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Abstract

Humans tend to simplify the space of possible grasps they can perform. Yet, the description of human hand motions is
very complex, and methods to reduce this complexity have attracted much attention in the motor control literature. Im-
portant implications in robot hand design and programming have also generated a wide interest in the robotics research
community. Early studies prevalently used direct analysis methods such as visual inspection to define grasp taxonomies.
More recently, analytical methods have been employed to perform grasping data dimensionality reduction. In this pa-
per, we present a methodology to reconcile these two distinct and apparently incompatible approaches under a unified
framework: this allows us to obtain a data-generated grasp taxonomy along with low-dimensional representations which
could be used for human grasping data classification and posture reconstruction, as well as for simplifying grasp planning
algorithms and robotic hands programming.
Keywords: Human Grasp Analysis; Robotic Grasp Synthesis; Robot Hand Design; Grasp Taxonomy; Posture Reconstruc-
tion.

1 Introduction

In the past 60 years, attempts made towards the generation
of a grasp taxonomy (such as [1] in the 50s and [2] in the
80s) have mostly relied on direct visual inspection. Still re-
cently (see e.g. [3] and [4]), the most successful approaches
to classify human grasping postures and movements apply
the same method.
On an apparently separate side, a large number of mod-
els and techniques for dimensionality reduction have lately
been applied to postural and grasping data. Santello et al.
[5] asked subjects to grasp a large number of imagined ob-
jects and used Principal Component Analysis (PCA, [6])
to extract the so called postural synergies; the more re-
cent work from Vinjamuri and co-workers [7], [8] extended
the concept to temporal and kinematic postural synergies;
Thakur et al. [9] analyzed hand posture data obtained from
a motion capture system during an unconstrained haptic ex-
ploration task still applying the same technique, which to
date remains the most largely used; this type of reduction
was then exploited in many areas, from robotic hands pro-
gramming (see e.g. [10]), sensing (see e.g. [11] and [12]),
and building of simpler, underactuated hands (e.g. [13] and
[14]).
Other types of dimensionality reductions have been used
too: e.g., Bernardin et al. [15] approached the problem of
fusing data glove and tactile sensor information applying
an Hidden Markov Model (HMM, [16]) recognizer to dis-
tinguish among different grasp types; the same technique

was

Figure 1 An example of a 1-dimensional linear space in
hand posture space obtained using the kinematic model
from [17] and the technique from [18] adapted for postu-
ral data analysis. Subject ED, spherical grasp movement.

was used by Ekvall et al. [19] to recognize grasp types
based on entire grasping timeseries; on different data types,
Jenkins et al. [20] extended the concept of ISOmaps to
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spatio-temporal ISOmaps in order to approach more gen-
eral human data analysis; Peternel and Leonardis [21]
showed that even movements as complex as human loco-
motion can be modeled by a small number of Degrees of
Freedom (DoFs), i.e. 15 Gaussian Mixture Model (GMM)
in 4-D space.
All these automatic techniques have been applied to show
that there is an underlying structure in the way humans per-
form any action, in particular grasping, which seems to be
an apparently irreconcilable topic with respect to the gen-
eration of a grasp taxonomy.
Some attempts at automating the procedure of data seg-
mentation have been made in the last decade (e.g., [22],
[23]), and even very recently (see [24]): still they start
by performing dimensionality reduction on the full dataset,
and then look for a valid segmentation in the reduced di-
mensional space which is, indeed, affected by the popu-
lation employed. Specifically, [24] uses functional PCA
(fPCA, [25]) to analyze grasping motions which are first
projected over 3 PCs, and then each PC is decomposed
along 2 fPCs to obtain movement 6-D representations: the
grasping movements, generated on instruction from a sub-
set of Cutkosky’s grasp taxonomy, are then clustered using
K-means (see [26]) into a new grasp taxonomy.
This work aims to find a systematic, data-driven way to
explain grasp taxonomy from generic grasping data, which
could then be used for automatic movement classification,
hand-posture database indexing (see e.g. the DB at [27]),
and as a way of reducing grasp planning algorithms and
robotic hands programming complexity, moving towards
the unification of human grasp movement analysis and
robotic grasp synthesis procedures.
Although global dimensionality reduction techniques are
well-suited for building simpler, underactuated robotic
hands and to more easily program fully actuated hands, dif-
ferent approaches can be exploited which can benefit from
the locally low-dimensional structure of the data to be used
(see e.g. the work by Ciocarlie et al [10] on dexterous
robotic grasping with a variety of hands, or [28] for a recent
application of Programming by Demonstration, PbD [29]).
A low number of DoFs is desirable for these methods, and
a technique which automatically groups together similar
movements could relieve the programmer from most of the
pre-processing of a suitable dataset for the task at hand.
As a means to our goal, we borrow form computer vision
the technique of Multiple Eigenspaces (originally from
[18], see Section 3), and adapt it to our data. The rea-
son behind this choice is that Multiple Eigenspaces are a
generalization of PCA, which can be viewed as a single
eigenspace which tries to explain the whole dataset. Us-
ing more than one eigenspace the dataset is automatically
clustered and, differently from other clustering techniques
like K-means, each cluster can have a different dimension.
Moreover, the used approach gives lower dimensional sub-
spaces w.r.t. PCA, which means that they can be used for
interpolation (the whole space is meaningful, which is not
true when a single high order space is considered): we thus
try not to neglect the low dimensional local structure of the

data, which is instead usually ignored.
The paper is organized as follows: in Section 2 we re-
port the data collection procedure for obtaining a test bed
dataset, along with a brief explanation of the fully param-
eterized hand model we use to reconstruct the postures
from those data; in Section 3 the technique of Multiple
Eigenspaces is briefly recalled, with some advantages high-
lighted over global dimensionality reduction techniques,
and a specialization of the algorithms for our type of data
is illustrated; in Section 4 we show how our approach
fits in between a taxonomy-generation problem and a hu-
man grasp movement dimensionality reduction problem for
analysis and synthesis of grasping behaviors. Finally, con-
clusions and ongoing research are presented in Section 5.

2 Hand Model Description and

Postural Data Gathering

To test the algorithmwhich we will fully describe in the fol-
lowing Section, the grasping movement data are obtained
from timed sequences of postural data constructed with the
procedure described in [17]. In particular:

• a volunteer (subject) has his/her hand prepared with
active markers (LEDs) placed on the skin;

• a motion capture system (Phase Space, San Leandro,
CA - USA) is used to record the 3-D movement of
the markers; the recording frequency is 480 Hz;

• upon timed intervals (every 12 sec), a random image
from a set of possible objects is shown to the sub-
ject for 3 seconds (see Table 1 for a partial list of the
objects used, or [5] for a full list of the 57 objects);

• as a correspondence to the experiment performed in
[5], after each image disappears the subject is asked
to perform the grasp as if the object just shown was
in front of them.

1. Bucket 11. Hammer
2. Calculator 12. Ice cube
3. Chalk 13. Jar lid
4. Cherry 14. Light bulb
5. Computer mouse 15. Pen
6. Dinner plate 16. Rope
7. Espresso cup 17. Telephone handset
8. Fishing rod 18. Tennis racket
9. Frisbee 19. Toothpick
10. Hair dryer 20. Wrench

21 ÷ 57 · · ·

Table 1 A partial list of objects used for data gathering.

The marker position data are then used to reconstruct
joint movements of the subject via a fully parameterized
26 DoFs kinematic hand model which includes a mecha-
nism to compensate for movements of the markers posi-
tioned close to joints due to movements of the skin relative
to the bones (the so called “soft-tissue artifact”). The pro-
cedure, applied for computational time reasons to a version
of the data downsampled to 15 Hz, goes as follows:

119

ISR 2016 (June 21 – 22, 2016, Munich, Germany)

ISBN 978-3-8007-4231-8 © VDE VERLAG GMBH  Berlin  Offenbach



• a calibration phase estimates the geometric parame-
ters of the specific subject hand to adapt the general
model; these parameters are mainly bone lengths and
position of the markers with respect to bones;

• keeping constant the calibration data, an identifica-
tion with an Extended Kalman Filter is performed
on the whole movement data.

From the 26 DoFs data, which includes also 2 wrist DoFs,
only the remaining 24 “inner-hand” DoFs are considered.
A visual example of how the model looks like when a pos-
ture is reconstructed is shown in Figure 1, which repre-
sents the extrema of a 1-DoF movement in joint space re-
constructed using the procedure highlighted in Sec. 3.
To reduce the computational burden of the following anal-
yses, only 20 frames of each interval, which contain in
full the grasping movement, are considered. No other pre-
processing is performed.
Data from two subjects (ED and VB, both right handed
and unimpaired, between 20 and 30 years old), each per-
forming the full experiment twice, have been used: the full
dataset for each subject contains twice the full experiment
consisting of 57 grasping movements, lasting 20 frames,
i.e. 2×57×20= 2280 datapoints.

3 Multiple Eigenspaces Technique

In order to proceed towards our goal of finding a data-
driven way to explain grasp taxonomy, we decide to use
the technique of Multiple Eigenspaces [18].
The word Eigenspace stands for a representation of a sub-
set of the data which consists of a mean datapoint and a
certain number of linear directions, taken as the direction
of maximum variance in the data: this number is called di-
mension of the eigenspace.
The problem of generating the eigenspaces is twofold, i.e.
has to consider these two aspects:

• which datapoints belong together in the same
eigenspace

• what should the dimension of each eigenspace be.

We will now illustrate the original technique as proposed
in [18], along with its advantages over more classical ap-
proaches, and necessary modifications which have been ap-
plied to the algorithm to work with our different type of
data.

3.1 Original Algorithm

In [18] the procedure of generating multiple eigenspaces is
structured as follows:

• generate a large number of seeds with a cer-
tain amount of datapoints (DP’s) in the dataset
(Sec. 3.1.1)

• apply a cyclical growing procedure

– grow them independently of each other
(Sec. 3.1.2.1)

– prune the eigenspaces using a selection proce-
dure (Sec. 3.1.2.2)

which terminates when no eigenspace can further be
grown.

3.1.1 Seeds generation

Seeds, which are the initial stage of the eigenspaces, are
generated from the dataset with a proximity criterion, to
have a good set of seeds, based on spatial or temporal prox-
imity in the acquisition: once the initial scope of the seeds
has been chosen (being the scope the number of DP’s in
the eigenspace), corresponding DP’s are incorporated in an
eigenspace which, at the beginning, simply represents their
mean value (i.e., has dimension zero).
Notice that the scope has to be chosen small enough to let
the seeds be free to evolve in the best possible direction as
dictated by the data. Notation: in the following, the j-th
eigenspace at stage t will be denoted by Et

j, thus the seeds
are denoted by E0

j .

3.1.2 Eigenspace cyclical formation

The eigenspaces are then obtained with a cyclical proce-
dure, which terminates when they cannot be further grown.

3.1.2.1 Eigenspace independent growing
Each eigenspace is independently grown inserting the DP’s
which are more closely related to it, sorted considering
their reconstruction error δ . The δ t

i j error of the i-th DP
w.r.t. eigenspace j at stage t is simply the norm of the dis-
tance between the DP xi and its reconstruction x̂t

i j obtained
in Et

j
δ t

i j = ‖xi − x̂t
i j‖ (1)

where the reconstruction x̂t
i j is the projection of xi onto the

eigenspace.
An allowable error level σ (see Table 2), has to be chosen
depending on the data at hand (i.e., what we consider to be
an average level of error in a group of DP’s). The δ error
has thus to be below a pre-specified threshold δth to avoid
inserting in the eigenspace DP’s which are too far from it,
still trying to expand the scope; a value of δth = 2.0σ is
used.
At every iteration, the maximum number of DP’s allowed
to enter an eigenspace is equal to its scope. If for an
eigenspace there are no DP’s which respect the threshold
on δ error, the growing of that eigespace is terminated.
When a certain set of DP’s is considered compatible with
an eigenspace (based on δ error), it is temporarily included
in Et+1

j , and the overall reconstruction error ρ is computed

(
ρ t

j
)2

=
1

#Et
j

∑
xi∈Et

j

(
δ t

i j
)2

, (2)

where #Et
j indicates the number of postures in Et

j, i.e. its
scope.
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This error is used to decide whether an eigenspace is ex-
panding correctly, and when it would be useful to increase
its dimension; this is achieved using two thresholds ρth1 ≤
ρth2 (chosen as in Table 2) and the following procedure:

• if the eigenspace Et+1
j is already a good representa-

tion for the postures in it, i.e. ρ t+1
j < ρth2, accept the

eigenspace and make the inclusion permanent

• otherwise try increasing the dimension of Et+1
j by

one (generating Êt+1
j ) and compute again its error

ρ̂ t+1
j

– if the error of this new eigenspace is signifi-
cantly reduced, i.e. ρ̂ t+1

j < ρth1, accept this new
eigenspace

– otherwise discard the last set of inserted DP’s,
revert the eigenspace to its previous stage (as-
signing Êt+1

j = Êt
j) and stop growing it.

3.1.2.2 Eigenspace selection
The selection procedure is the step used to take some
eigenspaces out during the cyclical growing, to make it
computationally feasible. Which eigenspaces have to re-
main is decided based on a Minimum Description Length
(MDL) principle considering the following cost function

F(h) = hTCh = hT

⎡
⎢⎣

c11 · · · c1r
...

...
cr1 · · · crr

⎤
⎥⎦h (3)

where each c j j is the saving associated with leaving the
eigenspace j in, and each c jk is the saving associated to
leaving in both eigenspaces j and k; finally, h is a vector
whose i-th entry is 1 if Ei is included, 0 otherwise. Notice
that, for the sake of readability, all superscript t are omitted
in the following equations. c j j have the structure

c j j = K0(#E j)− (K1d j +K2(#E j)d j +K3(#E j)ρ j), (4)

where d j is the dimension of E j, while K0, K1, K2, and
K3 are constants (see Table 2). K0 is related to the cost
of encoding one DP in the absence of the eigenspace, and
K1 to the cost of encoding each eigendirection: these costs
are considered to be equal, being all images in the original
work of the same size, and will be kept equal as all pos-
tures have 24 DoFs. K2 is the cost related to encoding the
coefficients of each DP in the eigenspace, and is neglected
as much smaller than the others. Finally, K3 is related to
the average cost due to the error, and is a parameter which
have to be chosen appropriately. c j j is thus simplified to

c j j = K0(#E j −d j)−K3(#E j)ρ j. (5)

Elements c jk out of the diagonal are elements which are
used to consider that savings only occur once even when
the DP’s are inserted in more than one eigenspace.

c jk = (#E j∩k)(−K0+K3ρ jk), (6)

where E j∩k represent the datapoint intersection of E j and
Ek, and ρ jk is the maximal error of the DP’s in E j∩k w.r.t.
E j and Ek.
For the choice of these out-of-diagonal coefficients, the
procedure work well when the overlaps of each DP
are mainly pairwise (each DP is at most present in 2
eigenspaces), but does not generalize well for higher order
overlaps.
The sub-optimal choice of h is performed via greedy
search, as the optimal cost (3) would require the solution
of a binary search problem which is computationally un-
feasible as soon as the number of eigenspaces exceeds few
entries.

Parameters Description Value
σ level of allowed error N.A.
δth threshold: allow a datapoint in 2.0σ
ρth2 threshold: request a dimension upgrade > 1.2σ
ρth1 threshold: accept a dimension upgrade < 1.0σ

K3/K0 relative cost of the reconstruction error 1.1

Table 2 Parameters and their values in the original al-
gorithm. Notice that the value of σ was chosen based on
normalized image errors and is thus not meaningful for
our analyses.

3.2 Advantages Over Global Techniques

Global dimensionality reduction techniques can generally
be very effective in representing the data, but usually do not
consider the locally low-dimensional structure of the data.
Clustering methods such as K-means [26] and J-linkage
[30], on the other hand, force all clusters to have an a priori
fixed dimension.

PCA Multiple Eigenspaces

Figure 2 When data are along multiple low dimensional
subspaces, a global dimensionality reduction technique
may give poor results in terms of ability to explain the
data, even if the error in reconstructing each datapoint is
very low.

In terms of ability to explain the data, a global technique
may give poor results, even if the error in reconstructing
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each DP is very low. To illustrate this concept, in Figure 2

an ad hoc dataset is reconstructed with both PCA and Mul-
tiple Eigenspaces algorithms. The reconstruction error of
the PCA using two principal components (PCs, red-dashed
lines) is exactly zero, which is not true for the Multiple
Eigenspaces (green solid lines), nonetheless this latter rep-
resentation can be clearly seen to be more meaningful and
representative of the data.
Although this is an oversimplified example, similar situa-
tions may arise in higher dimensional data analysis: see
e.g. Figure 8 and 9 in [5] for an example of a space (the
first 2 PCs of hand postures) which is mainly meaningful
only along two lower dimensional (1-D) subspaces.

3.3 Modifications for Postural Data

Analysis

The technique illustrated so far, although working well on
images, does not give meaningful results when applied to
postural data: the main reason for this is the fact that the se-
lection procedure shown in Sec. 3.1.2.2 cannot handle high
order overlaps, which happen rather frequently in human
grasping data.
In order to overcome this issue, we include the following
modifications:

• before the selection, include a datapoint reduction
phase to avoid high order overlaps (Sec. 3.3.1)

• change the coefficients c jk because, from an MDL
point of view, the cost of encoding the coefficients is
in these data not negligible (Sec. 3.3.2)

• at the end of the growing phase, increase the speci-
ficity of the eigenspaces performing an additional re-
duction step in order to keep each posture in no more
than one eigenspace (Sec. 3.3.3).

3.3.1 Datapoint reduction

After all eigenspaces have passed a stage of growing, a
datapoint reduction procedure is performed to keep each
posture in at most two eigenspaces. This is done keeping
each posture in the two eigenspaces which best reconstruct
it, i.e. selecting the two lowest δ errors amongst all possi-
ble ones across the various eigenspaces which include that
posture. After reducing the datapoints in each eigenspace,
if the dimension of the changed eigenspaces can be low-
ered still respecting error threshold, we do so.
Again, this step serves as a preparation to the selection pro-
cedure (Sec. 3.1.2.2), which can handle well pairwise over-
laps, but suffers when much higher order overlaps exist.

3.3.2 New savings coefficients

Because the dimensionality of the data we use, the cost K2
of encoding coefficients is not negligible. We thus use c j j
as in (4) and

c jk = (#E j∩k)(−K0+K2 d jk +K3 ρ jk), (7)

with K2/K0 = 1/24 as one posture has 24 elements (see
Table 3).

Moreover, the choice of σ is related to the covariance of
the dataset X used for generating the eigenspaces.

Parameters Description Value
σ level of allowed error 0.75

√‖���(X)‖
K2/K0 cost of a coefficient 1/24

Table 3 Parameters and their values in the modified algo-
rithm. In this case, K2 is not negligible, and σ is chosen
based on the dataset covariance.

3.3.3 Final selection and unification

When the eigenspaces reach a steady state and, thus, the
growing procedure terminates, we unify the eigenspaces,
allowing each posture to belong to no more than one
eigenspace: this step reduces the overlaps to zero.
Moreover, as we are interested in movements rather than
just static posture classification, before performing this
merging, we discard all the eigenspaces which have an or-
der of zero (i.e., the postures in those are represented only
by a mean value).

4 Results

The technique described in the previous Section has then
been applied to each subject dataset obtained as explained
in Section 2.

4.1 Qualitative results: Grasp taxonomy

classification of eigenspaces

Eigenspaces resulting from this procedure have been di-
rectly inspected to assess their similarity to a classical grasp
taxonomy entries. Most similar grasps from the taxonomy
in [2] are as follows:

ED: medium wrap (see Figure 3), tripod, light tool (see
Figure 4), thumb - 4 finger, sphere (see Figure 1);

VB: tripod, lateral pinch, medium wrap, thumb - 2 fin-
ger, large diameter, thumb-index, prismatic with ad-
ducted thumb, light tool (see the video [31]).

Given their similarity to entries in a classical grasp
taxonomy and their inherent low-dimensional nature,
eigenspaces are great candidates as basic components of
robotic hands programming as in [10], human grasping se-
quence classification from noisy data as in [11], and low-
dimensional grasp planning as in [32].
Moreover, an interesting application of this methodology
is represented by the possibility of using such sub-spaces
to have a simplified, task-driven hand design approach for
building simple robot hands (such as e.g. [14]).
About Programming by Demonstration, and especially
w.r.t. [24] in which the authors reduce the dimensionality
of a 14 DoFs hand movements first to 3 Principal Compo-
nents and then to 6 functional PCs, our algorithm does not
need any pre-processing nor extra clustering and is able to
reduce 24 DoFs hand motions in few 1-D or 2-D simple
linear spaces which could then be used as training sets for
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Figure 3 Medium wrap grasping; hand closing from left to right.

Figure 4 Light tool grasping; hand closing from left to right.

the robot.
Of course, fPCA is a more powerful tool compared to PCA
and, thus, its application inside a Multiple Eigenspaces
framework remains of interest for future work.

4.2 Quantitative results: Parallel with PCA

As shown in Sec. 3.2, even if global dimensionality re-
duction techniques can reconstruct the data well, they do
not necessarily lead to an explanatory representation of the
data. We here present a parallel on reconstruction error us-
ing both Multiple Eigenspaces technique and a PCA with 5
PCs.
In Figure 5, histograms of δ error using, from left to right,
Multiple Eigenspaces, and 5 PCs, are shown. It is possi-
ble to see that, using Multiple Eigenspaces, the amount of
postures reconstructed with an error up to 0.5 is similar to a
PCA in which 5 PCs are considered. Using more PCs obvi-
ously leads to better results about reconstruction, although
not necessarily increasing the interpretation capability of
the model.

5 Conclusions

In this work, the problem of conciliating direct, data-driven
human grasp movement analysis towards classification and
taxonomy generation, and analytical analysis for obtaining
low-dimensional representation of grasping data has been
considered.
To do this, the algorithm of Multiple Eigenspaces from
[18] has been adapted and applied to a dataset of imag-
ined grasping movements obtained following the procedure

from [17]. Noteworthy, grasping movements analogous to
classical grasp taxonomy entries (from, e.g., [2]) are auto-
matically found from the data, as shown in Figures 1, 3,
and 4, and in the video [31].
The presented procedure builds in the direction of increas-
ingly automating classification of movements, and using
its results for speeding-up grasp planning algorithms and
reducing their complexity (given the great advantages of
searching in more than one smaller spaces w.r.t. a single,
higher dimensional space - see e.g. [32] for an example of
grasp planning with 1-DoF motion), moving towards the
unification of human grasp movement analysis and robotic
grasp synthesis, while also guiding simple robot hands de-
sign.
Ongoing research involves the implementation of the au-
tomatically generated taxonomy-like grasping movements
in a grasp planner to control a fully actuated robotic hand,
as well as extending the Multiple Eigenspaces procedure,
which is based on PCA, building upon more complex
(maybe nonlinear) dimensionality reduction techniques.
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Figure 5 Histograms of delta error across datapoints. From left to right: delta error obtained with a Multiple
Eigenspace representation; delta error with 5 PCs from PCA.
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