
Multi–object handling for robotic manufacturing
Mirko Ferrati, Simone Nardi, Alessandro Settimi, Hamal Marino, Lucia Pallottino

Abstract—The purpose of this work is to move a step toward
the automation of industrial plants through full exploitation of
autonomous robots. A planning algorithm is proposed to move
different objects in desired configurations with heterogeneous
robots such as manipulators, mobile robots and conveyor belts.
The proposed approach allows different objects to be handled
by different robots simultaneously in an efficient way and avoid-
ing collisions with the environment and self–collisions between
robots. In particular, the integrated system will be capable
of planning paths for a set of objects from various starting
points in the environment (e.g. shelves) to their respective final
destinations. The proposed approach unifies the active (e.g.,
grasping by a hand) and passive (e.g., holding by a table)
steps involved in moving the objects in the environment by
treating them as end–effectors with constraints and capabilities.
Time varying graphs will be introduced to model the problem
for simultaneous handling of objects by different end–effectors.
Optimal exploration of such graphs will be used to determine
paths for each object with time constraints. Results will be
validated through simulations.

Index Terms—Robotics, Intelligent Robots, Factory Automa-
tion, Manufacturing Automation, Motion Control

I. INTRODUCTION

The upward trend of industrial processes automation and
the advent of smart factories in the context of the fourth
industrial revolution rely on the complete and easy integration
of autonomous robots in complex environments.

Such robots may differ in shape and capabilities, but should
work together in a highly dynamic assembly chain, where the
chain itself requires a continuous reconfiguration based on dif-
ferent typologies of processed item. Moreover, in applications
where objects cannot have a standardized shape, or in complex
end–of–lines setups that require a particular orientation of
the items, a completely integrated and autonomous solution
is missing. Two examples of such dynamic environments are
the online shopping warehouses of Amazon [1] and Ocado [2]
where products are moved by autonomous mobile shelves or
by a complex system of conveyor belts. However, in both
cases, the final manipulation of objects is still handled by
humans at the end of the line. Both companies are researching
a way to completely automate the process, see for example
the Amazon Picking Challenge [3]. Our aim is to propose a
unified framework where a set of heterogeneous manipulators
and mobile robots are managed autonomously in order to pick,
move, grasp and manipulate different products. Moreover, the
framework should take into account objects of arbitrary shape
and manipulators of different grasping capabilities. Indeed, in
this case, new robot typology can be added to the system with
small effort (e.g. a change of a configuration database).

All authors are with Centro di Ricerca “E. Piaggio”, University of
Pisa, 56122 Pisa, Italy. A. Settimi is also with the Dept. of Advanced
Robotics, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova.
L. Pallottino is also with the Dept. of Information Engineering,
University of Pisa, 56122 Pisa, Italy. (mirko.ferrati@gmail.com,
alessandro.settimi@for.unipi.it, hamal.marino@centropiaggio.unipi.it,
s.nardi@mail.dm.unipi.it, lucia.pallottino@unipi.it)

Fig. 1. An example industrial–like scenario. Multiple object have to be carried
across a factory, robotic arms are used to arrange the objects on available
mobile robots and on workbenches.

The integration of the proposed framework within a smart-
factory could be done through a management system, in-
tegrated with the online shopping software, that schedules
requests for the warehouses robots to handle the queue of
customer orders. An example of this management system can
be found in [4].

Recent research on smart-factories automated planners fo-
cuses on solutions to automatize specific industrial scenarios.
Such works do not ensure adaptability to an already existing
structured environment: on the contrary, they are usually de-
signed ad–hoc on the final application scenario. For example,
in [5] and [6] the proposed approaches rely on a substantial
plant reconfiguration or design.

A complete framework for task assignment, planning and
coordination of multiple mobile robots is described in [7],
where the capability of integrating the system in existing en-
vironments is obtained. However, this work does not consider
the integration with assembly lines or more generic manipu-
lation of objects (e.g. placing items into shipping boxes), but
rather considers only the planning of movement of goods. A
mixed cooperation between mobile robots and robotic arms in
manufacturing scenarios with multiple objects is shown in [8]
and [9], even if limited to a single manufacturing cell. We
believe that it is fundamental to realize solutions that are adapt-
able to different industrial scenarios. Indeed, this would allow
to deploy standard robots in existing structured environments
without modifying them. At the same time, we aim for an
integrated mobile/manipulator system able to handle multiple
objects simultaneously and a dynamic assembly chain, as the
previous cited Amazon and Ocado cases.

For this purpose, we developed an integrated system capable
of planning the paths of a sequence of objects from various
starting points in the environment (e.g. shelves) to their
respective final destinations. Multiple robotics hardware may
be required to perform the objects motion or to manipulate
objects such as manipulators, hands and mobile robots. For
example, in Fig. 1 an industrial–like scenario is represented



where multiple objects are grasped by a robotic arm, one
after another. The objects are then brought by one of the
available mobile robots to the other robotic arm to be placed on
another workbench. This can be associated to an intermediate
phase of a manufacturing process. Our approach unifies all
the active and passive steps involved in the objects motion
treating them as end–effectors. The object path is planned
considering each end–effector constraints and capabilities.
Moreover, the returned plan will avoid collisions with the
environment and self–collisions between robots. The proposed
contribution can be summarized in two main results. First, we
propose an extension of our previous results from [10], in
which single object moving has been investigated and tested,
both in real experiments and simulations scenarios such as an
assembly chain with five Kuka arms. In the aforementioned
simulations and experiments, different kinds of object handling
have been tested, such as: pick-and-place, handoff between
two robotic arms, use of a support surface to re-orient the
object. Moreover different objects have been used, including
both simple geometries such as a ball and a cylinder, and
complex ones such as a colander and a pitcher.

The extension presented here consists in a modelization of
floating base robots, such as mobile manipulators, that com-
plies with the end–effector concept in [10]. Such modelization
allows the inclusion of mobile manipulators in planning paths
for the single object case. Second, we introduce a new planner
capable of managing a queue of multiple different objects
along the assembly chain at the same time by using a time
varying graph as defined in [11]. Such graphs are used in traffic
flow optimization algorithms to compute the shortest time path
of multiple items that are simultaneously crossing a network:
indeed, our modelization generates a network from the set of
end–effectors and our planner optimizes the flow of objects
using shortest time search. Finally the proposed approach is
validated through a set of simulations with different numbers
of end–effectors and objects.

II. EXTENSION TO SYSTEM MODELING

Similarly to [10], in this work each entity that is able to
act/apply a grasp/support on an object is considered an end–
effector, see Fig. 2 for different examples of end-effectors. On
the other hand, the relative configuration between the end–
effector and a specific grasped object is a grasp. Finally,
workspaces are sub-regions of the environment where an
object can be grasped by two or more end–effectors. For
example in Fig. 3a), the classical workspace is reported in
red, yellow and green for the right, both right and left, and left
arms respectively. With the proposed approach the workspace
is represented by the three regions on the table reported in
Fig. 3b). For example in w2 an object can be grasped by the
left hand if it lays on the table (i.e., grasped by the end-effector
associated to the table) or if it is grasped by the right hand.

It is possible to distinguish between movable end–effectors
(such as serial manipulator end–effector) and non–movable
ones (such as a surface in the environment providing stable
object support). The difference between such end–effectors is
that the absolute position of an object handled by a movable
end–effectors can be changed without changing grasp.

It is worth noting that from a planning perspective, it
is not necessary to distinguish between movable and non–
movable end–effectors, because they can both interact with
an object with their own set of grasps and they can exchange

a b

c d

Fig. 2. In these figures different types of end–effectors and grasps are
reported, the blue cylinder is the object considered for grasping. (a) Kuka LWR
robotic arm, movable end–effector. (b) Table, non–movable end–effector. (c)
Conveyor belt, movable end–effector. (d) Mobile robot, movable end–effector.

Fig. 3. (a) Considering a dual–arm setup the reachable regions of the left
and right arm are respectively reported in green and red, while the one of
the table is represented by the table itself. (b) Using the intersection between
simple approximations of these regions (cuboids), we defined the workspaces
for this scenario.

objects through a set of interaction transitions. For more details
and examples on the concepts introduced above please refer
to [10].

A. Mobile robots as movable end–effectors
In this work the concept of end–effector is extended to

mobile robots that can be seen as movable end–effectors with
a floating base. These robots can be considered equipped with
either a grasping device or a simple flat surface, that provides
multiple ways to grasp an object, in the sense defined above.
Mobile robots are hence compliant with the end–effector
definition, and their grasps are the ways they can carry around
an object. The exchanging workspaces between mobile robots
and other end–effectors are obtained by intersection between
the collision–free configuration space of the mobile robots
and the workspace of other end–effectors (see, for example,
Fig. 4). Note that, depending on the grasp capabilities, end–
effectors do not necessarily share a workspace. For example, a
mobile robot with a surface does not share the table workspace
while it does with a fixed base manipulator. Similarly, if the
mobile robot is equipped with a manipulator it can exchange
an object with the table, i.e, the end–effectors share a common
workspace.



Fig. 4. The exchanging workspace (reported in blue) between a robotic arm
and a mobile robot is the intersection of the single ones (reported in red for
the robotic arm, and in green for the mobile robot).

III. THE TIME–VARYING GRAPH

The planning of a single object to be deployed through
a sequences of end–effectors has been modeled as a graph
exploration problem in [10]. In order to extend the approach
to the case of multiple objects a Time–Varying Graph [12],
[13], [11] must be considered. Indeed, in case of multiple
objects to be deployed, the planning based on static graphs can
lead to the undesired behaviour of an end–effector grasping
more than one object simultaneously. To avoid a trivial and
non efficient solution, of handling objects once at a time in
the whole environment, the graph must change in time. With
the proposed algorithm we will be able to plan the motion
of objects, ordered in a queue, with different end–effectors
grasping different objects simultaneously.

A node of the graph is an object state Se,g,w, where the
object is (i) grasped by the end–effector e, with (ii) a particular
grasp g and (iii) in a specific workspace w. The transition of
an object from one state to another leads to an object position
changing, this is due by a passage between different end–
effectors or by a displacement between different workspaces.
For the sake of simplicity, given nodes i = Sei,gi,wi

and
j = Sej ,gj ,wj connected by an arc aij = (i, j) it holds that
gi = gj if and only if wi 6= wj . In other words, an object may
be passed between end–effectors without changing workspace
and if there is a workspace change the object is grasped by
the same end–effector.
In this framework, a single object plan P is a sequence of
nodes and arcs, coupled with the time Ti at which each
transition aij starts. For each object o to be the deployed,
a different graph Go is generated. Graphs are not necessarily
identical, but may contain states associated to the same end–
effector.

In Fig. 5 the graph related to the example reported in Fig. 3
is represented.

In order to plan shortest path for multiple objects, we
need to change the arcs’ cost according to the end–effector
occupation time (time to accomplish a grasp, to move the
object and to leave it). Each arc aij of each graph, has a cost
cij which represents an estimate of the time required to move
an object from the source node i to the target node j. Such
definition builds a time dependent network or a time varying
graph [13]. In Fig. 6 a possible trend of the arc aij cost with
respect to time is shown. When an end–effector e is occupied
at a certain time, all the arcs involved with that end–effector

Fig. 5. Graph corresponding to the example in Fig. 3: each node represents
a state of the object being grasped by the end effector ei (i = 1, . . . , 3) with
the grasp gk (k = 1, . . . , 9), in workspace wm (m = 1, . . . , 3). Solid lines
represent grasp transitions within the same workspace; dashed lines represent
object displacements between workspaces with the same grasp.

g7

g9

g8

g1 g3 g2

aij

cij

t

Fig. 6. Arc aij cost with respect to time. The difference from the static
shortest–path problem is that the arc cost is generalized from a constant to
a time–variable function. For an example of an arc cost in a real experiment
see Fig. 9.

can be penalized with a higher cost which represents the need
to wait for all the other objects to be deployed by end–effector
e. Since the time required for an end–effector to perform the
task is known based on the system status, all the arcs weights
are also known when planning for the next object in the list.
By using a discrete search with temporal constraints on the
weighted graph, we automatically select the best sequence of
end–effectors to deploy the object through its desired position.

The time ci,j required to move an object from node i =
Sei,∗,∗ to node j = Sej ,∗,∗ depends on the starting time Ti
of the transition. If the end–effector ei is occupied during the
time interval [ta, tb] such that Ti ∈ [ta, tb], the cost cij of arc
aij is increased by a penalty value p(t) that depends on ta
and tb. Same considerations hold for end–effector ej .

The penalty cost is chosen as the following:

p(t) =

{
tb − t, if ta −Wij < t < tb
0, otherwise

,∀ t ∈ R+. (1)

where Wij is the expected time needed to perform the
transition aij neglecting all the other objects, which can be
computed with an heuristic measure defined by the application
scenario.

Such penalty cost focuses on minimizing the time required,
but different functions could be considered in the future in
order to consider grasp reliability and/or the amount of hand–
offs.

Without loss of generality we assume to have a FIFO
ordered list of objects to be deployed. In this case, we
can compute a single object plan by considering only the
occupation of end–effectors by previous objects in the queue.
Note that the FIFO ordering assumption does not restrict the



proposed approach validity. Indeed, the theorem presented
in [14] allows to turn any non–ordered problem into a FIFO
one (in polynomial time) if waiting on nodes is allowed, as in
our case.

In the following sections we will first describe the planning
algorithm for a single object and then we extend it to the
multiple objects case.

IV. SINGLE OBJECT ALGORITHM

The planning algorithm for a single object moved by
multiple end–effectors proposed in [10] is now briefly reported
for reader convenience. With respect to the original algorithm,
modifications are proposed to adapt it to handle time varying
graphs. Given the set of plans obtained for prior objects
in the list and given initial and desired object position, the
outcome of the algorithm is a plan for the current object that
is compatible with all the other plans.

An important concept described in details in [10] is the
conversion between a path in the object graph and a set of
commands in Cartesian space that are given to each end–
effector. As an example, an arc that represents a change of
workspace is translated into two Cartesian end-effector poses,
respectively in the source and target workspace.

We define with:
• CInit, and CFinal the initial and final object configurations

in the Cartesian space,
• TInit the initial time of the object plan,
• G the time varying graph,
• PC the Cartesian plan,
• SInit= Sei,gi,wi

and SFinal= Sej ,gj ,wj
the initial and final

object configurations in the graph,
• PHL the timed plan on the graph,
• ArcId the identity of the arc that makes the Cartesian

planning fail.
The algorithm consists of several functions that are briefly

described next:
• GetInformationFromDB: all the information the planner

needs are loaded from a database, these information
include the end–effectors, the grasp sets for each of them
and the workspaces;

• GenerateTimeVaryingGraph: the retrieved information,
along with previous objects plans, is used to create the
time varying graph through the time–based arc costs
penalization;

• CartesianToGraph: this function translates a Cartesian
positions C into a state S of the graph;

• ShortestTimePath: time-dependent A* is used to find the
shortest path (in terms of time execution) in the graph
from SInit to SFinal;

• GraphToCartesian: kinematic utilities are used to convert
each arc in the graph plan to low–level commands such
as move or grasp/ungrasp;

• GetFailedConversion: in case the GraphToCartesian func-
tion returns a failure due to a collision with the environ-
ment the arc that leads to a collision is returned;

• Backtracking: a backtracking procedure is performed
whenever a collision–free path for a robot cannot be
found. In this case the graph is accordingly updated by
removing the arc returned by the GetFailedConversion
function. The shortest path is thus computed on the
updated graph.

Algorithm 1: Single Object Plan
Data: Initial and final object position CInit, CFinal,

starting time TInit, Object o, Queue of other
objects plans P

Result: Plan for object o
(states,transitions) = GetInformationFromDB(o);
G= GenerateTimeVaryingGraph(states,transitions,P);
GHL= G;
SInit= CartesianToGraph(CInit);
SFinal= CartesianToGraph(CFinal);
repeat

PHL= ShortestTimePath(GHL,SInit,TInit,SFinal);
if PHL is empty then

Return p not valid;
end
PC= GraphToCartesian(PHL);
if PC is empty then

ArcId= GetFailedConversion();
GHL= Backtracking(GHL,ArcId);

end
until PC is not empty;

Such hypothesis is supported by the fact that in the multi–
object scenario (see next Section, for details) the planning is
organized in a FirstInFirstOut approach.

The single object planning problem can be solved by
applying a time–varying graph (TVG) search algorithm, such
as [12], [14], [15] or time varying A*, as described in [16].
The TVG search algorithm implemented here is time varying
A*, because, thanks to simple arc cost functions, we do not
experienced a particular performance hit. For future develop-
ments, the use of a more performing algorithms such as [17]
will be evaluated. The A* solver, in our algorithm, is reported
as ShortestTimePath(graph, start state, start time, end state)
function in Algorithm 1.

Note that the introduction of mobile robots does not affect
the graph exploration algorithm at all, while the conversion
between graph plan and Cartesian positions, performed by
the GraphToCartesian function, require a different inverse
kinematic algorithm.

V. MULTI-OBJECT SERIAL PLANNING

As reported in previous Section, occupied end–effectors are
used to generate time dependent arc costs. Consequently, the
planner chooses objects paths considering parallel paths in the
graph, searching for the shortest time one.

Since we are assuming an ordered queue of objects, we use
a FIFO approach when planning for multiple objects. Thus,
for each object oi in the queue, we can safely ignore the rest
of the queue oj , j > i, and consider only the timed paths of
objects oj with j < i.

The multi–object planner is composed of two main parts:
a loop that generates a timed plan for each object in the
queue through Algorithm 1, and a parallel motion planning
where the Cartesian commands are used to generate joint
space collision free trajectories for each end–effector as shown
in next Subsection. Once the first part has generated the
set of Cartesian plans P , those plans are reordered by the
starting time of each transition and merged into a sequence of
Cartesian commands χ.



Algorithm 2: Global high level planning and execution
Data: Queue of objects o ∈ O, with their initial and final

positions CInito ,CFinalo and starting time TInito
initialization;
P=empty;
while O is not empty do

o = select next object from O;
p=plan single object(CInito ,TInito ,CFinalo ,o,P);
if p is valid then

add p to P;
else

Even in infinite time, the object cannot be moved;
Skip object;

end
end
χ = reorder and merge plans(P);
foreach Cartesian command in χ do

plan low-level parallel motions and execute;
if Failure in motion planning then

/*Local replan*/
Plan motions with different grasps but same

end–effectors;
if Failure in motion planning then

/* Global replan*/
restart algorithm with CInito = current object
positions;

end
change motion plan and continue execution;

end
end

After the path reordering joint space trajectories are gen-
erated taking into account that low level failures can occur
when single end–effector motion planning fails due to collision
along the planned trajectory. Usually a simple local re–plan
that involves the same end–effectors is enough to solve the
problem, but if the new plan involves changes in the timings
or in the end–effectors involved in subsequent object handling,
a global re-plan is required. In case of such failures affecting
the global plan, Algorithm 2 can be re-initialized with the
current objects positions as the initial states. Indeed, with the
proposed approach the initial Cartesian positions of the objects
are not constrained to be in any particular workspace.

Note that once the multi-object planning algorithm has
found a global solution, the execution does not utilize the
information about the starting time of each command. Indeed
a low level control can be performed by the end–effector e
once previous commands in the list have already been started
and in case e is ready to be used.

A. Motion planning for different end–effectors

The hierarchical structure of our approach leads to a decou-
pling low level path planning algorithm for the execution of
move, grasp, ungrasp commands. The motion planning algo-
rithm for each end–effector is implemented with RRT* [18]
and RRT-Connect [19] with collision checking and kinematic
constraints. In particular, collision checking for mobile robots
is implemented using a 2D occupancy grid of the whole setup,
while for arm manipulators is implemented a 3D collision
check between robot links and the possible sub-set of ob-

a

b

d

c

1

1

1

1

Fig. 7. Multiple objects are carried across the factory using two robotic arms
and a mobile robot. In (a) a robotic arm takes the first object, which is given
to the other robotic arm by the mobile robot in (b). In (c) the third object is
put on the mobile robot while the second one is put in the final destination.
In (d) the third object is carried by the mobile robot to the robotic arm on
the right.

jects in the environment that may collide with the arm. Self
collisions are enabled only for the arm manipulators. Finally,
for simpler end–effectors such as tables and conveyor belts
analytical formulas are used.

VI. VALIDATION

To validate our approach, different kinematic simulations
have been performed. Real experiments to validate grasping
capabilities and the low level motion planner have been carried
out for a dual–arm setup, using objects of different shapes
such as kitchen tools, in our previous work [10]. Using the
same framework, also a supply chain scenario formed by 5
Kuka LWR arms and a conveyor belt has been simulated for
moving a single object. Videos referred to these examples, and



a b c

e

g

d f

h i

1
2

1 1

1
1 1

1 1

1

2 2

2 2

2

2

2 2

Fig. 8. A second mobile robot is added, availability of the two robots is automatically handled by the time varying graph leading to a faster task accomplishment.
The three objects are brought from a side of the scenario to the other by the mobile robots. Each time the robotic arm on the left put the cylinders on the
currently available mobile robot. The various snapshots are temporally contiguous (from (a) to (i)).

p(t)

ta b dc

Fig. 9. Arc penalty cost associated to the workspace change of the mobile
robot in the example of Fig. 8.

the others reported in this section, can be found online1.
In the following the different scenarios consisting of two

Kuka LWR arms, one or two mobile robots and objects of
different shapes are considered. In figures we will refer to the
different robots as: KL (robotic arm on the left), KR (robotic
arm on the right), M1 (mobile robot 1) and M2 (mobile robot
2). In the first scenario, we show a simple setup where three
similar objects need to be moved from a table to another across
the room. The only possible path is trough M1, which moves
from a table to the other three times. This shows the seamless
integration of mobile robots in our framework. The scenario is
reported in Fig. 7 where only some snapshots of the performed
test are shown. In Fig. 7a KL takes the first object, which
is given to KR by M1 in Fig. 7b. In Fig. 7c KL puts the
third object on M1 while KR is placing the second one on
its workbench. Finally in Fig. 7d the third object is carried to
KR.

1https://www.youtube.com/channel/UCb6ECYixj3Tobh9hpSYJ7Ug

The penalty cost associated to the arc representing the
change of workspace of the mobile robot in Fig. 8 is shown
in Fig. 9.

In order to show the effects of our time varying planner,
we add a second mobile robot to the previous experiment.
Thus, the three cylinders can be moved in parallel between
tables, and the total time of the task is obviously reduced. Note
that the planner respects the constraint imposed by KR, as the
timings of actions never force KR to work on multiple cylinder
at the same time. Some screenshots are shown in Fig. 8. First,
KL puts the object on the M1 and then retrieves the second
object (Fig. 8a, 8b, 8c). While M1 brings the robot to KR,
M2 approaches KL to take the second object (Fig. 8d). The
third object is thus given to M1 (which is again available) by
KL and M2 brings the second object to KR (Fig. 8e–i)). The
sequence of Cartesian commands χ for this scenario, reported
for clarity, consists of the followings:

1) move KL towards object1
2) grasp object1 using KL
3) move M1 and KL towards a common location
4) grasp object1 using M1, ungrasp from KL
5) move KL towards object2
6) grasp object2 using KL
7) move M2 and KL towards a common location AND move M1

and KR towards a common location
8) grasp object2 using M2, ungrasp from KL AND grasp object1

using KR, ungrasp from M1
9) move KR towards object1 final location

10) ungrasp from KR (object1 reaches its final location) AND move
KL towards object3

11) grasp object3 using KL
12) move M2 and KR towards a common location AND move M1

and KL towards a common location
13) grasp object3 using M1, ungrasp from KL AND grasp object2

using KR, ungrasp from M2
14) move KR towards object2 final location
15) ungrasp from KR (object2 reaches its final location)
16) move M1 and KR towards a common location

https://www.youtube.com/channel/UCb6ECYixj3Tobh9hpSYJ7Ug


17) grasp object3 using KR, ungrasp from M1
18) move KR towards object3 final location
19) ungrasp from KR (object3 reaches its final location)

Finally, in Fig. 10, the same robot setup as in Fig. 8 is
used, the goal is now to assembly different objects for which
reorientation is requested to achieve desired final arrangement.
The re–orientation is automatically computed by the single
object graph planner since the final configuration of the objects
is associated to a different node of the graph.

a

b

d

c

1

1

1

1

2

2

2

2

Fig. 10. Using different paths to move different objects: in this scenario, two
pieces need to be mounted, and both are reoriented during their path from
initial to final configuration in order to obtain the desired assembly. The two
object are brought in the correct order to be assembled, from (a) to (d).

VII. CONCLUSIONS

In this work we proposed a novel approach to handle objects
moving in industrial scenarios with heterogeneous robots. In
particular the approach is thought to be used in the domain
of smart factories where complete automation is the key
for competitive solutions. This work is an extension to our
previous work [10] to handle multiple objects at the same time
and include mobile robots in the environment, and it is based
on a time varying graph on which a shortest path is performed

to find the optimal solution. All the code of this framework is
available online2.

ACKNOWLEDGMENTS

This work is supported by the grant no. 645599 “SoMa”
-Soft-bodied intelligence for Manipulation- within the H2020-
ICT-2014-1 program.

REFERENCES

[1] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. AI
magazine, 29(1):9, 2008.

[2] K Boyer, T Hult, and M Frohlich. Ocado: An alternative way to bridge
the last mile in grocery home delivery. Case No. 602-057, 1, 2002.

[3] Amazon picking challenge website, http://amazonpickingchallenge.org,
2015.

[4] Hao Luo, Ji Fang, and George Q Huang. Real-time scheduling for
hybrid flowshop in ubiquitous manufacturing environment. Computers
& Industrial Engineering, 84:12–23, 2015.

[5] Tim Niemueller, Gerhard Lakemeyer, and Alexander Ferrein. Incremen-
tal task-level reasoning in a competitive factory automation scenario. In
AAAI Spring Symposium: Designing Intelligent Robots, 2013.

[6] Shiyong Wang, Jiafu Wan, Di Li, and Chunhua Zhang. Implementing
smart factory of industrie 4.0: an outlook. International Journal of
Distributed Sensor Networks, 2016, 2016.

[7] Basilio Bona, Luca Carlone, Marina Indri, and Stefano Rosa. Super-
vision and monitoring of logistic spaces by a cooperative robot team:
methodologies, problems, and solutions. Intelligent Service Robotics,
7(4):185–202, 2014.

[8] Simon Bogh, Casper Schou, Thomas Rühr, Yevgen Kogan, Andreas
Dömel, Manuel Brucker, Christof Eberst, Riccardo Tornese, Christoph
Sprunk, Gian Diego Tipaldi, et al. Integration and assessment of multiple
mobile manipulators in a real-world industrial production facility. In
ISR/Robotik 2014; 41st International Symposium on Robotics; Proceed-
ings of, pages 1–8. VDE, 2014.

[9] Alwin Hoffmann, Andreas Angerer, Andreas Schierl, Michael Vistein,
and Wolfgang Reif. Service-oriented robotics manufacturing by reason-
ing about the scene graph of a robotics cell. In ISR/Robotik 2014; 41st
International Symposium on Robotics; Proceedings of, pages 1–8. VDE,
2014.

[10] Hamal Marino, Mirko Ferrati, Alessandro Settimi, Carlos Rosales, and
Marco Gabiccini. On the problem of moving objects with autonomous
robots: a unifying high-level planning approach. IEEE Robotics and
Automation Letters, 1:469–476, 2016.

[11] Kenneth L Cooke and Eric Halsey. The shortest route through a network
with time-dependent internodal transit times. Journal of mathematical
analysis and applications, 14(3):493–498, 1966.

[12] Stuart E Dreyfus. An appraisal of some shortest-path algorithms.
Operations research, 17(3):395–412, 1969.

[13] Stefano Pallottino and Maria Grazia Scutella. Shortest path algorithms in
transportation models: classical and innovative aspects. In Equilibrium
and advanced transportation modelling, pages 245–281. Springer, 1998.

[14] Ariel Orda and Raphael Rom. Shortest-path and minimum-delay
algorithms in networks with time-dependent edge-length. Journal of
the ACM, 37:607–625, 1990.

[15] Evangelos Kanoulas, Yang Du, Tian Xia, and Donghui Zhang. Finding
fastest paths on a road network with speed patterns. In Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International Conference on,
pages 10–10. IEEE, 2006.

[16] Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes.
Bidirectional A∗ search for time-dependent fast paths. In Experimental
Algorithms, pages 334–346. Springer, 2008.

[17] Mostafa K Ardakani and Madjid Tavana. A decremental approach with
the a algorithm for speeding-up the optimization process in dynamic
shortest path problems. Measurement, 60:299–307, 2015.

[18] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the rrt*. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, page
1478. IEEE, 2011.

[19] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient
approach to single-query path planning. In Robotics and Automation.
Proceedings. ICRA’00. IEEE International Conference on, volume 2,
pages 995–1001. IEEE, 2000.

2http://dualmanipulation.bitbucket.org

http://dualmanipulation.bitbucket.org

	Introduction
	Extension to System modeling
	Mobile robots as movable end–effectors

	The Time–Varying Graph
	Single object algorithm
	Multi-object serial planning
	Motion planning for different end–effectors

	Validation
	Conclusions
	References

