J. Ren, Z. Xi, and K.-Y. Cai, “Terminal iterative
learning control for autonomous aerial refueling under aerodynamic
disturbances,” Journal of Guidance, Control, and Dynamics, vol. 41,
no. 7, pp. 1577–1584, 2018.

[14] T. D. Son and H.-S. Ahn, “Terminal iterative learning control with
multiple intermediate pass points,” in Proceedings of the 2011 American
Control Conference. IEEE, 2011, pp. 3651–3656.

[15] C. T. Freeman, Z. Cai, E. Rogers, and P. L. Lewin, “Iterative learning
control for multiple point-to-point tracking application,” IEEE Transac-
tions on Control Systems Technology, vol. 19, no. 3, pp. 590–600, 2010.

[16] R. Chi, Z. Hou, S. Jin, and B. Huang, “An improved data-driven point-
to-point ilc using additional on-line control inputs with experimental
verification,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 4, pp. 687–696, 2017.

[17] X. Zhao and Y. Wang, “Energy-optimal time allocation in point-to-point
ilc with specified output tracking,” IEEE Access, vol. 7, pp. 122 595–
122 604, 2019.

[18] Y. Chen, B. Chu, and C. T. Freeman, “Point-to-point iterative learning
control with optimal tracking time allocation,” IEEE Transactions on
Control Systems Technology, vol. 26, no. 5, pp. 1685–1698, 2017.

[19] D. Shen and Y. Wang, “Survey on stochastic iterative learning control,”
Journal of Process Control, vol. 24, no. 12, pp. 64–77, 2014.

[20] D. Shen, “Iterative learning control with incomplete information: A
survey,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 5, pp. 885–
901, 2018.

[21] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control
for discrete-time systems with exponential rate of convergence,” IEE
Proceedings-Control Theory and Applications, vol. 143, no. 2, pp. 217–
224, 1996.

[22] C. Della Santina, M. G. Catalano, and A. Bicchi, “Soft robots,” Encyclo-
pedia of Robotics, M. Ang, O. Khatib, and B. Siciliano, Eds. Springer,
2020.

[23] F. Angelini, R. Mengacci, C. Della Santina, M. G. Catalano, M. Garabini,
A. Bicchi, and G. Grioli, “Time generalization of trajectories learned on
articulated soft robots,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3493–3500, 2020.

