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Abstract

This paper deals with the stabilization problem for a
particular class of hybrid systems, namely discrete–
time linear systems subject to a uniform (a priori
fixed) quantization of the control set. Results of our
previous work on the subject provided a description
of minimal (in a specific sense) invariant sets that
could be rendered maximally attractive under any
quantized feedback strategy. In this paper, we con-
sider the design of stabilizing laws that optimize a
given cost index on the state and input evolution on
a finite, receding horizon. Application of Model Pre-
dictive Control techniques for the solution of similar
hybrid control problems through Mixed Logical Dy-
namical reformulations can provide a stabilizing con-
trol law, provided that the feasibility hypotheses are
met. In this paper, we discuss precisely what are the
shortest horizon length and the minimal invariant ter-
minal set for which it can be guaranteed a stabilizing
MPC scheme. The final paper will provide an exam-
ple and simulations of the application of the control
scheme to a practical quantized control problem.
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1 Introduction

Practical applications of control theory reveal some
limits of the continuous models in the description
of dynamical systems: limited resources or technical
constraints, which finally lead to discrete measure-
ments or to a finite number of possible control ac-
tions, are typical situations that must be faced. This
is part of a broader phenomenon which is referred to
as quantization.
In the past twenty years the problem of dynamic sys-
tems analysis and control synthesis in presence of
quantization has developed and is currently grow-
ing in interest. It is now consolidated the idea of
regarding quantization not as a phenomenon to be
neglected and related to the concept of approxima-
tion but rather as a useful tool to be studied within
proper models (see for instance [5, 11, 12, 18, 23, 24]).
Many papers addressed the problem of the stabiliza-
tion of quantized systems (see [7, 11, 12, 13, 15, 16,
18, 17, 25]): in [11] Delchamps clarifies that the clas-
sical concept of stability is not significant in this con-
text, hence “practical” stability properties are intro-
duced for quantized systems.

In the present paper we investigate the possibility
of using Model Predictive Control techniques (MPC)
for stabilizing the particular class of hybrid systems
comprised of discrete–time linear systems subject to
a uniform (a priori fixed) quantization of the con-
trol set. This approach is justified by the fact that
MPC is a control policy particularly suited to cope
with constrained systems, which is how quantization
of the control space can be interpreted. Moreover,
we take advantage of the fact that, since a predic-
tive controller generates the control action by solving
an optimization problem, the design of the controller
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is reduced to a mathematical programming problem.
The latter is in general a more treatable task than
the computation of an explicit control law, especially
when dealing with severe constraints such as input
quantization and bounds on state evolution.
When applicable, the model predictive approach is
successful allowing to reduce the stabilization prob-
lem to the search of invariant sets and to the study
of their reachability. A detailed study of the reacha-
bility is needed to characterize the feasibility region
of the optimization problem defining the model pre-
dictive controller.

Although invariant sets are very important in con-
trol theory, in the current literature [6] few results
exist for quantized systems. In this paper we present
some results concerning the construction of invari-
ant sets for single–input linear systems: in this case
it is possible to face the problem without relying on
conservative Lyapunov techniques. The use of di-
rect geometric considerations allows us to get results
more suited to the practical implementation of MPC
and to lead a quantitative analysis of the reachability
problem.

The paper is organized as follows: in Section 2 it is
introduced the basic MPC scheme for quantized input
systems. To get stabilization results it is necessary to
add suitable constraints to the basic scheme: stabi-
lizing MPC strategies fitting for quantized systems
are developed in Section 3. Questions concerning the
construction of invariant sets and the feasibility of
the optimization problem defining the model predic-
tive controller are faced in Section 4. In the final
Section 5 is shown how to render effective the theory
developed and implement MPC. In the final version
there will be also an example and simulations of the
application of the control scheme to a practical quan-
tized control problem.

Notation: Qn(Λ) :=
[− Λ

2 ; Λ
2

]n
is the hypercube

of edge length Λ, bxc := max {z ∈ Z | z ≤ x} is
the floor function, x+ is the standard notation for
x(t + 1) ,

(
x(t)

)
i

stands for the ith component of
the state x at time t , ‖x‖∞ := max

i=1,...,n

{∣∣(x)i

∣∣} , Ωc

denotes the complementary of the set Ω and tx , tA

are the transpose of the vector x and of the matrix
A respectively.

2 Quantized Model Predictive

Control (QMPC)

Consider the following linear discrete time invariant
system

x(t + 1) = Ax(t) + Bu(t) (1)

where x ∈ Rn , u ∈ U := {u1 , u2 , . . . uN} ⊂ Rm

are the levels of quantization, and (A, B) ∈ Rn×n ×
Rn×m is a stabilizable pair.

Consider the model predictive controller defined as

u(t) = u∗0
(
x(t)

)
, (2)

where, given a finite number of steps Hp > 0 ,

u∗0
(
x(t)

)
is the first element of the minimizer

U∗(x(t)
) ∈ UHp of the following optimization prob-

lem:

min
U∈UHp

{
J
(
U, x(t)

)}
where (3a)

J
(
U, x(t)

)
= txHpPxHp +

Hp−1∑

k=0

(
txkQxk + tukRuk

)

(3b)

s.t.





x0 := x(t)
xk+1 := Axk + Buk , k = 0, . . . , Hp − 1,

uk ∈ U ,

(3c)

where R = tR > 0 , Q = tQ ≥ 0 , P =
tP ≥ 0 are matrices of suitable dimensions. Note
that in (3) x0 is the current state, x1, . . . , xHp

are the predicted states for the future Hp sam-
pling instants when the sequence of controls U :=(
u0 , u1 , . . . uHp−1

) ∈ UHp is applied. The mini-
mizer (which exists because #U < +∞ ) is denoted
by U∗ :=

(
u∗0 , u∗1 , . . . u∗Hp−1

)
and the dependence

on x(t) is omitted for simplicity.

Although the cost function (3b) penalizes the trajec-
tories getting far from the equilibrium, the model pre-
dictive controller does not guarantee stability (even



for unconstrained stable systems) if suitable condi-
tions on the final state are not imposed. Indeed, con-
sider the following well known counter-example:

Example 1 Consider the discrete–time linear sys-
tem





x(t + 1) =
(

0 0
1 0

)
x(t) +

(
1
0

)
u(t)

(x, u) ∈ R2
x × Ru .

Note that if the system is autonomous (i.e. no control
is applied), then ∀x(t) ∈ R2 , x(t + 2) = 0 .
Fix Hp = 2 and let

P = 0 , Q =
(

2 3
3 6

)
> 0 , R =

(
1
2

)
.

Set x(t) =

(
x

(1)
0

x
(2)
0

)
and U = (u0, u1) , the mini-

mizer is U∗ =
(
− 6

5x
(1)
0 , 0

)
. The model predictive

controller is then u(t) = − 6
5x

(1)
0 and induces the

closed–loop dynamics

x(t + 1) =
( − 6

5 0
1 0

)
x(t)

which is unstable. ♣

The reason for this undesirable behaviour is that the
cost function (3b) does not properly weigh, nor it
imposes a constraint on the final state. While this
problem could easily be solved in this simple example,
the problem is more difficult when quantization is
involved. The next Section develops stabilizing MPC
strategies for quantized–input systems.

3 Stabilizing QMPC schemes

A suitable terminal cost P is sufficient to guarantee
the closed–loop stability of system (1) when A is an
asymptotically stable matrix:

Proposition 1 Assume 0 ∈ U , let A be asymptoti-
cally stable and let P be the solution of the Lyapunov

equation P = tAPA + Q . Then the origin of the
closed-loop system (1), (2) is globally asymptotically
stable.

Proof. Let V
(
x(t)

)
= J

(
U∗, x(t)

)
be the minimum

of (3) attained at time t , and denote by x∗k the cor-
responding optimal trajectory. At time t+1 , the se-
quence U1 :=

(
u∗1 , . . . u∗Hp−1 , 0

) ∈ UHp is such that
the predicted states xk = x∗k+1 , ∀ k = 0, . . . , Hp−1 ,
with x(t + 1) = Ax(t) + Bu∗0 . Hence,

V
(
x(t + 1)

) ≤ J
(
U1, x(t + 1)

)
= txHp

PxHp
+

+
Hp−1∑
k=0

{
txkQxk + tukRuk

}
= t(Ax∗Hp

)P (Ax∗Hp
) +

+ tx∗Hp
Qx∗Hp

+
Hp−1∑
k=1

{
tx∗kQx∗k + tu∗kRu∗k

}
=

= tx∗Hp
Px∗Hp

+
Hp−1∑
k=1

{
tx∗kQx∗k + tu∗kRu∗k

}
=

= V
(
x(t)

)− tx(t)Qx(t)− tu(t)Ru(t) .

Thus, V
(
x(t)

)
is a nonnegative and non–increasing

sequence, therefore it converges to a finite limit as
t →∞ . Hence,

0 ≤ tx(t)Qx(t)+tu(t)Ru(t) ≤ V
(
x(t)

)−V
(
x(t+1)

)
,

which implies that lim
t→∞

u(t) = 0 because R is posi-

tive definite. Since U is discrete (actually it is a finite
set), there exists a finite time t0 such that u(t) ≡ 0
for all t ≥ t0 : as A is asymptotically stable it follows
that lim

t→∞
x(t) = 0 .

Let us handle now the case of unstable systems. The
quantization of the control set is a severe constraint
which renders unpracticable most of the classical ap-
proaches to the stabilization problem.
The argument of [9, 22, 4], consisting of choosing P

as the solution to the Riccati equation, can not be ap-
plied when the input is quantized, as the method to
achieve stability is based on the assumption that the
sequence U1 :=

(
u∗1 , . . . u∗Hp−1 , (Kx∗Hp

)
)

is an ad-
missible one, while here in general U1 6∈ UHp because
Kx∗Hp

6∈ U . On the other hand, an infinite hori-
zon setup would be numerically intractable, as (3)
would become a combinatorial problem with an in-
finite number of variables. The approach of using a
terminal constraint xHp = 0, as for hybrid systems



in [3], has the drawback of having a set of initial con-
ditions which in general are limited to a zero–measure
set.
Our idea is to use a relaxed final constraint so that
the feasibility of the optimization problem is achieved
for a significant set of initial conditions. The termi-
nal equality constraint is then replaced by the re-
quirement that the initial state can be steered in Hp

steps inside a controlled–invariant neighbourhood Ω
of the equilibrium (see next Definition 1). This pol-
icy gives rise to a quantized–input version of the
so–called dual–mode predictive control scheme (see
Michalska and Mayne [14]): since the system is un-
stable and the control set is quantized, only practical
stability can be achieved, on the other hand this pol-
icy has the advantage of obtaining an MPC scheme
which is robust against perturbations.
We introduce now the definitions needed for the sub-
sequent treatment.

Definition 1 The set Ω ⊆ Rn is said to be control-
led–invariant for system (1) iff ∀x ∈ Ω ∃u ∈ U such
that x+ = Ax + Bu ∈ Ω .

Definition 2 Let Ω ⊆ X0 ⊆ Rn ; the set Ω is said
to be X0–attractive iff ∀x ∈ X0 there exists a tra-
jectory which lies within X0 and enters Ω in a finite
number of steps. If moreover ∀x ∈ X0 such trajec-
tory can be chosen of length Hp , then the set Ω is
said to be X0–attractive in Hp steps.

Let Ω ⊂ Rn be a bounded and controlled–invariant
set for system (1) containing 0 in its interior part.
Hence we can assume that a feedback law

FΩ : Ω −→ U

has been defined so that ∀x ∈ Ω , Ax+BFΩ(x) ∈ Ω .
We use a predictive control strategy in Ωc to steer
the states inside Ω , then we switch to the feedback
law FΩ . To this aim a slight modification of the cost
function (3b) is sufficient: let

L(x, u) = IΩc(x) · (txQx + tuRu
)

(4)

(where IΩc is the characteristic function of Ωc ) and
consider the MPC control law (2) based on the opti-
mal control problem

min
U∈UHp



J

(
U, x(t)

)
=

Hp−1∑

k=0

L(xk, uk)



 (5a)

s.t.





xHp
∈ Ω

x0 := x(t)
xk+1 := Axk + Buk , k = 0, . . . , Hp − 1
uk ∈ U .

(5b)

Let

X(Hp) :=
{
x ∈ Rn | ∃U ∈ UHp such that xHp

∈ Ω
}

be the feasibility region for the optimization prob-
lem (5): note that Ω ⊆ X(Hp) .
Consider the feedback law

F : X(Hp) −→ U

defined by

F (x) :=
{

FΩ(x) if x ∈ Ω
u∗0 otherwise ,

(6)

where u∗0 is the first element of the minimizer U∗

related to the optimization problem (5).
Note that the optimization problem (5) is solvable
(i.e. the minimum is attained) for all x(t) ∈ X(Hp)

because #U < +∞ .

Proposition 2 Assume Ω is a controlled–invariant
neighbourhood of the origin, and Q > 0 . Then Ω is
X(Hp)–attractive for the closed–loop system (1), (6).

Proof. The proof follows arguments similar to the
ones used in the classical dual–mode MPC scheme
(see for instance [8, 21]).

If x(t) ∈ Ω then the statement is trivial; let us
prove the theorem for x(t) ∈ X(Hp) \ Ω . From
the controlled–invariance of Ω it follows that x ∈
X(Hp) ⇒ x+ = Ax+BF (x) ∈ X(Hp) , thus the trajec-
tory starting from x(t) and generated by the closed–
loop dynamics (1), (6) is well defined for all sampling



instants greater than t .
With the same notations used in the proof of Propo-
sition 1, let U∗(x(t)

)
=

(
u∗0 , u∗1 , . . . u∗Hp−1

)
be the

minimizer of problem (5), hence at time t + 1 the
control sequence U1 :=

(
u∗1 , . . . u∗Hp−1 , FΩ(x∗Hp

)
) ∈

UHp is such that the terminal constraint xHp
∈ Ω is

satisfied. Thus

V
(
x(t + 1)

) ≤ J
(
U1, x(t + 1)

)
=

∑Hp−1
k=1 L(x∗k, u∗k) +

L
(
x∗Hp

, FΩ(x∗Hp
)
)

= V
(
x(t)

)− L
(
x(t), u(t)

)
.

Since Q > 0 and 0 ∈ Int(Ω) , then there exists
α > 0 such that L(x, u) ≥ α ∀x ∈ Ωc . There-
fore

V
(
x(t)

)− L
(
x(t), u(t)

) ≤ V
(
x(t)

)− α ,

and finally

V
(
x(t)

)− V
(
x(t + 1)

) ≥ α .

This means that as long as the trajectory is in Ωc ,
the value function V (x) is decreasing at least by the
constant α > 0 , since V (x) ≥ 0 this implies the
thesis.

Remark 1 [QMPC for nonlinear systems] The
linearity of system (1) has not been involved, indeed a
more general result can be proved with some modifi-
cations of the arguments used to prove Proposition 2:
let Ω be a controlled–invariant neighbourhood of the
equilibrium state (which can be taken to be the ori-
gin) for the discrete time system

x(t + 1) = g
(
x(t), u(t)

)
, x ∈ Rn, u ∈ U ⊂ Rm,

where U is a discrete control set. Consider the
optimization problem (5) where in Equations (5b)
xk+1 := g(xk, uk) and the cost function (4) is re-
placed by L(x, u) = IΩc · C(x, u) , where C(x, u) is
such that there exists a norm on Rn × Rm such
that C(x, u) ≥ ‖(x, u)‖2 ∀ (x, u) ∈ Rn × U . Then
Ω is X(Hp)–attractive for the closed–loop dynamics

x(t + 1) = g
(
x(t), F

(
x(t)

))
induced by the feedback

law (6).
For the details of the proof see [16] .
It is worth noting that the only hypothesis involv-
ing the function g is the assumption that Ω is a

controlled–invariant set.
Of course the linear case is interesting both because
there exist many efficient algorithms to implement
MPC and because in this case are available results
concerning the construction of controlled–invariant
sets in the quantized–input case (see next Section 4).

As a consequence of Proposition 2 and Remark 1 the
model predictive approach allows to reduce the stabi-
lization problem to the search of controlled–invariant
sets and to the study of their reachability (which is
indeed the study of the feasibility of the optimization
problem defining the model predictive controller).

4 Invariant sets

In this Section we present some results concern-
ing the construction of controlled–invariant sets for
quantized–input linear systems. We restrict to the
single–input case because in this framework the con-
struction can be done as much as possible without
relying on Lyapunov techniques, which are often too
conservative. The presented technique provides re-
sults which better suit the practical implementation
of MPC, because we find invariant sets with polyhe-
dral structure and also because a quantitative analy-
sis of the reachability problem can be done.
We examine the case of a uniformly quantized con-
trol set which is fixed a priori, more precisely it is
assumed that U ⊆ εZ for some ε > 0 .

Let us start considering systems such that the pair
(A,B) is reachable: in this case a change of the co-
ordinates allows us to work with the controller form
associated to the pair (A,B) . In the following we
will refer to the following hypothesis:

H1) The pair (A, B) is reachable and the system (1)
is in controller form. Let sn−αnsn−1−· · ·−α2s−α1

be the characteristic polynomial of A .

The basic results about controlled–invariant sets are
summarized in the following statements, for a de-
tailed exposition we refer to [18].



Proposition 3 Assume H1 and that U = εZ , then

i) ∀∆ ≥ ε , Qn(∆) is controlled–invariant.
ii) ∀Hp ≥ n , ∀∆ ≥ ε , Qn(ε) is Qn(∆)–attractive

in Hp steps.

Moreover Qn(ε) is a minimal controlled–invariant
hypercube in the following sense:

iii) For almost all x ∈ Qn(ε) ∃ ! u ∈ U such that
x+ ∈ Qn(ε) . 2

Hence in the unbounded control set case the invari-
ance and attractivity study is easily completed.
In the finite control set case we consider input sets of
the type

Uk := {−kε, . . . , 0, . . . , +kε}
and, for a given ∆ ≥ ε , we find the condition on k

ensuring the controlled–invariance of Qn(∆) :

Proposition 4 Assume H1 and that U = Uk , then
Qn(∆) is controlled–invariant if and only if k ≥ k0 ,
where:

k0 :=

{
−

⌊
1
2

∆
ε

(
1−∑n

i=1 |αi|
)⌋

if
∑n

i=1 |αi| ≥ 1

0 otherwise.

2

Once we know that Qn(γ) is controlled–invariant
(for γ ≥ ε ), we wish to study its attractivity proper-
ties in a fixed number of steps. The set X(Hp) from
which Qn(γ) is reachable in Hp steps can be eas-
ily characterized when the matrix A is invertible: in
this case, set RHp := [AHp−1B| · · · |AB|B] , a simple
calculation shows that

X(Hp) =
⋃

U∈UHp

{
A−Hp

(
Qn(γ)

)−A−HpRHpU
}

.

Anyway, since an increasing family of sets(
Qn(γ)

)
γ≥ε

, which can be rendered invariant,
is available, we have faced another problem: to
look for conditions on Uk ensuring that Qn(ε) is
Qn(∆)–attractive (for ∆ > ε ). Solving this problem
allows to introduce an MPC scheme taking into
account also constraints on the trajectories (see next
Remark 2).

Proposition 5 Assume H1, let ∆ > ε > 0 and U =
Uk , fix Hp ≥ n ; Hp = n + p− 1 with p ≥ 1 .

A sufficient condition in order that Qn(ε) is Qn(∆)–
attractive in Hp steps is that k ≥ kp , with

kp = −
⌊1
2

∆
ε

(
1−

n∑

i=1

|αi|
)− 1

ε

∆− ε

2ψp

⌋
,

where the sequence {ψm}m∈N∗ is defined as follows:





ψ1 := 1
ψm := 1 +

∑m−1
i=1 |αn−m+i+1|ψi if

m ≥ 2 , where αj := 0 if j ≤ 0 .

Moreover, if αi ≥ 0 ∀ i , then the condition is also
necessary. 2

Remark 2 Let Ω ⊆ X0 ⊂ Rn and suppose that
Ω is controlled–invariant and X0–attractive in Hp

steps for system (1). Consider the feedback law (6)
based on the optimization problem (5) where the
state constraint xk ∈ X0 ∀ k = 0, . . . ,Hp − 1 is
added to the constraints in Equation (5b): then Ω
is X0–attractive for the induced closed–loop system.

Let us consider now the case of a stabilizable pair
(A,B) . A change of the coordinates allows us to
transform the system into the following canonical
form for a stabilizable pair:

As =







0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
α1 α2 · · · αnc


 A2

0 A3




Bs =




0
...
0
1
0




where A3 is an asymptotically stable matrix.
Suppose (A,B) is a stabilizable pair in the canon-
ical form: let Rn := Rnc ⊕ Rnas be the underlying
decomposition of the state space.
As A3 is an asymptotically stable matrix, then
∀Q ∈ Rnas×nas such that tQ = Q > 0 , ∃ ! P > 0 so
that tA3PA3 − P = −Q .
V (z) := tzPz is a Lyapunov function for the system
z+ = A3z , hence ∀ r ≥ 0 , {z ∈ Rnas |V (z) ≤ r} is



A3 –invariant.
Note that

z ∈ {V ≤ r} ⇒ ‖A2 z ‖∞ ≤ γ(r) .

With the notations introduced we can state the fol-
lowing:

Proposition 6 Assume U := Z , ∀ r ≥ 0 the set

Ωr :=
([ − 1

2 − (nc − 1)γ(r) ; 1
2 + (nc − 1)γ(r)

]×
× [− 1

2 − (nc − 2)γ(r) ; 1
2 + (nc − 2)γ(r)

] × · · ·
× [− 1

2 − γ(r) ; 1
2 + γ(r)

]× [− 1
2 ; 1

2

])× {
V ≤ r

}

is controlled–invariant.

Proof. y :=
(

x

z

)
∈ Ωr iff ∀ i = 1, . . . , nc |xi| ≤

1
2 + (nc − i)γ(r) and z ∈ {V ≤ r} by definition.

y+ =
(

x+

z+

)
is such that

(x+)1 = (x)2 + (A2z)1 thus
|(x+)1| ≤

(
1
2 + (nc − 2)γ(r)

)
+ γ(r) ;

...
(x+)nc−1 = (x)nc + (A2z)nc−1 thus
|(x+)nc−1| ≤ 1

2 + γ(r) ;
(x+)nc =

∑nc

i=1 αi(x)i + (A2z)nc + u hence we can
choose u ∈ Z such that |(x+)nc | ≤ 1

2 ;
z+ ∈ {V ≤ r} .

The case U = εZ is analogous.

Remark 3 The invariant sets found in this case can
be significantly larger then the ones found in the
reachable case: this because of the uncontrollable
part z+ = A3z of the system which gives rise to
the constant γ(r) affecting the reachable part. How-
ever lim

t→∞
z(t) = 0 , this means that in practice the

states evolve inside Ωr converging towards the set(
[− 1

2 ; 1
2 ]nc

)× {0} .

5 QMPC Computations

It is immediate to cast problems (3) and (5) as inte-
ger quadratic programs (IQPs). Indeed, by substitut-
ing xk = Akx(t)+

∑k−1
j=0 AjBuk−1−j , Equation (3b)

can be rewritten as

min
U

{
1
2U ′HU + x′(t)FU + 1

2x′(t)Y x(t)
}

subj. to GU ≤ W + Ex(t)
uk ∈ U , ∀k = 0, . . . , Hp − 1

(7)
where the column vector U := t[tu0 , . . . tuHp−1] ∈
RmHp , is the optimization vector, H = tH Â 0 ,
and H , F , Y , G , W , E are easily obtained from
Q , R , and (3b) (as only the optimizer U is needed,
the term involving Y is usually removed from (7)).

The optimization problem (3) is an IQP. Because
the problem depends on the current state x(t) , the
implementation of MPC requires the on-line solu-
tion of an IQP at each time step. Although effi-
cient (mixed) integer quadratic programming solvers
based on branch and bound methods are avail-
able [10, 20, 2], computing the input u(t) demands
significant on-line computation effort. In [1] we pro-
vide a multiparametric integer programming algo-
rithm to compute off line the equivalent piecewise
constant form of the MPC control law defined by (7).

Problem (5) can instead cast as a mixed integer
quadratic program (MIQP). By defining

zx
k (xk, uk) =

{
xk if xk ∈ Ω
0 otherwise

zu
k (xk, uk) =

{
uk if xk ∈ Ω
0 otherwise

(8)

we get L(xk, uk) = tzx
kQzx

k + tzu
k Ezu

k , and by setting

[δk = 1] ↔ [xk ∈ Ω] (9)

we finally obtain

min
U,Z,∆

{∑Hp−1
k=0 zx′

k Qzx
k + zu′

k Ezu
k

}

subj. to zx
k =

(
Akx(t) +

∑k−1
j=0 AjBuk−1−j

)
δk

[δk = 1] ↔ [xk ∈ Ω]
AHpx(t) +

∑Hp−1
j=0 AjBuHp−1−j ∈ Ω

uk ∈ U , ∀k = 0, . . . , Hp − 1
(10)

where Z := t[tzx
0 . . . tzx

Hp−1
tzu

0 . . . tzu
Hp−1] , ∆ :=

t[δ0 . . . δHp−1] , which can be translated to MIQP
according to standard techniques (see e.g. [3]).



Remark 4 State constraints having the form
xmin ≤ x(t) ≤ xmax (or, more generally, Āx(t) ≤ B̄ )
can be easily taken into account by adding the linear
constraints

Ā


Akx(t) +

k−1∑

j=0

AjBuk−1−j


 ≤ B̄

in (10). Clearly, in this case the invariant set Ω must
be contained in the polyhedron Āx ≤ B̄ in order to
guarantee constraint fulfillment of the QMPC con-
troller at all times t ≥ 0 .
Hence the algorithm can take into account state con-
straints also along the predicted trajectories: this is
an important extension of the recent approach pre-
sented in [19] which is not provided for dealing with
state constraints.

Conclusions

In this paper we have considered the stabilization
problem for discrete–time linear systems subject to a
fixed, uniform quantization of control inputs. It has
been shown that the Model Predictive Control ap-
proach can be profitably used and we provided con-
ditions for its applicability. Several open problems
remain in this field, among which is the extension to
(quantized) output MPC. More generally, the com-
bination of quantization with limited communication
bandwidth is a most important and challenging area
to which further work will be devoted.
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