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Abstract— Fatigue can be defined as the muscular condition
occurring before the inability to perform a task. It can be
assessed through the evaluation of the median and mean
frequency of the spectrum of the surface electromyography
series. Previous studies investigated the relationship between
heartbeat dynamics and muscular activity. However, exploita-
tion of such cardiovascular measures to automatically identify
muscle fatigue during fatiguing exercises is still missing. To this
extent, HRV signals were gathered from 32 subjects during an
isometric contraction task, and features defined in the time,
frequency and nonlinear domains were investigated. We used
surface electromyography to label the occurrence of muscle
fatigue. Statistically significant differences were observed by
comparing features related to fatigued subjects with the non-
fatigued ones. Moreover, a pattern recognition system capable to
achieve an average accuracy of 78.24% was implemented. These
results confirmed the hypothesis that a relationship between
heartbeat dynamics and muscle fatigue might exist.

I. INTRODUCTION

Fatigue is usually mechanically associated with the in-
ability to further perform a task or sustain an effort, or
to the inability to reach the same initial level of maximal
voluntary contraction (MVC) force [1]. From an engineering
point of view, the muscle fatigue process can be thought
as the muscular condition occurring before the inability to
perform a task [1]. Such a process can be fast or slow,
but it leads to the “myoelectric manifestations of muscle
fatigue” [1]. Fatigue can affect many potential sites in
the neuromuscular system: the motor cortex, the excitatory
drive, the control strategies of the spinal (upper) and the α
(lower) motoneurons, the motoneuron conduction properties,
the neuromuscular transmission, the sarcolemmal excitability
and conduction properties, the excitation-contraction cou-
pling, the metabolic energy supply, and the contraction
mechanisms. According to the site, it is possible to define
central fatigue or fatigue of the neuromuscular junction, or
muscle fatigue [1]. All of them are directly or indirectly able
to influence the electromyographic signal (EMG) in a very
complex way. More specifically, a progressive slowing of
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the EMG during isometric voluntary sustained contractions
was observed [2]. Such a slowing has been easily described
via the mean or median frequencies (MNF and MDF ) of
the power spectral density function, as suggested by [3]–[6].
For this reason, mean and median frequency are commonly
considered as two meaningful frequency domain features for
EMG analysis both in clinical and engineering applications.
In fact, a decrease in these features is commonly used to
detect fatigue in muscles using surface EMG (sEMG) signals
[7].

The relation between muscular exercise and cardiovascular
activity has been investigated in many previous studies. They
reported an increasing heart rate (HR), and oxygen uptake
[8]–[11], as well as changes in blood volume, due to a
modification in left ventricular end-diastolic and end-systolic
dimensions [10]. HR changes were also studied together
with the EMG activity during fatiguing exercises [12], [13].
Specifically, similar rates of change in average HR and
average EMG activity were reported. In addition, significant
differences were observed in both EMG features, and HR in
relation to different exercise durations.

Several studies have also observed significant changes in
heart rate variability (HRV) spectra during aerobic exercise
with different intensities or after fatiguing training sessions
[14]–[16], whereas few studies have monitored heartbeat
dynamics during a fatiguing task [17]–[19]. However, in
all these studies, muscle fatigue was not assessed using
objective measures such as those obtained by means of the
EMG analysis, In addition, such parameters extracted from
the analysis of the heartbeat dynamics were never used to
perform an alternative automatic recognition of the muscle
fatigue condition.

In sight of this, we performed an analysis of HRV series
during a fatiguing exercise to evaluate differences between
people with and without muscle fatigue. Moreover, the HRV
features were used as input of a pattern recognition system in
order to automatically detect the fatiguing condition. Such a
condition was labeled by analyzing the sEMG signals during
the muscular contraction.

II. MATERIALS AND METHOD
A. Experimental protocol

32 subjects (16 males and 16 females, 29.25 ± 3.38) were
enrolled in this study. All the subjects were right-handers
and did not have any physical disease at the muscular or
bone system, as well as no past or current heart disease. The
experimental protocol (Figure 1) consisted in three phases.
In the first phase the evaluation of the maximum voluntary
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Fig. 1. Timeline of the experimental protocol (left) and position of the
subject during contraction (right).

contraction (MVC) was performed by using a dynamometer
and asking the subject to maximally contract the biceps three
times for three seconds. MVC was determined as the mean of
the three maximum forces. In the second phase, a 5 minute-
long resting state was recorded. After that, in the third phase,
a static contraction of the biceps brachii long head (Figure
1) was required to the subjects. A load equal to the 40% of
the previously estimated MVC was used in this task [20],
and the position was maintained till fatigue. The fatigue was
detected when the subject was no longer able to maintain the
position of the limb. During the whole experimental protocol,
subjects were comfortably sat on a chair, straightening their
back. A Biopac MP35 was used to acquire ECG signals,
while a Bagnoli Desktop EMG Delsys was used to record
sEMG signals related to the biceps brachii long head muscle.
A sampling frequency equal to 2000 Hz was used to record
both signals.

B. Algorithm

1) sEMG processing: Firstly, sEMG signals were filtered
with a Infinite Impulse Response (IIR) comb notch filter (50
Hz). Then a zero-phase Butterworth IIR band-pass filter was
used to retain frequencies between 30 and 500 Hz. At the
end, Fourier approach was used to estimate the spectrum
and thus mean (MNF) and median (MDF) frequencies within
non-overlapping epochs. The Hamming window was used.
Moreover, in this study, epochs lasting 1 second were chosen
to estimate MNF and MDF. In fact, it was proven that in
case of isometric, constant force, fatiguing contractions, the
signal might be considered stationary for epoch durations of
the order of about 1− 2 seconds [1]. In addition, no overlap
was performed between consecutive epochs. Such a choice
was suggested by Farina et al. [21] which states that overlaps
do not provide significant benefits.

2) ECG processing: ECG signals were digitally filtered
via a zero-phase Butterworth IIR band-pass filter (1 - 40 Hz)

and an IIR comb notch filter (50 Hz). Then, the well known
Pan-Tompkins method [22] was used to detect R-peaks. At
the end, a regularly sampled HRV series was obtained via a
spline interpolation, fixing the sampling frequency equal to 4
Hz. A set of features in the time and frequency domain was
estimated from every HRV series. Specifically, they were:
mean RR (meanRR), standard deviation of RR (stdRR), the
square root of the mean squared differences of successive
NN intervals (RMSSD), the number of interval differences
of successive NN intervals greater than 50 ms (NN50), the
proportion derived by dividing NN50 by the total number of
NN intervals (pNN50), the HRV triangular index (HRVtri),
and the triangular interpolation of NN interval histogram
(TINN), the power spectrum estimated at low frequency
(LF), at high frequency (HF), their ratio (LF/HF), and finally
the standard deviations (SD1 and SD2) estimated along the
two axes of the ellipse in the Poincare plot [23]. Frequency
features were estimated via the autoregressive model (AR).

C. Statistical analysis

Statistical analysis was performed to investigate potential
statistically significant differences in HRV-features related
to muscle fatigue. To this aim, subjects were divided in
two groups according to their MNF and MDF trends during
the task. In fact, subjects showing decreasing trends were
grouped and considered as fatigued (F ). On the contrary,
the remaining subjects, showing non-decreasing trends, were
grouped and considered as non-fatigued (N -F ). In this
frame, a Mann-Whitney U-test was used to compare the
features belonging to the two different groups. Of note, the
corresponding resting phase value was subtracted from every
feature (Feat = FeatTask-FeatRest).
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Fig. 2. Scheme of the proposed Leave-One-Subject-Out architecture
(LOSO) architecture.

D. Pattern recognition

A Leave-One-Subject-Out architecture (LOSO) was ap-
plied to recognize subjects belonging to the two different
groups, i.e. fatigued and non-fatigued, using a Decision
Tree (DT) classifier and a nested feature selection. Only the
features showing a statistical significant difference between
the two groups were used. The DT classifier was iteratively
trained on N -1 subjects, and then tested on the remaining
1 subject. The algorithm of feature selection consisted in
selecting only the features showing, during the training test,



0 20 40 60 80 100 120
130

135

140

145

150

155

160

Time [s]

M
D

F
 [

H
z
]

 

 

N−F

0 10 20 30 40 50 60 70 80
145

150

155

160

165

Time [s]

M
D

F
 [

H
z
]

 

 

F

Fig. 3. Example of MDF trends. In red it is reported a decreasing MDF
trend related to a subject belonging to the F group. Differently, in blue
it is reported an example of a subject who did not experience the fatigue
condition.

a correlation ratio higher than a threshold. Such a threshold
was set as the median value of the correlation ratios estimated
in that specific iteration. A confusion matrix was returned by
the proposed algorithm as a result.

III. RESULTS
According to the MNF and MDF trends, 17 subjects

(9 females and 8 males) experienced muscle fatigue (F-
group), while the remaining 15 subjects (7 females and
8 males) did not. Figure 3 shows two MDF curves over
time relative to a fatigued subject (upper) compared to non-
fatigued subject (lower) A decreasing MDF trend, indicating
fatigue condition, is reported in red, while in blue it is shown
a MDF trend related to a subject who did not experience the
fatigue condition.

The results concerning the statistical analysis between
the features estimated from the subjects belonging to the
fatigued and non-fatigued groups are reported in Table I.
Significant results (p-value < 0.05) are highlighted in bold,
while an arrow indicates the lower (↓) or higher (↑) feature
value in the fatigue (F ) state. More specifically, a significant
lower feature value was observed in F -group by analyzing
RMSSD, NN50, HF and SD1. Differently, a higher LF value
was observed in F -group.

In Table II the confusion matrix concerning the proposed
LOSO algorithm is reported. The elements on the main diag-
onal report the percentage of correct recognition, while the
other elements report the percentage of incorrect detection.
An overall accuracy equal to 78.24% was achieved.

IV. DISCUSSION AND CONCLUSION
In this study HRV-features were analyzed in relation

to muscle fatigue. In the literature, muscular activity has

TABLE I
IN TABLE THE P-VALUES CORRESPONDING TO THE MANN-WHITNEY

U-TEST ARE REPORTED. THE SIGNIFICANT RESULTS (P-VALUE < 0.05)
ARE HIGHLIGHTED IN BOLD. AN ARROW INDICATES A DECREASE (↓) OR

INCREASE (↑) OF THE MEDIAN VALUE IN THE FATIGUED (F ) STATE AS

COMPARED TO THE NON-FATIGUED STATE.

N-F vs F
Features p-value Trend
meanRR 6.47E-02
stdRR 1.16E-01

RMSSD 1.27E-02 ↓
NN50 4.44E-02 ↓
pNN50 7.31E-02
HRVtri 9.81E-02
TINN 1.69E-01

LF 4.44E-02 ↑
HF 4.44E-02 ↓

LF/HF 9.89E-01
SD1 1.27E-02 ↓
SD2 1.27E-02

TABLE II
CONFUSION MATRIX RELATED TO THE PROPOSED LOSO ALGORITHM

(AVERAGE ACCURACY EQUAL TO 78.23% ).

Predicted
N-F F

Actual N-F 80.00% 20.00%
F 23.53% 76.47%

been usually investigated by studying post-fatigue or over-
training states caused by exercises at increasing intensities
or aerobic exercises. In this study, 32 healthy subjects were
enrolled to evaluate HRV-features during fatiguing exercises,
i.e. a prolonged isometric contraction of the biceps brachii
long head muscle. Subjects performed an isometric exercise
lifting a load equal to 40% of their MVC to a horizontal
position and maintaining it until it became impossible to
keep the horizontal position. Median and mean frequency
was estimated from the spectrum of the sEMG signals and
were used as reference parameters to detect fatigued subjects.

HRV features were extracted in the time, frequency and
nonlinear domains. A statistical analysis and a pattern recog-
nition was applied on HRV feature-set to characterize and
distinguish fatigued subjects from the non-fatigued ones.
Results of the statistical analysis showed relevant HRV-
features, in all domains, able to significantly characterize
subjects according to their actual muscular conditions. More
specifically, time-domain features showed significant reduced
RMSSD and NN50 values in the fatigued group. This might
indicate an increasing heart rate in presence of fatigue.
Moreover, frequency-domain features showed an increased
LF, and a reduced HF in fatigued subjects. Such a condition
is usually detected in stressed people [24]. Furthermore,
a study of HRV non-linear features revealed that a lower
SD1 value can be detected in subjects experiencing muscle
fatigue.

The significant features were also used as input of a
pattern recognition system. Classification results revealed
that the proposed algorithm was able to correctly recognize
muscular conditions by means of HRV-features with an



overall accuracy of 78.24%.
In conclusion, these results confirm that perceived exertion

might not be related to the actual muscle-fatigue-state of the
subjects. Indeed, nearly half of the subjects interrupted the
exercise before the arise of the real state of muscle fatigue.
Our preliminary results suggest that real-time monitoring of
HRV during exercises might provide an important help in
detecting actual muscle states. In addition, according to the
study of Mehta and Agnew [25], mental workload adversely
affects physical capacity. Since HRV is commonly used to
investigate emotional and psychological states (e.g., [26]–
[29] and references therein), as well as stress conditions
(e.g., [30] and references therein), its study might provide
a description of both phenomena, i.e. muscle fatigue and
mental state.

A possible future application might be related to the
development of novel prosthesis. In fact, criteria based on
these phenomena might help researcher in evaluating both
stress and fatigue in residual muscles during the testing
phases [31] in a non-invasive way.

Future works will be focused on the study of the temporal
evolution of HRV-related features during fatiguing exercise.
Gender differences will be also investigated to better clarify
the gender effect on the relationship between HRV and
sEMG.
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