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Abstract. The synergy between musculoskeletal and central nervous systems
empowers humans to achieve a high level of motor performance, which is still un-
matched in bio-inspired robotic systems. Literature already presents a wide range
of robots that mimic the human body. However, under a control point of view,
substantial advancements are still needed to fully exploit the new possibilities
provided by these systems. In this paper, we test experimentally that an Iterative
Learning Control algorithm can be used to reproduce functionalities of the human
central nervous system - i.e. learning by repetition, after-effect on known trajec-
tories and anticipatory behavior - while controlling a bio-mimetically actuated
robotic arm.

Keywords: Motion and Motor control · Natural machine motion · Human-inspired
control.

1 Introduction

Natural and bio-inspired robot bodies are complex systems, characterized by an un-
known nonlinear dynamics and redundancy of degrees of freedom (DoFs). This poses
considerable challenges for standard control techniques. For this reason, researchers
started taking inspiration from the effective Central Nervous System (CNS), when de-
signing controllers for robots [4, 5]. In this work, we test experimentally a model-free
controller intended for trajectory tracking with biomimetic robots. We prove that the
required tracking performances can be matched, while presenting well-known charac-
teristics of human motor control system, i.e. learning by repetition, mirror-image af-
tereffect, and anticipatory behavior. We do that by presenting experiments on a robotic
arm with two degrees of freedom, each of which is actuated by means of a bio-mimetic
mechanism replicating the behavior of a pair of human muscles [7] (Fig. 1(a)).

2 From Motor Control to Motion Control

Taking inspiration from the human CNS, we aim at designing a controller able to repli-
cate the characteristics of paleokinetic level of Bernstein classification [2]. This pro-
vides reflex function and manages muscle tone, i.e. low level feedback and dynamic
inversion. We want to do that by reproducing salient features observed in humans.

Learning by repetition [10] (behavior (i)) is the first feature we are interested into.
CNS is able to invert an unknown dynamics over a trajectory, just by repeating it several
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Fig. 1. The synergy between human musculoskeletal system and the CNS can be imitated by a
bio-mimic robot and a proper controller mixing anticipatory (feedforward) and reactive (feed-
back) actions.

times. This is clear in experiments where an unknown force field is applied to a subject’s
arm, and she or he is instructed to sequentially reach to track a point in space. In every
repetition the tracking is improved until an almost perfect performance is recovered.

Anticipatory behavior [8] (behavior (ii)) is the second characteristic we want to re-
produce. The CNS can anticipate the necessary control action relying on motor memory,
rather than always reacting to sensory inputs. In control terms this means relying more
on feed-forward than on feedback. In humans this characteristic tends to appear more
strongly when the motor memory increases.

Finally, humans present aftereffect over a learned trajectory [9] (behavior (iii)). By
removing the force field, subjects exhibit deformations of the trajectory specular to the
initial deformation due to the force field introduction. This behavior is called mirror-
image aftereffect and is the third characteristic we aim at reproducing.

Fig. 1(b) shows the control architecture. We suppose no a priori knowledge of sys-
tem dynamics. We just read the joint evolution and velocity x ∈ R2n, and we produce
a motor action u ∈ Rn. The purpose of the controller is to perform dynamic inver-
sion of the system, i.e. computing the control action û : [0, tf) → Rm able to track
a given desired trajectory x̂ : [0, tf) → R2n. This has to be done by repeating sev-
eral times the same task and performing it better each time (learning by repetition). To
implement this feature, we propose a control law based on Iterative Learning Control
(ILC) [3]: ui+1 = ui + ΓFFp ei(t) + ΓFFd ėi(t) + ΓFBp ei+1(t) + ΓFBd ėi+1(t). We call
ui and ei , x̂ − xi the control action and the error at the i−th repetition of the task.
ΓFFp ∈ Rm×2n and ΓFFd ∈ Rm×2n are the PD control gains of the iterative update
while ΓFBp ∈ Rm×2n and ΓFBd ∈ Rm×2n are the PD feedback gains. We analyzed the
theoretic control implications of using similar algorithms in [1, 6].

3 Experimental Results

The goal of the experiments is to prove that the considered ILC-based algorithm can
reproduce the discussed human-like behaviors when applied to a biomimetic hardware.
The algorithm is applied to a two degrees of freedom planar arm, with bio-mimetic actu-
ation. More specifically, the mechanism mimics a pair of human muscles. The available
control input u has been proven to be equivalent to the corresponding signal in λ−model
of human muscles [7]. We consider the following gains for the algorithm ΓFFp is
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(a) Reference Trajectory
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(b) Control joint 1
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(c) Error evolution

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

iterations

co
nt

ro
l r

at
io

 

 
joint 1
joint 2

(d) Feedforward and feedback ratio
Fig. 2. Experimental results. (a) shows the reference trajectory. (b) reports the evolution of control
input at joint 1. (c) shows the error over 40 iterations (behavior (i), learning by repetition). (d)
depicts the ratio between reactive and anticipatory actions (behavior (ii)).

blkdiag([1, 0.1], [1.25, 0.0375]), ΓFFd is blkdiag([0.1, 0.001], [0.0375, 0.001]), ΓFBp is
blkdiag([0.25, 0.025], [0.25, 0.025]), and ΓFBd is blkdiag([0.025, 0.001], [0.025, 0.001]).
The desired trajectory (same for both joints) is shown in Fig. 2(a). Note that this is a
very challenging reference, having large amplitudes and abrupt changes in velocities.
For performance evaluation we use norm 1 of the tracking error. The proposed algorithm
learns the task by repeating it 40 times achieving good performance. Fig. 2(b) shows the
joint 1 control evolution for some meaningful iterations (similar results apply to joint
2). Fig. 2(c) proves that the system implements learning by repetition (behavior (i)), re-
ducing the error exponentially to 0 by repeating the same movement. Fig. 2(d) depicts
the ratio between total feedforward and feedback action, over learning iterations. This
shows the predominance of anticipatory action at the growth of sensory-motor memory
(behavior (ii)). It is worth to be noticed that feedback it is not completely replaced by
feedforward, which is coherent with many physiological evidences (e.g. [10]).

To test the presence of mirror-image aftereffect (behavior (iii)) we introduced an
external force field after the above discussed learning process. This field was generated
as shown by Fig. 3(a), by two springs connected in parallel to the second joint. Fig.3(b)
shows the robot’s end effector evolution obtained before (green) and after (red) spring
introduction. The algorithm can recover the original performance after few iterations
(learning process not shown for the sake of space). Finally the springs are removed,
and the end-effector follows a trajectory which is the mirror w.r.t. the nominal one, of
the one obtained after field introduction, therefore proving the ability of the proposed
algorithm to reproduce mirror-image aftereffect (behavior (iii)).

4 Conclusions

In this work we proved experimentally that an ILC-based algorithm can reproduce -
when applied to a biobimetic hardware - several behaviors observed when the central
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(a) Springs (b) Aftereffect in end effector evolutions
Fig. 3. The proposed controller presents aftereffect (behavior (iii)). Panel (a) reports the spring
interconnection implementing the unknown force field, and Panel (b) end effector evolutions.

nervous system controls the muscle-skeletal system - namely learning by repetition,
experience-driven shift towards anticipatory behavior, and aftereffect.
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