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Proportional and simultaneous control algorithms are considered as one of the most

effective ways of mapping electromyographic signals to an artificial device. However, the

applicability of thesemethods is limited by the high number of electromyographic features

that they require to operate—typically twice as many the actuators to be controlled.

Indeed, extracting many independent electromyographic signals is challenging for a

number of reasons—ranging from technological to anatomical. On the contrary, the

number of actively moving parts in classic prostheses or extra-limbs is often high. This

paper faces this issue, by proposing and experimentally assessing a set of algorithms

which are capable of proportionally and simultaneously control as many actuators as

there are independent electromyographic signals available. Two sets of solutions are

considered. The first uses as input electromyographic signals only, while the second

adds postural measurements to the sources of information. At first, all the proposed

algorithms are experimentally tested in terms of precision, efficiency, and usability on

twelve able-bodied subjects, in a virtual environment. A state-of-the-art controller using

twice the amount of electromyographic signals as input is adopted as benchmark. We

then performed qualitative tests, where the maps are used to control a prototype of upper

limb prosthesis. The device is composed of a robotic hand and a wrist implementing

active prono-supination movement. Eight able-bodied subjects participated to this

second round of testings. Finally, the proposed strategies were tested in exploratory

experiments involving two subjects with limb loss. Results coming from the evaluations

in virtual and realistic settings show encouraging results and suggest the effectiveness

of the proposed approach.

Keywords: myoelectric control, upper limb prostheses, extra limbs, supernumerary limbs, soft hands, proportional

and simultaneous control

1. INTRODUCTION

Since its first appearance in the ’40s (Leon Gillis, 1948), myoelectric control has established itself
as an effective mean of controlling artificial limbs. Nowadays, its range of application extends to all
those fields of robotics in which humans have to control robots, as teleoperation (Vogel et al., 2011;
Meeker and Ciocarlie, 2018), assistive robotics (Song et al., 2008), supernumerary limbs (Hussain
et al., 2016; Leigh and Maes, 2016; Ciullo et al., 2018), and of course prosthetics (Segil et al., 2014;
Godfrey et al., 2018; i limb, 2018; Michelangelo, 2018; Taska, 2018; Vincent, 2018).
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FIGURE 1 | The considered multi-modal extra-limb, grasping a wooden cube.

An operator controls the device through independent contraction of extensor

and flexor carpi muscles, and through forearm posture.

To control the large number of degrees of freedom typically
present in artificial limbs and hands, a considerable amount of
muscular signals are needed. This represents a major challenge
in developing usable EMG-based control interfaces. This issue
becomes even more compelling when the user is impaired
by an amputation, by a stroke, or by other pathologies. In
these situations, indeed, the number of muscles from which
it is possible to extract clean and independent signals in
general is very small. As an example, we report in Figure 2

the results of an experimental analysis we performed on data
acquired from an impaired subject (see section 6). The EMG
data acquired from the stump is embedded (90% of the total
variance) in a space of dimension two, so only two independent
features can be extracted from this source of information. For
reference, consider that the sound arm produces activation
patterns with higher dimensionality (usually around four). Thus,
toward the prosthetic application, it is paramount to devise
control algorithms making the most out of this low number of
EMG features.

Most commercial solutions used today in prosthetics deal with
this problem by managing the degrees of actuations (DoA) of
the prosthesis through switching techniques, as co-contractions,
sequential activation, mechanical selectors, software applications
for smart phones, just to cite a few (Roche et al., 2014).
While effective in enabling the exploitation of a large number
of actuators, these solutions are considered uncomfortable
by many users, often leading to abandonment of the device
(Biddiss and Chau, 2007). Classification algorithms aim at
providing a more natural control interface. Here, features
extracted from the residual muscular activation are fed into
a classifier, which is trained to recognize hand postures or
grasp patterns. Once the system recognizes a memorized
category, the device is commanded to move as to reproduce
the associated posture. Notable examples are Huang et al.
(2005), Hargrove et al. (2007), Jiang et al. (2012a), and
Batzianoulis et al. (2018). The use of postural information is
considered in Krasoulis et al. (2017) for improving classification
performance, and in Bennett and Goldfarb (2017) for controlling

an active wrist while the hand posture is specified by the
classifier. These techniques represent a clear improvement
with respect to the switching policies. Nevertheless, they
are still limited in terms of naturalness of use, since they
allow for a single matching per activation, often leading to
unnatural transitions.

The best performances in terms of usability are provided by
proportional controllers. Here control features extracted from
electromyographic signals are directly mapped into the motor
reference positions, with the goal of achieving an intuitive and
direct mapping of user’s intentions in motions of the artificial
limb (Choi and Kim, 2011; Jiang et al., 2012b; Belyea et al., 2018;
Schmalfuss et al., 2018). However, these performance come at the
cost of requiring to extract more than one EMG signal for each
degree of actuation. This, in the practice, strongly restricts the
usability of proportional techniques.

This work tackles this issue, with specific focus on the
surface electromyographic sensors case (Navarro et al., 2005;
Cipriani et al., 2011). We propose six simple, yet effective,
maps that enable controlling as many DoA as the number of
independent signals extracted from the muscles. Three out of
six use only electromyographic signals, while the other three
integrate muscular information with postural measurements.
This goal is achieved by using non-linear filters to process
the signals.

The proposed algorithms are first extensively tested into a
simulated environment and compared with a standard approach
using twice the electromyographic measurements, as an upper
bound benchmark. During these experiments, twelve able-bodied
subjects were asked to control a pointer on a screen by activating
muscles of their upper limb. We introduce a set of objective
metrics inspired from (Williams and Kirsch, 2008; Scheme et al.,
2014), and a Likert-like questionnaire (Likert, 1932) to be filled by
the subjects. In this way it was possible to assess maps precision,
accuracy, and usability.

With the aim of qualitatively evaluating the algorithms in
operating a physical device, we introduce the prototype in
Figure 1. We derive it from Pisa/IIT SoftHand 2 (Della Santina
et al., 2018), an underactuated hand with 19 DoF and 2 DoA
implementing the most common movements of the human
hand (Della Santina et al., 2017a) as free motions. The EMG
control of this robotic hand was preliminarily tested in (Rossi
et al., 2017), with promising results. Motivated by several studies
discussing the importance of wrist motions in task execution
(Bajaj et al., 2015; Montagnani et al., 2015b; Merad et al., 2018),
we complete the device with the introduction of an active wrist
prototype, implementing prono-supination motions. The two
algorithms that performed best in virtual environment were
tested together with the benchmark by eight able-bodied subjects
performing three standardized tasks; (i) moving small wooden
blocks from a box to another, (ii) building a pyramid with the
same blocks, (iii) turning cards. Evaluations scales are introduced
to quantitatively assess both performance and usability. The
system is also operated by an expert user in the execution
of further daily life activities. The combination of intelligence
embodied in the soft device and the control maps proposed here,
enables the subject to naturally perform complex actions.
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FIGURE 2 | Results of a dimensionality analysis performed on data acquired from an impaired subject (Subject 1 in section 6). The subject has congenital

malformation at the trans-radial level in the left hand. Data were acquired by placing a MYO Armband (see section 4) on the stump, and another on the sound arm,

approximatively at the same distance from the elbow. The subject is then asked to move the right hand, and imagining to move the missing hand, to four reference

postures (prono-supination of the wrist, flexo-extension of the wrist, adduction-abduction of the wrist, opening and closing of the hand). The subject had past

experience with this kind of experiments, so a short amount a pre-training was sufficient. The EMG data so acquired are analyzed using principal component analysis

technique. The dimensionality of electromyographic signals coming from the stump are shown in panel (A), and the ones coming from the sound arm are shown in

panel (B). The EMG signals coming from the stump are clearly embedded in a space of dimension two. On the contrary, the ones coming from the sound arm are

more evenly distributed. We report in the top right of each figure the radar chart showing the absolute values of the activations corresponding to the principal

components extracted. The amplitudes are proportional to the explained variances.

Finally, exploratory studies were carried out, involving two
subjects with limb loss. The results are promising, further proving
the experimental effectiveness of the proposed strategies.

The work is organized as follows. Section 2 provides an
overview on the problem of extracting interested features from
a residual upper-limb. In section 3 we introduce the proposed
approach by describing the two sets of control maps. In section
4 we analyze the proposed controllers in the virtual environment,
and in section 5 with the prosthetic prototype. Section 6 reports
the results of experiments with impaired subjects.

2. PROBLEM STATEMENT

2.1. Background: Standard Control Pipeline
Figure 3 depicts a standard architecture for proportional
myoelectric control. The first layer of the architecture rectifies
and filters the EMG signals e ∈ R

m read by sensors (De Luca
et al., 2010). The output a ∈ R

m
+ is a measure of the

levels of muscular activation. Note that each element of a is
strictly positive, as expected when considering the nature of the
measured phenomenon.

These signals are in general redundant, in the sense that a
reduced amount of muscles, or muscle synergies (d’Avella et al.,
2003), is often measured by a large amount of sensors. So, the
second layer uses factorization techniques (Choi and Kim, 2011;
Jiang et al., 2014) to extract the ideally maximum amount of
independent features s ∈ R

2n
+ , where 2n ≤ m. For the sake

of simplicity, we assume the number of independent features to
be even.

The following layer of the pipeline maps the continuous and
independent features s into commands to be sent to the artificial
limb c. Note that the main challenge preventing a simple solution
is that s lives into R

2n
+ , i.e., it is strictly positive. c instead

assumes both positive and negative values. A very simple way for
achieving this goal is (Scott and Parker, 1988)

ci = s2i−1 − s2i, (1)

where ci and si are the j-th control signal and feature, respectively.
(s2i−1, s2i) are often selected as the independent signals extracted
by a couple of antagonistic muscles. This very simple linear
control map already enables the mapping of two positive signals
in a signal spanning allR, with the useful feature of automatically
getting rid of co-activations1 typically generated by inexpert users
(Scheme and Englehart, 2011). The control strategy 1 is very
natural for an user, since it mimics what happens with a standard
human joint i.e., that a pair of muscles actuate a single joint.

Equation 1 can be generalized as

c = A(i)(s) :R2n
+ → R

n , (2)

where we stress that this class of methods requires independent
signals in twice the number of the DoA to be controlled.

Finally, some post-processing (e.g., saturations,
normalizations) concludes the pipeline. The output signals
cp are directly commanded to the motors of the artificial limb.

2.2. Problem: Mapping From Many to Few
As shown in Figure 3, two reductions of the size of the
signals occur through the pipeline. The first one is operated
by the independent signal extraction. We consider here ideal
performance for this layer. A large part of the current research
in EMG control is indeed focused on improving it. We refer the
interested reader to (Farina et al., 2014) for a in depth analysis of

1This coactivation is sometimes used to control the device impedance (Ajoudani
et al., 2013), but we will not consider this use further in this work.
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FIGURE 3 | Classical control architecture of a myoelectric device using proportional approach. We refer with e ∈ R
m to the acquired EMG signals, a ∈ R

m
+ represents

the residual muscular activations, s ∈ R
2n
+ are the independent signals obtained by factorization, c ∈ R

n is the set of control signals obtained by the application of a

proportional control map and cp ∈ R
n are the control signals adapted to the specific device characteristics.

FIGURE 4 | Modified control architecture using the proposed control maps

with only EMG signals as input. Using the proposed approach we have twice

the number of control signals c of the classical approach (Figure 3). a ∈ R
m
+

represents the residual muscular activations, s ∈ R
2n
+ are the independent

signals obtained by factorization, c ∈ R
n is the set of control signals obtained

by the application of a proportional control map.

the state of the art and future challenges in this topic. We thus
hypothesize the dimensionality of s to be the maximum possible,
and that the reduction in size is only to remove redundancy from
the signals.

The rest of the paper will focus on the second bottleneck. We
will design and validate novel approaches to map features s into
commands c. Two sets of control map will be devised, each one
enabling the control of 2nDoAs when only 2n independent EMG
signals are available. The first set of maps is called EMGs-only
(EMGs-MAPs) and uses only EMG signals as inputs (Figure 4).
We then extend the analysis by considering the addition of
external signals such as, for example, posture information. This
set is called augmented map (AUG-MAPSs) (Figure 5).

Before moving to maps definition, it is worth mentioning
that mathematically it is always possible to solve the problem by
defining a function

A(ii)(s) :R2n
+ → R

2n, (3)

FIGURE 5 | Modified control architecture using the proposed control maps

with EMG signals and postural information as input. Also in this case we

achieve two times the number of control signals c than the classical approach

(Figure 3), with a same number of EMG signals. a ∈ R
m
+ represents the

residual muscular activations, s ∈ R
2n
+ are the independent signals obtained by

factorization, c ∈ R
n is the set of control signals obtained by the application of

a proportional control map, q is the orientation of the forearm in quaternion

representation and φ are the extracted angular features.

with A(ii)(s) surjective. Yet, this can be done only using
discontinuities, asymptotes or other mathematical constructs
that make the system difficult to control. Simple examples are

log(x) and 1−x2

x . We will thus not consider this class of strategies
further in this paper. A simpler solution could be found in

A(ii)(s) = s− s̄, (4)

where s̄ ∈ R
2n
+ is a positive constant. This map would of course

not be surjective. Nonetheless, it is in principle sufficient to
include in the co-domain all the values of s that map into the
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finite range of the actuators. This can be achieved by choosing
s̄ large enough. However, this solution has two main drawbacks.
The first is shared to all the solutions in the form 3, and it is that
purely algebraic maps tend to tire the user after very little time.
Indeed, to maintain a constant configuration of the artificial limb,
they would have to generate a constant contraction of themuscles.
The second drawback is specific of 4. We observed that having
the null muscle activation (i.e., s = 0) mapped to a non-neutral
configuration (i.e., c = s̄) was very unnatural for the user. This
sensibly reduced the acceptance of the artificial limb, and strongly
increased the effort required for piloting it. We therefore add as
further constraint that our maps must fulfill, that a null muscle
activation should not move the artificial limb from its neutral
configuration (c = 0). Thus, the proposed map must have the
origin as fixed point.

2.3. Proposed Solution: Using Non-linear
Filtering to Design Control Maps
EMGs-MAPs
These maps aim at obtaining and higher level of usability, by
extracting more information from the available signals. Looking
at the literature, the control map 1 is often modified to increase
its robustness and usability into

cj =

t
∫

0

(s2j−1 − s2j) dt. (5)

This simple, yet effective strategy still mapsR2n
+ intoRn. However,

it suggests us the possibility of exploiting the temporal evolution
of the signal s to enrich the information to be mapped into c. We
thus generalize 5 as the generic continuous non-linear filter

{

ẋ = f (s, x)

c = A(iii)(s, x)
, (6)

where A(iii)
:R

2n
+ × R

w → R
2n, f :R2n

+ × R
w → R

w, and
x ∈ R

w is the state of the filter encoding the extracted
temporal information.

AUG-MAPs
We consider here external signals in addition to EMGs (Figure 5).
In this case 6 can be easily generalized by adding a new set
of inputs

{

ẋ = f (s, p, x)

c = A(iv)(s, p, x)
, (7)

where A(iv)
:R

2n
+ × R

k × R
w → R

2n, f :R2n
+ × R

w × R
k → R

w,
2n is the number of independent EMG signals, k is the number of
external inputs, and w is the number of temporal features.

A useful source of information usable as external input is the
position and orientation of the residual forearm. Figure 5 shows
a control scheme with posture as additional input, where q is the
orientation of the forearm in quaternion representation, and φ

are the extracted angular features.

FIGURE 6 | Input signals used to obtain the sequences displayed in

Figures 7, 8. s1 and s2 are the two independent signals, with si ∈ [0 1]. φ

represents the torsion angle used in AUG-MAPs, where φ ∈ [−π ,π ].

3. MAPS DEFINITION

Among all the possible non-linear filters satisfying the definitions
6 and 7, we propose here six maps which we expect to present
a natural and effective interface to the user. We will extensively
test these aspects in the next sections. In analogy to 1 and 5—
and with the aim of simplifying the user interface—we propose
maps elaborating on the input signals in a pairwise manner.
For the sake of simplicity of notation we call the two input
signals s1, s2, and the two outputs c1, c2. This choice also helps
us in graphically interpreting the map behavior, since this sub-
mapping can be seen as operating a transformation from the first
quadrant (plus time), to the whole R

2 plane. A generic R
2n
+ to

R
2n map can be realized by replicating n times the algorithms

proposed here. The assessment of this case will be addressed in
future work.

3.1. EMGs-Only Maps (EMGs-MAPs)
Map 1:
Leveraging the geometric interpretation of c as a point
in a two dimensional plane, we consider as first attempt
to designing a square map, the change of coordinates
from polar to Cartesian. A direct implementation would
consist in using one feature as magnitude and the other as
angle, i.e.,

[

c1
c2

]

= s1

[

sin(s2)
cos(s2)

]

. (8)

However, such a choice appeared in exploratory evaluations
particularly unnatural to the users. We individuated three
main issues causing this, in addition to the one discussed in
general for 3; (i) when s1 is large, very small oscillations
in s2 produce large variations of (c1, c2); (ii) moving from
(c1, c2) both positive to c1 positive and c2 negative requires
to pass first through c1 negative and c2 positive, and then
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FIGURE 7 | Behavior of the three EMGs-MAPs in response to a same input pattern (see Figure 6). Panels (A,H,O) sketch the functioning of the maps 1–3,

respectively. Panels (B–G) show the output corresponding to Map 1, (I–N) to Map 2, (P–U) to Map 3. The portion of the lines which is red and dashed highlights the

path that it is executed during that time portion (indicated by the number on the top left).

FIGURE 8 | Behavior of the three EMGs-MAPs in response to a same input pattern (see Figure 6). Panels (A,H,O) sketch the functioning of the maps 4–6,

respectively. Panels (B-G) show the output corresponding to Map 4, (I-N) to Map 5, (P-U) to Map 6. The portion of the lines which is red and dashed highlights the

path that it is executed during that time portion (indicated by the number on the top left).

through (c1, c2) both negative; (iii) in the common case
of (s1, s2) associated to two antagonistic muscles, generating
the two activations independently is very demanding for
the user. Overall these three effects produce a very shaky
behavior in terms of device configuration, with unnatural and
unexpected motions.

To overcome the limitation (iii) we consider the magnitude of
the position defined as the input semi-sum

p =
s1 + s2

2
. (9)
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The phase rate instead is obtained by the semi-difference between
input signals

β =
s1 − s2

2
. (10)

We indeed observed that it was rather natural for an user to
associate co-contraction to the module of (c1, c2), and the semi-
difference to the angle. This also solves problem (ii) since β ∈ R.
Nonetheless, this choice risks to exacerbate (i). Following the
example of 5, we apply an integration to β to generate a more
stable and firm behavior.

So, the resulting non-linear filter is















ẋ1 =
s1 − s2

2
[

c1

c2

]

=
s1 + s2

2

[

sin(x1)

cos(x1)

]

.
(11)

Figure 7A provides a graphic representation of this control
strategy. Figures 7B–G show the output cwhen the input s shown
in Figure 6 is used.

Map 2:
By adding to 11 a second level of integration we obtain the
following non-linear system





































ẋ1

ẋ2

ẋ3






=







ω

v sin(x1)

v cos(x1)







[

c1

c2

]

=

[

x2

x3

]

, (12)

where v = s1+s2
2 and ω = s1−s2

2 . In this way we aim at achieving
a more stable behavior during task execution.

This non-linear system got a lot interest in the early years of
geometric non-linear control (Brockett, 2014). It models indeed
an unicycle (Aicardi et al., 1995) with ω and v being the angular
and linear velocities, respectively. Several works proved that by
opportunely using ω and v all the points in R

2 can be reached,
even in presence of constraints on ω, and with strictly positive v
(Dubins, 1957; Consolini et al., 2009). This assures that the map
is well-posed.

Figure 7H provides a graphic representation of this control
strategy. Figures 7I–N show the output cwhen the input s shown
in Figure 6 is used.

Map 3:
Several studies have shown that humans tend to execute different
kinds of movements on different time scales (Vainio et al., 2008).
An example is the precision grasp, which is typically performed in
long time scales, and the power grasp, which is instead typically
performed rapidly. Moving from this consideration, (Piazza et al.,
2016) proposed exploiting the temporal information encoded in
the control signal to choose the movement to perform with a
prosthetic hand. That idea was there mechanically implemented
through the use of damping elements. In that way, the type of
grasp changed depending on the velocity of closure.

We propose here to exploit the same idea in mapping control
signal to a generic artificial limb. To implement this behavior
we set the velocity on each output axis proportional to the
activation signals. The sign of each output channel depends on
which independent signal is higher. Then, we use thresholds to
discriminate high activations from small ones. More specifically,
movement on c2 will occur for small activations only, whereas on
both c1 and c2 will with high activations.

ẋi =











ki(s1 − ai) if (s1 > s2) ∧ (s1 > ai)

−ki(s2 − ai) if (s1 < s2) ∧ (s2 > ai)

0 otherwise

(13)

and

ci = xi , (14)

with i ∈ {1, 2}. a1 and a2 are two different activation thresholds
such that a2 < a1. Figure 7O provides a graphic representation
of this control strategy. Figures 7P–U show the output cwhen the
input s shown in Figure 6 is used.

3.2. Augmented Maps (AUG-MAPs)
AUG-MAPs use external inputs to overcome the lack of
information provided by the sEMG. Ideally, we could use any
type of signal as external input. One interesting source is the
posture of the forearm, which holds information about the
subject’s intentions of movement (Montagnani et al., 2015a). The
following maps use as external input the torsion angle φ ∈ R of
the shoulder extracted from the forearm posture. This signal is
used in addition to the same two independent signals used in the
first three maps.

Map 4:
A simple way to use an external signal to directly map it onto
one output channel. EMG signals are then used to activate the
other channel. More in detail, this map regulates the rate of
activation of the first channel as the semi-difference between the
EMG signals. The activation of the second channel instead is
proportional to the cosine of the torsion angle. So, we define the
first augmented map as















ẋ1 =
s1 − s2

2[

c1

c2

]

=

[

x1

k cosφ

]

,
(15)

where k is a normalization constant. Figure 8A presents a graphic
representation of how this control works. Figures 8B–G show the
outputs behavior obtained applying to this map the input signals
shown in Figure 6.

Map 5:
Adding a level of integration to the previous map we obtain
another unicycle-like system. The rate of activation on the first
channel is activated by the semi-difference between the EMG
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signals. The torsion angle, instead, regulates the rate of activation
on the second channel. The resulting map is
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Figure 8H presents a graphic representation of how this
control works. Figures 8I–N show the outputs behavior obtained
applying to this map the input signals shown in Figure 6.

Map 6:
Considering the input as polar coordinates it is possible to create
a direct connection between the torsion angle φ and the phase
angle of the output coordinates. Concretely, the variation of
magnitude is defined as the semi-difference between the EMG
signals, while the phase is proportional to the torsion angle. The
resulting augmented polar map is
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Figure 8O presents a graphic representation of how this control
works. Figures 8P–U show the outputs behavior obtained
applying to this map the input signals shown in Figure 6.

4. USABILITY ASSESSMENT IN VIRTUAL
ENVIRONMENT

To validate the quality of control algorithms independently from
the performance of the controlled device, it is common in
the literature to develop and use a virtual testing environment
(Williams and Kirsch, 2008; Scheme et al., 2014). We follow here
the same approach for validating and comparing the proposed
maps in terms of precision, accuracy and users’ appreciation.

4.1. Benchmark
To have a fair comparison of the results, in addition to the
proposed maps we considered a benchmark.

Map 7:
This map uses four independent signals combined as described
in Equation 5. Each pair of antagonistic signals is used to activate
a different DoA. So, we define the benchmark (BM) map as
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where s1, s2, s3, s4 are roughly connected to flexion, adduction,
extension, abduction wrist movements. It is worth noticing that
the benchmark is in a favorable position w.r.t. the proposed

FIGURE 9 | Virtual environment validation experimental apparatus. The

subject was asked to wear the MYO Armband on the right forearm near the

elbow. The subject was instructed to seat in front of the screen with the right

arm in a comfortable position.

maps. Indeed, this algorithm uses twice the number of EMG
independent signals (i.e., s ∈ R

4
+) w.r.t. our maps, to produce

a same number of outputs (c ∈ R
2). Note also that the count

is in favor of the benchmark, even by adding to it φ ∈ R—
which we should not since this signal is not affected by the
availability problem discussed in the Introduction section. So,
the benchmark is to be intended as an upper bound to the
performance achievable by the maps, rather than a lower bound
to beat.

4.2. Experimental Setup
The experimental setup, portrayed inFigure 9, is composed of

• Virtual environment: the output signal (c1, c2) is represented
as a point on a two dimensional space, visualized on a
dedicated screen. Targets of different sizes can be added to
the scene. This environment was implemented via Simulink
and MatLab on a personal computer.

• MYO Armband: for the acquisition of the input signals we
used a MYO Armband 2. It consists of a bracelet with 8 EMG
sensors evenly spaced. Each sensor provides a 200Hz EMG
signal (e1, . . . , e8) with a resolution of 8 bits. This device is
also equipped with an IMU placed on block 4. The IMU
module provides a 50Hz channel containing the quaternion
of the device orientation. Each element of the quaternion is
represented with two bytes. The MYO Armband needs no
cable connection. The device uses a BLE Bluetooth module
to communicate with other devices. Please refer to (Pizzolato
et al., 2017) for an exhaustive discussion about the use of this
device in prosthetics.

The extraction of s from (e1, . . . , e8) is performed in accord
with the standard pipeline of section 2.1, implemented through
the algorithms described in Appendix. It is important to
remark here that these eight signals are not independent, as

2MYO armband official website, https://support.getmyo.com/hc/en-us/articles/
203398347-Getting-started-with-your-Myo-armband, accessed 8-June-2018

Frontiers in Neurorobotics | www.frontiersin.org 8 May 2019 | Volume 13 | Article 26

https://support.getmyo.com/hc/en-us/articles/203398347-Getting-started-with-your-Myo-armband
https://support.getmyo.com/hc/en-us/articles/203398347-Getting-started-with-your-Myo-armband
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Maimeri et al. Control Maps for Multi-Channel sEMG

a lot of redundancy is present. More specifically—as proven
by Figure 2—the amount of independent features that can be
extracted from e is about four for an able-bodied subject, and
around two for a subject with limb loss.

4.3. Participants
Twelve able-bodied subjects took part in the experiment, six men
and six women aged from 23 to 31. All subjects were tested on
their dominant hand (right hand; self-reported hand dominance).
All participants were naive to the experimental purpose of the
study and had no history of neuromuscular disorders. Before data
collection, subjects signed an informed consent to participate
in the experiment. The experimental protocols were approved
by the Institutional Review Board of University of Pisa, in
accordance to the Declaration of Helsinki.

4.4. Experiment
Subjects were asked to wear the MYO Armband on the right
forearm near the elbow. They were instructed to seat in front of
the screen with the right arm in a comfortable position, as shown
by Figure 9.

During the experiment subjects were requested to navigate
the virtual plane by applying the right combination of muscular
activations. Clearly, the combination of inputs moving the
pointer in a specific direction depends on the map used.

For each map, subjects were instructed to acquire 48 circular
targets. The starting point was always the center of the plane,
i.e., (c1, c2) = (0, 0). The position of each target is reported
in Figure 10. A target was considered acquired if the pointer
remains inside the area of the target for 1 s, then the circle
disappeared. Subjects have a time window of 20 s to try acquiring
each target. After that time the target disappeared. The target
changes color from red to green when the pointer is acquiring it.
Each time the target disappears, subjects had to take the pointer
back to the center of the plane. Only when this happens the
subsequent trial can start.

As shown in Figure 10 there are two kinds of target, the
biggest ones in yellow are the easiest and the smallest ones in blue
are the hardest to acquire. The sequence of targets and the order
of the maps were randomized for each subject. In order to make
participants equally familiar with each map, the target sequence
was preceded by a training phase. The experiment was split in
two sessions of half an hour each in order to avoid over straining
the subjects. During the first session the subject tested each map
on the easy targets. During the second session, the subject had to
perform the same task on the hard targets.

All the subjects were asked to complete a questionnaire after
the experiment.

4.5. Results and Discussion
The tested maps are grouped in three sets, EMGs-only
maps (EMGs), Augmented (AUG) and benchmark (BM). In
accordance with (Williams and Kirsch, 2008; Scheme et al.,
2014), we evaluate the performance of the maps by using the
following metrics:

• Completion rate: percentage of targets acquired by a subject.
• Mean time: average time spent in acquiring each target.

FIGURE 10 | Position of each target on the virtual environment. The bigger

circles, in yellow, are called easy targets. Smaller ones, in blue, are called hard

targets. The cross indicates (c1, c2) = (0, 0).

• Efficiency: Minimum distance between the origin and the
target divided by the distance traveled to reach the target the
first time.

• Overshoots count: the number of times that the pointer tries
to acquire the target but loses it.

• Stopping distance: distance traveled under the target area
during acquisition.

Figure 11 shows mean and standard deviation across all subjects
and all targets for each index. Figure 12 shows which of the
pairwise comparisons are statistically relevant for each metric
presented. We verify the statistical relevance of the completion
rates through a binomial test with 5% of tolerance, since the
index follows a binomial distribution by construction. T-test
with 5% of tolerance is instead used for verifying the statistical
relevance of the comparisons between remaining indexes. We
operate a Bonferroni correction of both the tests, for taking
into account that the maps are compared multiple times. Since
the tested indexes are the sample mean of a large number
of trials that we can hypothesize independent and identically
distributed, it is reasonable to assume their distribution to be
Gaussian. However, prior to performing the t-test, we statistically
evaluated the Gaussianity of the data. First, we used a leave-out
strategy for generating samples of the sample mean by randomly
picking the 80% of the total measurements. One hundred samples
were generated in this way for each index. Second, we used the
Kolgomorov-Smirnov test, with confidence level 5%. All the tests
returned a positive outcome.

According to the Completion rate results (see Figure 11A), the
first and the sixth maps are the hardest to use. Mean time (see
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FIGURE 11 | Comparison of the maps in virtual environment, evaluated through the metrics: (A) Normalized completion rate; (B) Mean time normalized to the

maximum time given to complete each task; (C) Efficiency of the performed path compared to the minimum possible path; (D) Number of overshoots performed

before acquiring the target; (E) Stopping distance traveled inside the target area. Note that, among those metrics high values are associated with good performances

only in (A), while the vice versa holds for (B-E).

FIGURE 12 | Statistical significance of each comparison between the maps. Panel (A) shows the results for completion rate, (B) for mean time, (C) for efficiency, (D)

for the overshoot, (E) for the Stopping Distance. The significance is evaluated with a binomial test for panel (A), and with a t-student test for panels (B–E). Both

analyses are done with a significance threshold of 5% and Bonferroni correction. A filled dot in the i-j-th position means that the comparison between maps i and j is

statistically relevant. An empty dot indicates the contrary.

FIGURE 13 | Comparison of the maps in virtual environment, evaluation of the questionnaire statements (min −3, max +3); (A) During the trial I was perfectly isolated

from external distractions, (B) I’m not tired at all, (C) Moving the point in the right direction with this map was very intuitive. (D) In my opinion, it was easy to maintain

the pointer under the target area. (E) I think I have improved my ability during the trial.

Figure 11B) suggests that maps three and five are, on average,
faster to reach each point on the virtual plane.

Efficiency (see Figure 11C) measures how convoluted is the
trajectory followed to reach the target. The fifth map is the only
one that achieves performance comparable to the benchmark,
with the first one performing the poorest. Oveshoots counts
(see Figure 11D) show that maps using EMGs only make
fewer overshoots, with the exception of the first one. Finally,

the Stopping distance (see Figure 11E) is similar among all
the maps.

These results suggest that third and fifth maps were in general
better than the others in their groups. When using these maps,
subjects performed very closely to the benchmark case, even if
the amount of signals required was smaller.

Subjects that participated to the experiment were also asked to
complete a questionnaire. The goal of this questionnaire was to
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FIGURE 14 | Experimental Validation apparatus. The subject, wearing MYO Armband, was instructed to stand in front of a table, as shown in panel (A). She or he

was then asked to wear the soft artificial limb on the right forearm near the wrist, as also shown in panel (B). A gravity compensator is used to alleviate the burden of

the hand prototype.

collect information about aspects difficult to measures otherwise,
such as how intuitive the algorithms are, or how tired subjects are
after the experiments. To evaluate each field of the questionnaire
a Likert-like scale has been used (Likert, 1932). Subjects specify
their level of agreement with each sentence by a value from− 3 to
3. Questions were asked for each map, including the benchmark.
The sentences are listed below

1. During the trial I was perfectly isolated from external
distractions.

2. I’m not tired at all.
3. Moving the pointer in the right direction with this map was

very intuitive.
4. In my opinion, it was easy to maintain the pointer under the

target area.
5. I think I have improved my ability during the trial.

Figure 13 shows mean and standard deviation of the evaluations
provided by the subjects. This questionnaire shows that subjects
were well-isolated from external distractions. Furthermore,
subjects were not too much tired at the end of the experiment.
In general, the questionnaire confirmed that the 3rd and
5th maps are more intuitive than the others, with overall
performance comparable to the benchmark. Note however
that all the results comes with a considerable variance, so no
definitive statement can be done in terms of general validity of
the comparison.

5. QUALITATIVE EXPERIMENTAL
VALIDATION WITH ABLE-BODIED
SUBJECTS

The following experiment aims at testing qualitatively maps
3 and 5, together with the benchmark, in controlling a soft
artificial limb in real life applications. This test serves as a first
validation toward prosthetic application, which will be addressed
in future work.

FIGURE 15 | The two degrees of actuation move SoftHand 2 (Della Santina

et al., 2018) along the two movements presented in figure. The first DoA is

controlled by the signal c1 while, when used, the second DoA is defined by c2.

5.1. Experimental Setup
The experimental setup is shown in Figure 14, and it is
composed by:

• MYO Armband; See section 4.2 for a description of
this device.

• Prototype; In order to test the controllers on different types
of DoA, a prototype with three motors has been used.
This device consists in a soft right hand connected to an
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FIGURE 16 | Motions induced in the soft artificial limb as a consequence of simple movements of the operator’s upper limb. In panel (A) the operator’s movements

are presented, together with corresponding myoelectric (EMG) and postural measurements (IMU). In (B) we show the resulting c signals produced integrating the

EMG signals through map 3. The same panel depicts the resulting motions of the device in both operating modes. Similarly panel (C) shows evolutions of c and hand

postures when map 5 is used.

actuated wrist capable of pronation-supination motions. As
soft hand we employed Pisa/IIT SoftHand 2 (Della Santina
et al., 2018), an under-actuated hand with 19 degrees of

freedom. It implements the two degrees of actuation shown
in Figure 15, and inspired by the most common human
hand postures (namely postural hand synergies) as found
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FIGURE 17 | Photo-sequences of a single block transport in the Box and Blocks task. Map 3 (EMG-only) is used, and the device is in mode 2. In panels (A,B), the

operator exploits both DoAs of the soft hand to pick the red block through a pinch grasp. In panels (C,D) the block is firmly maintained between thumb and index

while being moved from let to right. In panel (E) the operator opens the hand, and releases the block into the empty box.

FIGURE 18 | Photo-sequences of a single block placement in the Pyramid task. Map 3 (EMG-only) is used, and the device is in mode 2. In panels (A–E) the operator

separates the block from the group by extending the index finger. In panels (F–H) the block is pushed toward a position more suitable for performing the pinch grasp

which happens in panels (I,J). In panels (K–M) the hand is opened and the cube left on the pyramid base. Finally in panels (N,O) the block is pushed in the correct

place through the extended fingers.

in (Della Santina et al., 2017a). This robotic hand has a
self-contained design and it is actuated with a transmission
system encompassing just one tendon, pulleys and twomotors.
SoftHand 2 demonstrated good grasping skills in different
working conditions, combined with a high level of robustness.
The active wrist is made of a MAXON DC-X 22s 12V motor
and amagnetic encoder. The rotational DoF is placed axially to
the length of the artificial limb, to implement the active prono-
supination motion of the wrist.
During experiments, the prototype was used in two different
operating modes. Each mode uses only 2 DoAs per time:

1. 1 DoA Hand + wrist [OM1]: We activate the first DoA of
the soft hand and the wrist. In this way the dexterity of the
prototype is equally split between the wrist and the hand.

2. SoftHand 2 [OM2]: We activate both the DoA of
SoftHand 2. The wrist is maintained fixed with the hand
palm plane parallel to the subject’s palm plane. In this
way all the dexterity of the prototype is allocated on
the hand.

• The zero gravity SaeboMAS: is a passive gravity
compensation arm3 that we use to support the upper
limb during the experiments. In this manner muscular
fatigue is prevented during task execution. The use of a soft
hand in combination with this device has been explored in
(Ciullo et al., 2018).

• Mechanical interfaces: the custom made mechanical parts
necessary to fix the artificial limb to the subject’s arm, and to
connect the SaeboMAS. We point the reader to Ciullo et al.
(2018) for more details on this mechanical components.

The control algorithms are implemented in Matlab 2018 on a
dedicated computer, while the low level control of all the devices
is implemented directly onboard on the custom electronics
described in Della Santina et al. (2017b).

In Figure 16 we report the behavior of the whole system
in response to a simple pattern of motions of the subject’s

3SaeboMAS official website, https://www.saebo.com/saebomas/, accessed 8-June-
2018.
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limb. EMG and posture signals are reported, together with the
corresponding outputs of the maps. The device motions are
shown for both modes.

5.2. Participants
Eight able-bodied subjects took part in the experiment, seven
men and one woman with age ranging from 23 to 32. All

FIGURE 19 | Photo-sequences of a single card turning in the Card task. Map 5 is used, and the device is in mode 1. In panels (A–C) the soft hand moves from the

previously turned card to the new card, which is moved to the edge in panels (D-F) by sliding it on the table. The wrist posture is planned so as to facilitate the sliding.

In Panels (H–K) the card is picked between thumb and index. In panels (L–O) the operator flips the card by rotating the wrist.

FIGURE 20 | Mean value and standard deviation of points scored by subjects during each task. Blue bars represent the prototype’s first operating mode, OM1. Red

bars represent the prototype’s second operating mode, OM2.

FIGURE 21 | Evaluation of each statement of the questionnaire (min −3, max +3). Panel (A) reports the evaluation for “I was able to move the artificial hand easily in

the right way.” Panel (B) reports the evaluation for “During the trial I was perfectly isolated from external distractions.” Panel (C) reports the evaluation for “I think this is

the best controller among all others.” Blue bars correspond to the prototype’s first operating mode, OM1. Red bars correspond to the prototype’s second operating

mode, OM2.
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subjects were tested on their dominant hand (right hand; self-
reported hand dominance). All participants were naive to the
experimental purpose of the study and had no history of
neuromuscular disorders. These subjects were not the same
ones who participated in the Virtual Environment Validation

experiment. Before data collection, subjects signed an informed
consent to participate in the experiment. The experimental
protocols were approved by the Institutional Review Board
of University of Pisa, in accordance to the Declaration
of Helsinki.

FIGURE 22 | Photo-sequence of an activity of daily living performed using the device in mode 1, with Map 5. The operator rotates the wrist so as to have the soft

hand in a good posture to perform a grasp, in panels (A-D). The power grasp is established in (E,F), and firmly maintained while the cap is removed with the free hand.

Motions of the artificial wrist are exploited to pour water from the bottle into a glass in panels (G-N). In (O) the grasp in maintained while the cap is plugged again.

FIGURE 23 | Photo-sequence of an activity of daily living performed using the device in mode 2, with Map 3. The operator picks the red candy among the white ones,

by performing a precision grasp in panels (A–C). In (D,E) the candy is lifted. In (F–I) the grasp is firmly maintained while the candy is unwrapped with the free hand.

Finally, in (J) the operator eats the candy. The operator signed a written informed consent for the publication of this image.
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5.3. Experiment
During this experiment we tested the 3rd and the 5th
maps, together with the benchmark. Each map was
tested on each operating mode of the soft prototype
described in subsection 5.1. Subjects, still wearing the
MYO Armband from the calibration phase, were instructed
to stand in front of a table. They were asked to wear
the artificial limb on the right forearm near the wrist.
A representation of the entire apparatus is reported
in Figure 14.

The six combinations of the three maps and the two operating
modes were tested on the following tasks:

• Box and Blocks: This is a standard test widely used to evaluate
the unilateral gross manual dexterity of post-stroke patients or
upper limb amputees using prosthesis (Desrosiers et al., 1994).
During this task a rectangular container is placed in front
of the subjects. It is divided into two square compartments
of equal dimension. Some colored wooden cubes are placed
in one compartment. The subjects are instructed to move as
many blocks as possible from one compartment to the other
for a period of 60 s.

• Pyramid: This task aims at evaluating the precision manual
dexterity needed to move little objects. During this test
participants have to build a pyramid with the same wooden
blocks as those used in the previous task. Five cubes are placed
in front of the subject as to form the base of the pyramid. Other
two groups of five blocks are placed on the left of the subject.
During the task subjects take blocks from these two groups and
place them onto the pre-built pyramid base on the right. Sixty
seconds are available to accomplish the task. The pyramid’s size
was designed so that is particularly challenging to complete it
in the given time.

• Cards: During this task three cards are placed on the table in
front of the subject. The participants are instructed to turn
upside down each card, one at a time, for a period of 60 s. If
the subject turns upside down all three cards before the time
is up, then, she or he is instructed to repeat the task. This task
is inspired by that included in the Jebsen Hand Function Test
(Dromerick et al., 2008).

An evaluation scale has been introduced, to evaluate
the performance obtained by each subject during this
experiment. Subjects were informed about this scale before
the experiment started. For each task, points were assigned as
described below:

• Box and Blocks: One point for one or more cubes moved into
the empty compartment at a time.

• Pyramid: One point for each cube correctly positioned.
• Cards: One point for each card correctly turned upside down.

Each task was repeated twice to obtain a more consistent dataset.
The sequence of maps was randomized for each subject. To
avoid straining the subjects, each one tested only one of the
two prototype operating modes. To familiarize participants with
each test, the tasks were preceded by a 2-min training phase
in which the operators were left free to experiment with the

device and the map. Furthermore, subjects were helped to
understand tasks and maps with videos, showing the prototype
behavior for each combination of operating mode and control
map. These videos are available as multimedia attachment to the
present paper.

Subjects were asked to complete a questionnaire after each
the experiment. Questions were asked for each map, including
the benchmark. To evaluate each field of the questionnaire a
Likert-like scale was used. Hence, subjects specified their level of
agreement with each sentence by a value from -3 to 3. The fields
of the questionnaire were:

1. I was able to move the artificial hand easily in the right way.
2. During the trial I was perfectly isolated from external

distractions.
3. I think this is the best controller among all others.

5.4. Results and Discussion
In Figures 17–19 we present extracts of an expert operator
performing the three considered tasks. In performing these tasks
the subject makes large use of the second DoA of the Pisa/IIT
SoftHand, and of the wrist’s motions. Note that these degrees
can be controlled with only two independent electromyographic
signals thanks to the proposed maps. In Figure 17 a block is
picked between index finger and moved from/to the empty box.
To perform the pinch grasp the operator had to exploit the
second degree of actuation of SoftHand 2. In Figure 18 the
operator picks a block from one of the groups on his left, and
places it over the first level of the pyramid. The second DoA
of SoftHand 2 is used first to move the block from its group
by extending the index finger, then to pick the object between
index and thumb fingers. In Figure 19, the wrist is extensively
exploited for positioning the hand in postures advantageous
for the operations. In panels (A–E) the orientation is such
that the card is well-visible to the user. In panels (F–J) the
orientation is changed so as to enable the execution of an effective

FIGURE 24 | The first Subject while performing the experiments in the virtual

environment. The MYO Armband is placed on the setup. Both Map 3 and 5

are tested. The benchmark could not be tested because it was not possible to

extract enough independent signals from the subject.
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grasp. Finally in (K–O) the wrist is used for actively rotating
the cart.

Figure 20 displays mean value and standard deviation of the
collected data for each task for all subjects. Most subjects were
able tomanage the artificial limb in both operatingmodes with all
three considered maps. Maps 3 and 5 have similar performance
in the operative mode 1 (OM1), while map 3 slightly outperforms
map 5 in the operative mode 2 (OM2). Interestingly both
proposed maps outperform the benchmark in both operative
modes, despite the fact that the benchmark is using double the
amount of EMG signals to control the same amount of degrees

of actuation. Of course these results should not be considered as
definitive; different associations between s and cp, and more tasks
should be considered to that end.

However these experiments suggest that using less signals in a
more clever way can actually generate performance comparable
to using a larger number of them. Furthermore, when it comes
to add information it seems convenient to introduce postural
information instead of further sEMG.

These conclusions are also supported by the results of the
questionnaire. Figure 21 shows mean and standard deviation
of the evaluations. According to panel (A), subjects considered

FIGURE 25 | Outcome of a trial in virtual environment, performed by a able bodied subject (A–H) and the first subject with limb loss (I–P), using both Map 3 and 5.

More specifically: (A–D) show the able-bodied subject using Map 3 and (E–H) using Map 5; (I–L) show the subject with limb loss using Map 3 and (m-p) using Map 5.

Each row reports the input signals performed to reach the target (first column), and the path of the pointer split into three sequential parts. The red and dashed part of

the line show the motion produced in the time segment, while the gray solid line show the past trajectory.
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more natural the use of map 5 in both operative modes.
This is also reflected in an overall higher appreciation of the
map, as proven by panel (C). Panel (B) confirms that subjects
were well-isolated from external distractions. Furthermore,
the questionnaire suggests that subjects preferred the map
combining IMU and EMGs.

In Figures 22, 23 we show two other examples of daily living
activities performed by the expert user using the soft artificial
limb. In Figure 22 the device is in operating mode one, and
controlled throughmap 5. The operator grasps a bottle and pours
some water into the glass through wrist motions. In Figure 23 the
device is in operating mode two, and controlled through map 3.
The operator picks a candy using a pinch grasp. The candy is
stably held while it is unwrapped.

6. EXPLORATORY EXPERIMENTS ON
SUBJECTS WITH LIMB LOSS

We conclude the study by testing the proposed strategies with
two subjects with limb loss. The first subject (37, female) is
an user of cosmetic prostheses, and an occasional user of
myoelectric prostheses. She has a congenital malformation at
the trans-radial level in the left hand. The second subject
(41, male) is an user of body powered and myoelectric
prostheses. He was amputated 8 years ago, at the trans-radial
level in the left hand. Therefore, both of them could have a
different disposition of the muscles, and they could not be
used or able to activate the muscles to execute activities of
daily living.

FIGURE 26 | Performance obtained by an amputee using maps 3 and 5 in virtual environment, evaluated through the metrics: (A) Normalized completion rate; (B)

Mean time normalized to the maximum time given to complete each task; (C) Efficiency of the performed path compared to the minimum possible path; (D) Number

of overshoots performed before acquiring the target; (E) Stopping distance traveled inside the target area. Note that, among those metrics high values are associated

with good performances only in (A), while the vice versa holds for (B–E).

FIGURE 27 | The second Subject controls the SoftHand2 using map 3. No wrist is considered here. In panel (A) the prosthetic hand assumes a posture coherent with

a power grasp. In panel (B) the prosthetic hand assumes a posture coherent with a pinch grasp. In panel (C) the index of the finger is extended, as for pushing a

button. In panel (C) two different objects originally distant between each other are grasped together—see Video 1 for more details.

FIGURE 28 | The second Subject perform Box and Blocks task, using Softhand2 controlled with map 3. No wrist is available here. The ability of the hand to perform

pinch grasps is exploited to grasp the block with good precision. The final score achieved is 10 cubes moved in 1 min.
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Neither of the two subjects could test the benchmark, since
both of them had only two independent EMG signals to provide.
With the first subject the reason was physiological. Indeed—as
already discussed in the introduction and shown by Figure 2—
she was able to generate only two independent signals with
her residual stump. With the second subject the reason was
technological. His socket—onwhich we plugged the SoftHand2—
is a standard setup that includes two Ottobock surface EMG
sensors. Both reasons are very common, and represent well the
kind of situations that we can encounter in practice.

The first subject performed experiments in the virtual
environment, according to the full protocol described in section
4. Figure 24 shows the subject performing the experiment. She
achieved 100% success rate with both maps. Figure 25 compares
the behavior of an able-bodied subject and of the first subject in
acquiring the same target, with both maps. Figure 26 reports the
performance of the subject according to the metrics introduced
in section 4.

The second subject performed instead experiments with
the physical prototype. We removed here the active wrist,
and we connected the SoftHand2 directly to his socket. The
connection happened through a mechanical interface compatible
with Ottobock wrist, that we had to realize ad hoc. No IMU
was available on board, although it will be possible to easily
add it in future work. So only Map 3 with OM 2 could be
tested. Figure 27 shows the subject moving the hand to several
meaningful postures—panels (A–C)—and grasping two objects
at the same time that were originally far from each other—
panel (D). Figure 28 shows a photosequence of the subject
performing Box and Blocks tasks. The protocol followed was the
same discussed in section 5.1. His score on two trials has been
of 10 blocks in 1 min. We point the interested reader to the
multimedia attachment, which includes the video of both these
and further experiments.

While very preliminary, these results prove that the proposed
algorithms can make it possible for a subject with limb loss
to effectively control prostheses with a reduced amount of
independent EMG features.

7. CONCLUSIONS

In this work, we investigated two novel approaches for
proportionally and simultaneously controlling an artificial limb,
with a reduced amount of independent EMG signals w.r.t. classic
approaches. This is a compelling problem in the state of the art
of prosthetics, since typically a low number of independent EMG
signals can be extracted from a forearm of a transradial amputee
subject. The first approach consists in combining independent
signals extracted from an array of EMG readings, to obtain a same

number of control signals. The second approach enriches EMG
through postural information. For each approach we proposed
three control maps. We quantitatively tested the performance of
the maps against a state of the art benchmark, through a virtual
environment we designed. The study involved twelve able-bodied
subjects. Two maps having achieved the higher scores in these
experiments were selected—one for each class of algorithms—
and qualitatively tested in controlling a soft artificial limb. Eight
able-bodied subjects took part in this second experiment. Finally,
the same two maps were tested on two subjects with limb loss.
The outcomes of this experimentation are promising. Our results
suggest that the proposed maps can enable the control of multi-
DoA artificial limbs with a reduced amount of control signals
if compared to the standard approaches. Future work will be
devoted to further validating the application of these algorithms
to the prosthetic field, and also their potential application in the
emerging field of extra-limbs.
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A. APPENDIX

A.1. Calibration
A calibration phase is executed each time a new subject
performed the study, prior to the experiment. During this
phase, the subject is asked to perform a sequence of flexion-
extension and adduction-abduction wrist movements, following
a virtual cursor on the screen. These motions are used to
calculate the matrix of independent signals as described later in
this section.

A.2. Control Architecture
To test the proposed maps we implemented an instance of
the general architecture introduced Section 2.1. Furthermore, as
depicted by Figure 5, also pre-processing of postural information
was carried out. All the algorithms are implemented by
MatLab2017b scripts, and Simulink schemes.

A.2.1. EMG Pre-processing
Each sEMG sensor provides a zero-mean signal, the variance of
which proportionally increases as a function of muscle activation.
Therefore, the EMG signals were rectified to obtain a better
representation of the muscular activation. In fact, as described
in Ward et al. (2013), rectified EMG signals are a better predictor
of the frequency components of motor unit synchronization than
the raw ones.

The logarithm of the signal is then computed to compensate
for the non-linear nature of the relation between EMG signals
and muscular activation, as suggested in Hahne et al. (2014).
Finally, a normalization is applied, yielding to

en =
log(|e| + 1)

log emax
. (A1)

After extrapolating en from the signal, a filtering is applied to
reduce noise. With the aim of not introducing too much delay,
we implemented a dynamic thresholding action (FT) arranged
between two filters (Fin, Fout), as shown in Figure A1. Both are
digital low-pass filters implemented as a weighted sum between
the input and the output of the filter at the previous step yk =

αxk+ (1−α)yk−1. We choose α = 1/50. The sampling rate is 0.5
KHz. The dynamic threshold action FT aims at neglecting small
variations when the activation is almost constant. This action
works as follows

yk =











uk − w, if γ > 1

uk + w, if γ < 1

yk−1, oth.

, where γ =
uk − yk−1

w
, and w = βef

(A2)

where uk is the input and yk the output at the k−th time step.
The output remains constant if the difference between input
and output at the previous step is smaller than a threshold w.
This threshold changes dynamically proportionally to the Fout
filter output. β is a normalization constant equal to 0.25. The
dead zone effect becomes wider proportionally to the output
signal ef . In this way, it is possible to obtain both fast reaction
when the signal is low and high oscillation attenuation for
stronger activation.

A.2.2. IMU Pre-processing
MYO armbrand provides its posture as measured by the on-
-board IMU, expressed in quaternions q = [q0 q1 q2 q3]. In
this work we use only the information of the torsion angle of the
forearm φ. To obtain this angle from a quaternion the following
transformation is needed

φ = atan2(2(q2q3 + q0q1), (q
2
0 − q21 − q22 + q23)) . (A3)

No further filtering is applied to φ.

A.2.3. Independent Signal Extraction
This layer extracts the set of independent features s that will be
fed into the control algorithms, from the filtered and rectified
activations e. We use a procedure inspired by Choi and Kim
(2011), which can be divided in two sub-phases; Factorization
and Linear Regression.

Factorization: Consider a matrix U ∈ R
k×T collecting EMG

data, where k is the number of myoelectric channels and T is
the amount of temporal samples. Consider also a matrix M ∈

R
m×T containing the activation movements, wherem represents

the number of movement to be mapped; then it is possible to
obtain the muscles synergies matrix S ∈ R

m×c, such that M ≈

SU. The evaluation of S is an optimization problem, with cost
function ‖M − SU‖2.

Linear Regression: We build a linear regression for each
independent signal obtained by the previous step. The matrix
B ∈ R

m×m is obtained by solving the equation B =

(SUUTST)−1SUMT. The final features are thus evaluated as
s = BTSa.

A.2.4. Post-processing
The last block in Figure 5 is used tomanipulate the output signals
from the Control Map block in order to obtain the reference
signals for the output device. This means normalizing the output
to the maximum excursion of the motors, adding bias to the
signals in order to modify the starting point of the system and
other technical operations depending on the utilized device. The
two output signals are directly mapped to the two DoAs of the
soft prosthesis.
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FIGURE A1 | EMGs Pre-processing phase, extracting informative, and independent features from EMG acquisitions. We first perform the feature extraction, and after

we filter the data using an adaptive filter.
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