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CONTROL SYNTHESIS FOR PRACTICAL

STABILIZATION OF QUANTIZED LINEAR

SYSTEMS∗

Abstract. In this work we face the stability problem for quantized
control systems (QCS). A discrete–time single–input linear model is
considered and, motivated by technological applications, we assume
that a uniform quantization of the control set is a priori fixed. As
it is well known, for QCS only practical stability properties can
be achieved, therefore we focus on the existence and construction of
quantized controllers capable of steering a system to within invariant
neighborhoods of the equilibrium.
The main contribution of the paper consists in a theorem which
provides a condition for the practical stabilization in a fixed number
of steps: not only the result is interesting in itself, but also it enables
to construct a family of stabilizing controllers by means of Model
Predictive Control (MPC) techniques.
In the last part of the paper some results on the characterization of
controlled–invariant sets are reviewed and a lower bound on the size
of invariant sets is provided. The bound is attained by an explicitly
constructed element.

1. Introduction

The interest of the control community for quantized control systems (QCS) has
been considerably raising in the past twenty years. Situations in which quanti-
zation may arise and can not be neglected are varied: a popular example is that
of “networked control systems”, i.e., systems interconnected through commu-
nication channels capable of transmitting only a finite amount of information
between the plant and the controller.

Special attention has been devoted to the stabilization problem for QCS
(see for instance [5, 6, 7, 9, 10, 11, 13, 14, 19, 21]): in [6] the author clarifies
that asymptotic stability is a too strong requirement for QCS, hence practical
stability concepts have been considered.

∗This work was supported by European Commission through the IST RECSYS project
and by MIUR PRIN 095297 002-2002 “Embedded control of dynamical systems with limited
resources for computation and communication”.
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Unlike most of the existing literature (where quantization is considered
as a parameter to be designed), our work is inspired by the belief that another
kind of question is as much important: the stability problem for systems whose
quantized resources (i.e., discrete input and output sets) are fixed a priori. Such
analysis is helpful because it allows to decide in advance whether a desired con-
trol objective can be achieved by using a given technology (actuators, sensors,
communication and computational means). Moreover, issues of this kind may
also represent the basis to solve more general stabilization problems (remarkable
examples are presented in [9]).

This paper is focused on the stabilization of single–input discrete–time
linear systems where a uniformly quantized control set is given.
Let Ω and X0 be two neighborhoods of the origin with Ω ⊆ X0 : the aim is to
design (X0,Ω)–stabilizing controllers, that is feedback control laws rendering
both Ω and X0 invariant and such that all the states of X0 are initial points
of trajectories which enter Ω in a finite time.
Since the control set is given, the problem is not feasible for all pairs (X0,Ω) .
Previous results on the construction of invariant neighborhoods obtained in [15,
14] are useful in this context and briefly reported in Section 3.1 . In particular, a
continuous family of invariant sets that includes a minimal element called Qn(ε)
is constructed. In the same section we review necessary and sufficient conditions
on the control set diameter ensuring that the system is

(
X0, Qn(ε)

)
–stabilizable.

Section 3.2 is the core of this work and contains the main original con-
tribution: the

(
X0, Qn(ε)

)
–stabilizability problem enforcing a bound on the

number of steps to converge within Qn(ε) is addressed. A sufficient (and in
some cases necessary) condition is provided on the diameter of the control set
ensuring the desired stability property. This result is interesting in itself and it
is also a useful tool for establishing feasibility of optimal control problems. This
leads to the construction of a family of stabilizing controllers by application of
Model Predictive Control (MPC) techniques.
Since the goal is the stabilization of the system near the origin, we are intere-
sted in confining trajectories within small controlled–invariant neighborhoods of
0 . Hence, in Section 4 , we review the minimality properties of Qn(ε) (proved
in [14]) and present an alternative proof of the main result on the subject.

Notation: Qn(Λ) :=
[− Λ

2 ; Λ
2

]n
=
{
x ∈ R

n | ‖x‖∞ ≤ Λ
2

}
is the hypercube of

edge length Λ whilst Qo
n(Λ) :=

[− Λ
2 ; Λ

2

)n
is the semi–open hypercube. �x� :=

max {z ∈ Z | z ≤ x} and �x� := min {z ∈ Z | z ≥ x} are the floor and the ceil
function. cE denotes the complementary of E , −E := {x ∈ R

n | − x ∈ E} ,
diam(E) := sup

{‖x − y‖2 | (x, y) ∈ E × E
}

is the diameter of E , Pri x := xi

is the projection on the ith coordinate axis and diami Ω := diam
(
Pri Ω

)
. |A|

is the matrix defined by |A|i,j := |Ai,j | , x′ denotes the transpose of the vector
x , Q = Q′ > 0 means that Q is a symmetric positive definite matrix. x+(t)
denotes x(t+ 1) : the dependance on t will be often omitted.
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2. Preliminaries

We deal with a single–input discrete time–invariant linear system subject to a
fixed uniformly quantized control set, more precisely:

(1)




x+(t) = Ax(t) + bu(t)
x ∈ R

n, u ∈ U ⊆ εZ (ε > 0)
A ∈ R

n×n, b ∈ R
n,

We suppose that the pair (A, b) is reachable. In this case, changing the coor-
dinates in the state space, we can assume
H1) the pair (A, b) is in controller form:

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
α1 α2 α3 · · · αn


 , b =




0
0
...
0
1


 ,

where sn − αns
n−1 − · · · − α2s− α1 is the characteristic polynomial of A .

If
∑n

i=1 |αi| < 1 , the system is asymptotically stable, we hence assume
H2)

∑n
i=1 |αi| ≥ 1 .

Let us recall the basic definitions about invariant sets [4]:

Definition 1. The set Ω ⊆ R
n is said to be positively invariant for a closed–loop

system x+ = f(x) iff ∀x ∈ Ω , x+ ∈ Ω ;

Definition 2. The set Ω ⊆ R
n is said to be controlled–invariant for system (1)

iff ∀x ∈ Ω ∃u ∈ U such that x+ = Ax+ bu ∈ Ω .

The weak (practical) stability notion we will use is the (X0,Ω)–stability (see
also [9]) :

Definition 3. Let 0 ∈ Ω ⊆ X0 ⊆ R
n with Ω being a neighborhood of 0 ;

a feedback law u : R
n → U is said to be (X0,Ω)–stabilizing iff it renders

both Ω and X0 positively invariant and ∀x(0) ∈ X0 ∃ tx(0) ∈ N such that
x(tx(0)) ∈ Ω .
If moreover ∀x(0) ∈ X0 tx(0) ≤ Hp , then the feedback is said to be (X0,Ω)–
stabilizing in Hp steps.
System (1) is said to be (X0,Ω)–stabilizable (in Hp steps) iff there exists an
(X0,Ω)–stabilizing (in Hp steps) feedback law.
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3. Invariant sets and stabilizing control laws

3.1. Review

We briefly review some basic results concerning the practical stabilization prob-
lem: for a more detailed treatment we refer to [14].

Theorem 1. If U = εZ , then ∀Hp ≥ n and ∀∆ ≥ ε , system (1) is(
Qn(∆) , Qn(ε)

)
–stabilizable in Hp steps. �

Theorem 1 holds for arbitrarily large ∆ ’s because the control set is unbounded.
In the finite control set case we have analyzed the invariance and stabilizability
properties for control sets of the type Uk := {−kε, . . . , 0, . . . ,+kε} , ∀ k ∈ N .
Let us introduce the saturated quantized deadbeat controllers:

Definition 4. Let k ∈ N and

w(x) :=




−k ε if
⌊
−
∑n

i=1 αixi

ε + 1
2

⌋
< −k⌊

−
∑n

i=1 αixi

ε + 1
2

⌋
· ε otherwise .

The feedback law u : R
n → Uk defined by

(2)
{
u(x) = w(x) if

∑n
i=1 αixi ≥ 0

u(x) = −w(−x) otherwise .

is called the k–levels saturated quantized deadbeat controller
(
[k]qdb–controller

)
.

Denote by Ξ the region where the controller saturates, namely Ξ = Ξ1∪(−Ξ1) ,
where
Ξ1 :=

{
x ∈ R

n
∣∣ ⌊− ∑n

i=1 αixi

ε + 1
2

⌋
< −k

}
=
{
x ∈ R

n
∣∣ ∑n

i=1 αixi > kε+ ε
2

}
.

Lemma 1. Let k ∈ N , consider the closed–loop dynamics induced by the [k]qdb–
controller, then

|x+
n| ≤ ε

2 ⇐⇒ x �∈ Ξ ⇐⇒
∣∣∣∑n

i=1 αixi

∣∣∣ ≤ ε
2 + kε . �

Consider system (1) , assume that ∆ ≥ ε and let

(3) k(∆) :=
⌈ 1

2
∆
ε

( n∑
i=1

|αi| − 1
) ⌉

.

Proposition 1. Assume that U = Uk and ∆ ≥ ε , the following properties are
equivalent:
ı) Qn(∆) is controlled–invariant;
ıı) k ≥ k(∆) ;
ııı) Qn(∆) is positively invariant for the closed–loop system x+ = Ax+ b u(x) ,

where u(x) is the [k]qdb–controller. �
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The basic result concerning the stabilizability analysis is

Proposition 2. Let ∆ > ε , consider k(∆) as in Equation (3) and

k :=
{
k(∆) if 1

2
∆
ε

( ∑n
i=1 |αi| − 1

) �∈ N

k(∆) + 1 otherwise .

The [ k ]qdb–controller is
(
Qn(∆) , Qn(ε)

)
–stabilizing. �

One could expect that, in order to achieve the
(
Qn(∆) , Qn(ε)

)
–stability, it is

necessary a control set diameter larger than the one ensuring the invariance of
Qn(∆) . On the contrary Proposition 2 shows that, generically, such diameter
is also sufficient for the

(
Qn(∆) , Qn(ε)

)
–stabilizability. This phenomenon is

referable to the control quantization: in fact, the minimal diameter of the control
set ensuring the invariance of Qn(∆) is larger than the one necessary in the
continuous case (because of the ceil function) so that the controller has enough
authority to achieve also the convergence towards Qn(ε) .

3.2. Synthesis of stabilizing control laws: Model Predictive Control

The rather strong property of the control set described in Proposition 2 , to
be both necessary and generically sufficient for

(
Qn(∆) , Qn(ε)

)
–stabilizability,

has as a counterpart a relative weakness, in that no bound on the number of
steps necessary to reach Qn(ε) can be enforced. On the other hand, it is natural
to expect that a larger control set would ensure better performance in terms
of convergence time. We are hence interested in looking for conditions on the
control set diameter for the

(
Qn(∆) , Qn(ε)

)
–stabilizability in a fixed number

of steps.

Theorem 2. Let ∆ > ε > 0 and U ⊆ εZ . Fix Hp ≥ n : Hp = n + p − 1
with p ≥ 1 . A sufficient condition in order that the system is

(
Qn(∆) , Qn(ε)

)
–

stabilizable in Hp steps is that Ukp
⊆ U , with

(4) kp =
⌈

1
2

∆
ε

( n∑
i=1

|αi| − 1
)

+
1
ε

∆ − ε

2ψp

⌉
,

where the sequence {ψm}m∈N\{0} is defined as follows:

(5)




ψ1 := 1
ψm := 1 +

∑m−1
i=1 |αn−m+i+1|ψi , m ≥ 2 ,

where αj := 0 if j ≤ 0 .

Moreover, if αi ≥ 0 ∀ i = 1, . . . , n , the bound kp is strict, that is Ukp−1 does
not make the system

(
Qn(∆) , Qn(ε)

)
–stabilizable in Hp steps.
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Proof. The proof of the Theorem will be given in Section 5 by showing that the
[kp]qdb–controller is

(
Qn(∆) , Qn(ε)

)
–stabilizing in Hp steps.

Theorem 2 is the main contribution of this paper. Actually, although the suffi-
ciency of the bound is proved by exhibition of a controller achieving the desired
performance, the result should be interpreted as the condition for the existence
of a stabilizing feedback law. It is then interesting to look for other control laws
different from the saturated quantized deadbeat. To this aim Theorem 2 is use-
ful because, as it is explained below, it provides a condition for the applicability
of Model Predictive Control techniques (MPC) which enable us to construct a
family of

(
Qn(∆) , Qn(ε)

)
–stabilizing feedback laws.

Let ∆ > ε > 0 , assume that U ⊆ εZ is such that Qn(ε) is controlled–invariant,
hence define a feedback law

Fε : Qn(ε) −→ U

rendering Qn(ε) positively invariant. We use model predictive control tech-
niques to define a controller in Qn(∆) \Qn(ε) that steers the states to within
Qn(ε) in finite time, then switch to the feedback law Fε .
To this aim, let L(x, u) = IcQn(ε)(x) ·

(
x′Qx + Ru2

)
represent a cost func-

tion, where: IcQn(ε) is the characteristic function † of cQn(ε) , Q ∈ R
n×n and

Q = Q′ > 0 , R ∈ R and R > 0 . For a fixed a number of steps Hp > 0 , the
model predictive controller is defined as

u(x) = U∗
0 (x) ,

where U∗
0 (x) ∈ U is the first element of a minimizing sequence (if it exists)

U∗(x) =
(
U∗

0 (x), U∗
1 (x), . . . , U∗

Hp−1(x)
) ∈ UHp of the following optimization

problem:

min
U∈UHp


J(U, x) =

Hp−1∑
k=0

L
(
x(k), Uk

)
subject to

(6a)




x(0) := x
x(k + 1) := Ax(k) + bUk , k = 0, . . . , Hp − 1
x(k + 1) ∈ Qn(∆) , k = 0, . . . , Hp − 1
x(Hp) ∈ Qn(ε) ,

(6b)

where x(0) is the current state,
(
x(1), . . . , x(Hp)

)
is the predicted trajectory for

the future Hp steps when the control sequence U =
(
U0, U1, . . . , UHp−1

) ∈ UHp

is applied.

†That is IcQn(ε)(x) =
{ 1 if x ∈ cQn(ε)

0 otherwise .
.
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Assume that ∀x ∈ Qn(∆) the optimization problem (6) is solvable (i.e., the
minimum is attained), then the feedback law

(7)

F : Qn(∆) −→ U

F (x) :=
{
Fε(x) if x ∈ Qn(ε)
U∗

0 (x) otherwise ,

is well defined and will be referred to as quantized–MPC controller.

Proposition 3. The quantized–MPC controller is
(
Qn(∆), Qn(ε)

)
–stabilizing.

Proof. The proof of the Proposition follows the same arguments used for the
classical dual–mode MPC scheme: see for instance [18].

In order to apply MPC techniques we must first guarantee that ∀x ∈ Qn(∆)
the optimization problem (6) is solvable. To this aim it is sufficient to ensure
the existence of a control sequence U ∈ UHp so that the constraints (6b) are
satisfied. The quantized–MPC controller is well defined if and only if ∀x ∈
Qn(∆) there exists U ∈ UHp such that the predicted trajectory lies within
Qn(∆) and enters Qn(ε) after Hp steps: this is equivalent to the requirement
that the system is

(
Qn(∆) , Qn(ε)

)
–stabilizable in Hp steps. By the way, notice

that even if such condition is satisfied, the feedback law (7) is
(
Qn(∆) , Qn(ε)

)
–

stabilizing but not necessarily in Hp steps since at each time instant only the
first element of the minimizing sequence is applied.
When U = εZ the quantized–MPC controller is well defined ∀Hp ≥ n as a
consequence of Theorem 1 . In the finite control set case the problem is more
complicate: a sufficient condition ensuring that the quantized–MPC controller
is well defined is provided by Theorem 2 .
For a fixed number of steps Hp , different quantized–MPC controllers achieving
the

(
Qn(∆) , Qn(ε)

)
–stability can be obtained by varying at discretion the ma-

trices Q and R which enter in the definition of the model predictive controller.
Also Hp is a parameter that can be varied provided the optimization problem
remains solvable: an obvious necessary condition is Hp ≥ n .
The quantized-MPC controller can be implemented by modelling system (1)
as a Mixed Logical Dynamical system (see [2, 16]) : in this framework efficient
algorithms to solve the optimization problem (6) are available.
For a more detailed treatment we refer to [16, 17] and to the literature about
model predictive control (see in particular [12]) .

4. Characterization of controlled–invariant sets

Since the aim is the stabilization of the system near the origin, we are interested
in confining the trajectories within small controlled–invariant neighborhoods of
0 . It is then proper to investigate the minimality properties of Qn(ε) . We first
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review two theorems (proved in [14]) on the minimality of Qn(ε) that provide
the so–called weak and strong minimality properties, then we give an alternative
proof of the strong minimality theorem which is more constructive than the one
presented in [14].
Obviously, if A is a stable matrix, there exist invariant sets of arbitrarily small
size: therefore we will be interested only in the case of unstable matrices.
Throughout this section we will assume without loss of generality that U ⊆ Z ,
that is ε = 1 .

Theorem 3. [Weak minimality] If Ω is a bounded controlled–invariant neigh-
borhood of the origin and A is an unstable matrix, then ∀ i = 1, . . . , n ,
diam i Ω ≥ 1 . �

The general property for controlled–invariant sets stated in Theorem 3 provides
also a minimality property for Qn(1) : indeed such set has the minimum diam-
eter in all the coordinate directions. In particular, even if controlled–invariant
neighborhoods of the origin contained in Qn(1) can exist, they have the same
size as Qn(1) . The size is measured in terms of the diameters of the set along
the directions of the coordinate axes.

Example 1. Consider Qo
n(1) : it holds that ∀x ∈ Qo

n(1) ∃ !u ∈ Z such that
x+ ∈ Qo

n(1) (see [14]). It is hence univocally defined the mapping

(8)
T : Qo

n(1) → Qo
n(1)

x �→ x+ ,

where x+ = Ax+ b u(x) and u(x) ∈ Z .
Assume that A is an unstable matrix such that 0 < |detA| < 1 . TQo

n(1) is
obviously a controlled–invariant neighborhood of the origin. Moreover, TQo

n(1)
is strictly contained in Qo

n(1) because, denoted by λ the Lebesgue measure,
from |detA| < 1 it follows that λ

(
TQo

n(1)
)
< λ
(
Qo

n(1)
)
.

Hence,

Qo
n(1) ⊃ TQo

n(1) ⊃ · · · ⊃ T kQo
n(1) ⊃ · · ·

is a strictly decreasing sequence of controlled–invariant neighborhoods of the
origin. The typical structure of one of the sets of the sequence (in the two
dimensional case) is represented by the shaded region in Fig. 1 . ♣
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1
2 )

Figure 1: TQo
n(1)

Theorem 4. [Strong minimality] If |α1| > 1 +
∑n

i=2 |αi| and Ω ⊆ Qo
n(1) is a

controlled–invariant neighborhood of the origin, then Ω = Qo
n(1) .

Proof. The matrix A is invertible and

A−1 =




−α2
α1

−α3
α1

· · · −αn

α1

1
α1

1 0 · · · 0 0
...

. . . . . .
...

...

0 0
. . . 0 0

0 0 . . . 1 0



.

Hence,

(9) (A−1x)j =

{
xn−∑n−1

i=1 αi+1xi

α1
if j = 1

xj−1 otherwise .

Let θ := (1+
∑n

i=2 |αi|)
|α1| , by the hypothesis θ < 1 . ∀x ∈ R

n ,

(10)
∣∣(A−1x)1

∣∣ ≤ (1 +
∑n

i=2 |αi|)
|α1| · ‖x‖∞ = θ · ‖x‖∞ < ‖x‖∞ .

Equations (9) and (10) imply that A−1Qo
n(1) ⊂ Qo

n(1) , thus

(11) A−hQo
n(1) ⊆ A−h+1Qo

n(1) ⊆ · · · ⊆ A−1Qo
n(1) ⊂ Qo

n(1) ∀h ∈ N .

Moreover, A−nQo
n(1) ⊆ Qn(θ) in fact: by Equation (9) it holds that ∀x ∈

Qo
n(1) and ∀ i = 1, . . . , n ,

(
A−nx

)
i

=
(
Ai−n−1x

)
1

and, by Equations (10)
and (11) ,

∣∣(Ai−n−1x)1
∣∣ ≤ θ

2 . Similarly, A−nkQo
n(1) ⊆ Qn(θk) ∀ k ∈ N . Since

limk→+∞ θk = 0 and Ω is a neighborhood of the origin, ∃ k ∈ N such that
Qn(θk) ⊆ Ω , therefore A−nkQo

n(1) ⊆ Ω .
Let T : Qo

n(1) → Qo
n(1) be the map defined in Equation (8) : the controlled–

invariance of Ω is equivalent to T Ω ⊆ Ω . We claim that Tnk
(
A−nkQo

n(1)
)

=
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Qo
n(1) , the claim implies the thesis because Qo

n(1) = Tnk
(
A−nkQo

n(1)
) ⊆

Tnk Ω ⊆ Ω .
To prove the claim, thanks to Equation (11) , it is sufficient to show that ∀x ∈
A−1Qo

n(1) the map T coincides with A : Tx = Ax if and only if the unique
control u(x) ∈ Z such that x+ ∈ Qo

n(1) is u(x) = 0 , which is the case ∀x ∈
A−1Qo

n(1) .

It can be shown that the condition ensuring the strong minimality of Qo
n(1)

is only sufficient, nevertheless the result is interesting because it shows that
there are cases in which, among the minimal diameter sets (i.e., diam i Ω = 1
∀ i = 1, . . . , n ), the whole Qo

n(1) is actually the minimal one.

5. Proof of Theorem 2

Theorem 2 was first stated without proof in [15] . Although the proof appears to
be complicate, it is instead based on simple ideas trickly exploiting the properties
of the controller form coordinates. Hence, it is worth recalling that the control
acts only on the nth component while the others shift upward.
To prove the theorem we will take advantage of some lemmas: the hypotheses
of Theorem 2 are implicitly assumed.

Lemma 2. The sequence {ψm}m∈N\{0}
(
see Equation (5)

)
is non–decreasing.

Proof. We argue by induction: ψ1 = 1 , ψ2 = 1 + |αn| ≥ ψ1 .
Assume that ψh ≤ ψh+1 ∀h < m , then ψm ≤ ψm+1 . In fact: ψm+1 − ψm =∑m

i=1 |αn−m+i|ψi −
∑m−1

i=1 |αn−m+i+1|ψi = |αn−m+1|ψ1 +
∑m

i=2 |αn−m+i|(ψi −
ψi−1) ≥ 0 by the inductive hypothesis.

We extend the sequence {ψm}m∈N\{0} defining ψz = 0 ∀ z ∈ Z , z ≤ 0 .

Let

(12) ϕ :=
∆
2

(
1 −

n∑
i=1

|αi|
)

+ kpε .

By the definition of kp

(
see Equation (4)

)
and the fact that �x� = x+ θ (0 ≤

θ < 1) , it is easy to check that ϕ > 0 .

Lemma 3. Suppose A is such that αi ≥ 0 ∀ i = 1, . . . , n . Consider the
sequence {x(t)}t∈T⊆N recursively defined by


x(0) := (∆

2 , . . . ,
∆
2 )

while
(
xn(t) > ε

2

)
let x(t+ 1) := Ax(t) − b · (kpε) ;

then xi(t) = ∆
2 − ϕψt−n+i ∀ i = 1, . . . , n and ∀ t ∈ T .

Moreover, if xn(t) > ε
2 then xi(t) > 0 ∀ i = 1, . . . , n .
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Proof. By induction: when t = 0 the statement is obvious.
Suppose that xn(t) > ε

2 and that xi(t) = ∆
2 − ϕψt−n+i ∀ i = 1, . . . , n , then

xi(t+ 1) = ∆
2 − ϕψt+1−n+i . In fact:

if i < n , since A is in controller form, xi(t+ 1) = xi+1(t) = ∆
2 − ϕψt−n+i+1 .

When i = n , using respectively Equation (12) , ψz = 0 for z ≤ 0 and Equa-
tion (5) , we have: xn(t+1) =

∑n
l=1 αlxl(t)−kpε =

∑n
l=1 αl(∆

2 −ϕψt−n+l)+ ∆
2 −

∆
2

∑n
i=l αl−ϕ = ∆

2 −ϕ(1+
∑n

l=1 αlψt−n+l) = ∆
2 −ϕ(1+

∑n
l=n+1−t αlψt−n+l) =

∆
2 − ϕ(1 +

∑t
j=1 αj−t+nψj) = ∆

2 − ϕψt+1 .
The statement xn(t) > ε

2 ⇒ xi(t) > 0 follows immediately by the definition
of the sequence {x(t)}t∈T and the controller form of A .

Denote by Ξ(|A|, kp) the saturation region of the [kp]qdb–controller for system
(|A|, b) . We say that x ∈ R

n satisfies the property (Pkp
) iff:{

xi ≥ 0 ∀ i = 1, . . . , n
x �∈ Ξ(|A|, kp) .

(Pkp
)

In the proof of Theorem 2 we shall make extensive use of the following

Lemma 4. If x satisfies the property (Pkp
) and y is such that |yi| ≤ xi ∀ i =

1, . . . , n , then the closed–loop dynamics induced by the [kp]qdb–controller for
system (A, b) is such that |y+

n| ≤ ε
2 .

Proof. We show that
∣∣∑n

i=1 αiyi

∣∣ ≤ ε
2 + kpε and conclude applying Lemma 1 :∣∣∑n

i=1 αiyi

∣∣ ≤∑n
i=1 |αi|xi ≤ ε

2 +kpε because x �∈ Ξ(|A|, kp) and Lemma 1 .

Proof of Theorem 2. We show that the [kp]qdb–controller is
(
Qn(∆) , Qn(ε)

)
–

stabilizing in Hp = n+ p− 1 steps.
Let k(∆) be as in Equation (3), since kp ≥ k(∆) ≥ k(ε) the positive invariance
of Qn(∆) and Qn(ε) is ensured by Proposition 1 . The proof of the convergence
to Qn(ε) in the desired number of steps is organized as follows: we first suppose
that αi ≥ 0 ∀ i = 1, . . . , n and prove that the property holds for the trajectory
starting from x(0) := (∆

2 , . . . ,
∆
2 ) . This is obtained by showing that:

Statement I) Let t̃ be such that |xn(t̃)| ≤ ε
2 and |xn(t)| > ε

2 ∀ t < t̃ , then
|xn(t′)| ≤ ε

2 ∀ t′ ≥ t̃ ;
Statement II) t̃ ≤ p .
Statements I+II imply the assertion for x(0) because |xn(p+ h)| ≤ ε

2 ∀h ≥ 0
and A is in controller form.
The general case

(
y(0) ∈ Qn(∆) and arbitrary αi’s

)
is proved by comparing

the trajectories of the system with the one analyzed in the first part of the proof.
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• First case: αi ≥ 0 ∀ i = 1, . . . , n , x(0) = (∆
2 , . . . ,

∆
2 ) .

Proof of statement I) For t < t̃ , the state evolves according to the sequence
defined in Lemma 3 , therefore

(13) xi(t) > 0 ∀ t < t̃ and ∀ i = 1, . . . , n .

Equation (13) and |xn(t̃)| ≤ ε
2 imply that x(t̃−1) satisfies the property (Pkp

).
By Lemma 3 we know that xi(t̃− 1) = ∆

2 − ϕψt̃−1−n+i ∀ i = 1, . . . , n .
We show by induction that

∀h ≥ 0 ,

{ |xi(t̃+ h)| ≤ xi(t̃− 1) ∀ i = 1, . . . , n
|xn(t̃+ h)| ≤ ε

2
;

this proves statement I .
Case h = 0 :
if i < n then |xi(t̃)| = xi+1(t̃−1) = ∆

2 −ϕψt̃−n+i ≤ ∆
2 −ϕψt̃−n+i−1 = xi(t̃−1) ,

where the inequality follows by Lemma 2 .
If i = n then |xn(t̃)| ≤ ε

2 < xn(t̃− 1) .
Inductive step h⇒ h+ 1 :
if i < n then |xi(t̃ + h + 1)| = |xi+1(t̃ + h)| ≤ xi+1(t̃ − 1) by the inductive
hypothesis; xi+1(t̃− 1) ≤ xi(t̃− 1) as shown in case h = 0 .
If i = n we know by the inductive hypothesis that |xj(t̃ + h)| ≤ xj(t̃ − 1)
∀ j = 1, . . . , n , hence by Lemma 4 it follows that |xn(t̃+h+1)| ≤ ε

2 < xn(t̃−1) .

Proof of statement II) Because of statement I it is sufficient to show that
|xn(p)| ≤ ε

2 . Suppose that xn(t) > ε
2 ∀ t < p

(
we have dropped the modulus

because of Equation (13)
)
, let r :=

∑n
i=1 αixi(p − 1) − kpε = ∆

2 − ϕψp by
Lemma 3. By Lemma 1 |xn(p)| ≤ ε

2 if and only if r ≤ ε
2 , namely:

∆
2

− ϕψp ≤ ε

2
⇔ ϕ ≥ ∆ − ε

2ψp
.

By Equation (12) ϕ = ∆
2 − ∆

2

∑n
i=1 αi + kpε , it is then sufficient to show that

(14) min
{
m ∈ N

∣∣∣ ∆
2

− ∆
2

n∑
i=1

αi +mε ≥ ∆ − ε

2ψp

}
= kp .

Indeed, solving for µ ∈ R :

∆
2

− ∆
2

n∑
i=1

αi + µε ≥ ∆ − ε

2ψp
⇐⇒ µ ≥ 1

2
∆
ε

( n∑
i=1

αi − 1
)

+
1
ε

∆ − ε

2ψp
:= µmin ,

hence the integer minimum in Equation (14) is �µmin� = kp . This concludes
the first part of the proof.

From the discussion above it follows immediately that if U = Ukp−1 and
αi ≥ 0 ∀ i = 1, . . . , n , then the system is not

(
Qn(∆), Qn(ε)

)
–stabilizable

in Hp steps.
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• General case: arbitrary αi’s and y(0) ∈ Qn(∆) .

The thesis is obtained by comparing the evolution of y(0) according to the
[kp]qdb–controller and the evolution of x(0) = (∆

2 , . . . ,
∆
2 ) driven by system

(|A|, b) and the corresponding [kp]qdb–controller.
From the first part of the proof we know that ∃ t̃ ≤ p such that |xn(t̃)| ≤ ε

2
and xn(t) > ε

2 ∀ t < t̃ . Moreover, property (Pkp
) holds for x(t̃− 1) .

First we show by induction that ∀h ≤ t̃−1 and ∀ i = 1, . . . , n , |yi(h)| ≤ xi(h) :
the case h = 0 is obvious.
If h < t̃− 1 let us show the inductive step h⇒ h+ 1 :
if i < n then |yi(h + 1)| = |yi+1(h)| ≤ xi+1(h) because of the inductive
hypothesis; also, xi+1(h) = xi(h+ 1) .
For i = n , if |yn(h + 1)| ≤ ε

2 then |yn(h + 1)| ≤ ε
2 < xn(h + 1) because

h+ 1 ≤ t̃− 1 .
If instead |yn(h + 1)| > ε

2 , by Lemma 1 and the definition of the [kp]qdb–
controller, yn(h+ 1) =

∑n
j=1 αjyj(h) ± kpε (with + if

∑n
j=1 αjyj(h) < 0 and

vice versa). Since h+1 ≤ t̃−1 , then xn(h+1) =
∑n

j=1 |αj |xj(h)−kpε . Let us
suppose that

∑n
j=1 αjyj(h) > 0 (the opposite case is analogue): yn(h + 1) =∑n

j=1 αjyj(h)−kpε >
ε
2 , thus |yn(h+1)| = yn(h+1) ≤∑n

j=1 |αj ||yj(h)|−kpε ≤∑n
j=1 |αj |xj(h) − kpε = xn(h + 1) where the last inequality follows by the

inductive hypothesis.
In particular |yi(t̃− 1)| ≤ xi(t̃− 1) ∀ i = 1, . . . , n : hence, as property (Pkp

) is
satisfied by x(t̃ − 1) , by Lemma 4 it holds that |yn(t̃)| ≤ ε

2 . Since t̃ ≤ p , to
conclude the proof it is sufficient to show that

∀h ≥ 0 ,

{ |yi(t̃+ h)| ≤ xi(t̃− 1) ∀ i = 1, . . . , n
|yn(t̃+ h)| ≤ ε

2
.

We prove it by induction. Case h = 0 :
if i < n then |yi(t̃)| = |yi+1(t̃− 1)| ≤ xi+1(t̃− 1) as proved above. We already
know (see the proof of statement I) that xi+1(t̃− 1) ≤ xi(t̃− 1) .
If i = n then |yn(t̃)| ≤ ε

2 < xn(t̃− 1) .
The inductive step h ⇒ h+ 1 can be proved in the same way as the analogue
property showed in the proof of statement I.

6. Conclusion

We have considered the practical stabilization problem for discrete–time linear
systems subject to a fixed uniformly quantized control set. Several results have
been derived taking advantage of the controller form coordinates. In particu-
lar we have provided results on the existence and construction of controlled–
invariant sets (including a general characterization of such sets) and for the
synthesis of stabilizing control laws. The approach is promising also to solve
more general problems in the most important and challenging area where quan-
tization is combined with limited communication bandwidth.
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