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Evaluation of a Simultaneous Myoelectric Control
Strategy for a Multi-DoF Transradial Prosthesis

Cristina Piazza, Matteo Rossi, Manuel G. Catalano, Antonio Bicchi, and Levi J. Hargrove

Abstract—While natural movements result from fluid coordi-
nation of multiple joints, commercial upper-limb prostheses are
still limited to sequential control of multiple degrees of freedom
(DoFs), or constrained to move along predefined patterns. To
control multiple DoFs simultaneously, a probability-weighted
regression (PWR) method has been proposed and has previously
shown good performance with intramuscular electromyographic
(EMG) sensors. This study aims to evaluate the PWR method
for the simultaneous and proportional control of multiple DoFs
using surface EMG sensors and compare the performance with a
classical direct control strategy. To extract the maximum number
of DoFs manageable by a user, a first analysis was conducted in
a virtually simulated environment with eight able-bodied and
four amputee subjects. Results show that, while using surface
EMG degraded the PWR performance for the 3-DoFs control,
the algorithm demonstrated excellent achievements in the 2-DoFs
case. Finally, the two methods were compared on a physical
experiment with amputee subjects using a hand-wrist prosthesis
composed of the SoftHand Pro and the RIC Wrist Flexor. Results
show comparable outcomes between the two controllers but a
significantly higher wrist activation time for the PWR method,
suggesting this novel method as a viable direction towards a more
natural control of multi-DoFs.

Index Terms—Upper Limb Prosthesis, Soft Robotics, Simulta-
neous Control

I. INTRODUCTION

THE loss of an upper-limb, which affects more than half
a million people just in the United States [1], is a major

traumatic event that can have an impact on both the social
and the working life of a person. For centuries, prostheses
have been used to help with such a physical loss and still
today there is a lot of interest and effort in design upper limb
aids. The main claim is to fully restore the lost appearance,
a smooth joint coordination and functionalities, which results
very challenging due to the high number of degrees of freedom
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Figure 1: An amputee subject using the hand-wrist prosthesis
to stack six wooden blocks in a pyramid. The prosthesis is
composed of the SoftHand Pro and the RIC Wrist Flexor.

involved. Indeed, the human upper limb is an integrated system
and the coordinated combination of different joints, e.g. hand
and wrist, plays a key function in the execution of advanced
tasks, hand mobility and manipulation [2], [3], [4].

Myoelectric prostheses, the most advanced upper-limb aids
available in the market to this day, are dexterous robotic
devices controlled using the electromyographic (EMG) signals
from the muscles in the amputated limb. These prostheses
are designed trying to match the many functions of human
upper-limb through sophisticate design. Myoelectric hands
are capable of performing a large span of grasp shapes [5],
but typically have the drawback of being difficult to control
[6]. In the last decade, robotic hands research focused on a
different approach, consists of a strong reduction of the system
complexity in terms of actuators and sensors, and favoured
by the introduction of soft robotics technologies [7]. The
combination of novel design trends and the introduction of
compliance in the hand architecture have led to an innovative
approach on grasping and manipulation, which already showed
good results [8], [9], [10]. These devices can functionally
adapt to the shape of the object and exploit the environmental
constraints to get advanced configurations and increase the
grasping success. In subjects with transradial amputation, the
lack of wrist DoFs may also have a significant effect on
the quality of the grasp execution [11] and, often, force the
user to introduce unnatural compensatory movements which
involve arm, shoulder and trunk [12], [13]. Relatively little
research is devoted to the design and control of prosthetic
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wrists [14], and the most used solution still remains the 1
DoF prono/supination passive wrist1.

The control strategy adopted to manage the advanced level
of dexterity of multi-DoFs transradial prosthesis also plays
a key role in the grasping performance. A common choice
adopted to control multi-DoFs devices is, for instance, to
control one degree of freedom at the time with the possibility
of switching between DoFs by exerting a co-contraction above
a certain threshold. This approach is undesirable from the user
point of view for two main reasons: first of all, the use of co-
contraction to select DoF is counterintuitive and becomes even
more cumbersome with the increasing of the number of DoFs
to control; secondly, this approach does not allow simultaneous
control of multiple DoFs. The latter aspect is investigated
in several studies [15], [16] which demonstrate that operate
simultaneously a hand-wrist prosthetic system could play an
important role in terms of performances and naturalness of
the transradial prosthesis in daily life activities. In the attempt
to eliminate the need for switching when controlling multiple
DoFs, various pattern recognition control methods [17], [18]
or linear methods, such as linear regression and non-negative
matrix factorization [19], [20], [21], have been proposed and
have recently gained popularity. Some of these control meth-
ods demonstrate their effectiveness especially when combined
with innovative approaches from the clinical side, as those
based on Targeted Muscle Reinnervation (TMR) [22]. This
surgical technique that considerably increases users’ capabili-
ties to selectively activate several muscles more naturally, and
consequently to control multiple DoFs.

In this work, we explore the advantages of using a
probability-weighted regression algorithm for the simultaneous
and proportional control of a transradial prosthesis (Fig 1).
This control method already showed promising results with
intramuscular EMG (iEMG) sensors [23] and, in this study, we
evaluate the feasibility of using this algorithm in combination
with surface EMG (sEMG) sensors. A first evaluation of the
method was conducted in a virtual environment, analyzing the
real-time performance of the probability-weighted regression
system, with able-bodied individuals and amputees. The results
were compared with a standard direct control (DC) and with
the results of [23]. Then, to obtain a more realistic evaluation,
we analyze the performance obtained by the group of amputee
subjects when using a transradial prosthesis. The prosthesis
is composed of an active wrist, RIC Wrist Flexor [24], and
a soft underactuated hand with 19 DoFs, the SoftHand Pro
(SHP) [25]. The performance of the PWR and DC methods
were compared with two standardized tests and several actions
mimicking daily life activities. The rest of the paper is
organized as follows: Section II presents the methods and the
experimental protocol. Section III presents the results while
Section VI discusses the insights gained from these results and
the limitations of the study. Section V draws our conclusion.

II. METHODS

Eight able-bodied subjects and four subjects with transradial
amputation (Table I) participated in the experiment after

1http://www.ottobock.com/en/

Subject Age Side of Time since Time since
ID amputation amputatation (yrs) TMR (yrs)

TR1 30 Left 3 0.5
TR2 25 Right 7 1
TR3 51 Right 2 2
TR4 54 Right 38 Not applicable

Table I: Amputee subjects specific details.

giving informed consent. Three of the subjects with transradial
amputation had previously undergone TMR surgery. For TR1,
during TMR surgery the radial nerve was transferred to the
motor nerve of the pronator quadratus, the medial nerve
was transferred to the flexor digitorum superficialis and the
ulnar nerve was transferred to the flexor carpi ulnaris. TMR
surgery for the other two subjects was performed as a clinical
treatment to reduce pain associated with neuroma formation
and information about nerves/muscles sites were not available.
The study was approved by the Northwestern University
Institutional Review Board. A first virtual experiment was
conducted to evaluate the feasibility to control multi-DoFs
using a PWR algorithm and sEMG. All of the subjects used
sEMG to control up to 3-DoFs in a virtual Fitts’ Law task
(the 3DoFs corresponded to wrist pronation/supination, wrist
flexion/extension and hand open/close). Then, to assess the
control performance with a 2-DoFs transradial prosthesis (with
active wrist flexion/extension and hand open/close), the same
group of amputee subjects performed two standardized tests
and tasks mimicking daily life activities. In both experiments,
the order of execution was randomized between subjects to
avoid favouring one through the learning effect. We point the
interested reader to a short video describing the experiments.

A. Myoelectric Control

Eight pairs of electrodes were positioned around the dom-
inant forearm of the able-bodied subjects, approximately 2
cm distal to the elbow. One pair of electrodes was placed
on the main wrist flexor group, another pair was placed
on the main wrist extensor group and the remaining pairs
were evenly spaced on the two semicircles between these
two locations. Amputee subjects were fit with a custom gel
liner containing eight pairs of embedded electrodes. EMG
signals were amplified using a Texas Instruments TI-ADS1299
analog front end system and sampled at 1000 Hz. To reduce
noise induced by motion artifacts the signals were further
filtered using a 3rd order Butterworth filter with a cut-off
frequency of 20 Hz. As in [23], signals were sequenced
into 250 ms windows with frame increments of 50 ms [26],
[27] and ten features for each channel were extracted: four
time-domain features (mean absolute value, waveform length,
slope-sign changes, zero crossings) [28], along with the six
coefficients of a sixth-order autoregressive model [29]. In
both experimental sessions, all the computation required was
done through the system embedded directly in the prosthetic
socket. At the beginning of each experimental section, subjects
provided a training set which was used to train a probability-
weighted regression (PWR) system, following the procedure
described in [23]. Two different configurations were tested: in
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the “2-DoF control” configuration, only the training data that
corresponded to wrist flexion/extension, hand open/close and
their combinations were used to train the algorithm, while in
the “3-DoF control” all of the training data were used. Direct
control (DC) was used as the baseline value for this study. With
“direct control” we refer to the standard control technique in
which two independent EMG signals are used to control the
two directions of a single degree of freedom. In each direction
of movement, the actuator is controlled proportionally to the
mean absolute value (MAV) of the corresponding EMG signal.
With this approach, it is only possible to control one degree
of freedom at the time; switching to another DoF is possible
by exerting a co-contraction above a certain threshold. Gains
and thresholds were manually set at the beginning of each
experimental session to exploit as much as possible the entire
range of the EMG signals while minimizing erroneous move-
ments and involuntary switching due to noise or crosstalk.
Even in this case both a 2-DoF control configuration and a
3-DoF control configuration were tested.

B. Hand-Wrist Prosthesis

The prosthesis used for this study (Fig 1) was composed
of the RIC Wrist Flexor and the SoftHand Pro (SHP). The
RIC Wrist Flexor [24] is a compact and powerful wrist flexor
with dimensions of 35mm x 45mm x 58mm, a mass of 142
g, and a no-load speed of 85 r/min. It can produce a stall
torque of 2.5 N and it is equipped with the universal quick
disconnect [30], developed by Motion Control, Inc. The SHP
is the EMG controlled version of the Pisa/IIT SoftHand (SH),
which is a soft robotic anthropomorphic hand with 19 joints
and one motor [31]. Each finger is composed of a group of
rolling joints connected by elastic ligaments; a single tendon
runs through all the fingers and actuates them in a coordinated
way when pulled by the motor. This design makes the SH
very robust and able to stand severe joint dislocations and
disarticulations. The SH is synergy inspired: when actuated it
moves following the first synergy of grasp [32]. The SHP is
a versatile robotic hand that can adapt its shape to the object
that it is being grasped. Even if the SHP uses only one motor,
its adaptive design allows a natural and safe interaction with
objects and environmental constrain [33]. The current release
has a maximum force of 130 N perpendicular to the palm and
employs a 15 Watt Maxon DCX 22S motor with a GPX22
(86:1) gearhead and a 12-bit Austrian Microsystems magnetic
encoder, with a resolution of 0:0875. The CAD model and
the electronic board design of the SH are open source and
available at the Natural Machine Motion Initiative [31].

C. Virtual Experiments

EMG control was evaluated using a Fitts’ law test in a
virtual environment [23], [34]. Fig 2 shows the experimental
setup. Subjects were placed in front of a computer screen with
their elbow flexed at 90 degrees. The screen displayed a black
and an orange ring, representing respectively the cursor and
the target. Subjects controlled the position of the cursor using
the aforementioned control techniques: the speed of horizontal
displacement was controlled by a wrist flexion/extension signal

Target Distance Target Thickness Index of Difficulty

40 10 2.32
40 20 1.59
40 30 1.22
80 10 3.17
80 20 2.32
80 30 1.87

Table II: Combinations of target thickness (W) and distance
(D) expressed in normalized distance units and relative index
of difficulty (ID) expressed in bits.

and the speed of change of the cursor radius was controlled by
a hand open/close signal; in the 3-DoF control configurations,
the speed of vertical displacement was controlled by the wrist
pronation/supination signal. The task consisted in moving the
cursor to reach the target as quickly as possible and maintain
the cursor in an overlapping position with the target for two
consecutive seconds, after which the target was considered
successfully acquired. Subjects were neither encouraged nor
discouraged from using simultaneous control of the DoFs. The
task was considered failed after 5 overshoots (i.e., when the
cursor moved into and out of the target) or if the target was not
acquired within 30s. Two to three levels of target complexity
were presented depending on the control configuration: “1-
DoF targets” required the subjects to use only one DoF, “2-
DoF targets” required the use of at least two DoFs and “3-
DoF targets” required the subjects to activate three DoFs and
were presented only when 3-DoF control configurations were
used. For each level of complexity, six combinations of target
thickness (W) and distance (D), were presented with equal
frequency (Table II). For these combinations, the index of
difficulty (ID) was calculated as defined by [35]:

ID = log2(
D
W

+1). (1)

Fitts’ law trials were presented to subjects in four exper-
imental blocks, corresponding to the four control strategies
evaluated. The blocks were presented in random order and
separated by rest periods. Each combination of target com-
plexity and index of difficulty was presented three times for
the 3-DoF control configurations and five times for the 2-
DoF control configurations, resulting respectively in 54 and 60
trials per block. Subjects’ performance was quantified using
completion rate, throughput (TP) [36] and path efficiency (PE)
[37]. The average time per target and the mean completion
time in relation to the index of difficulty were also included
in the analysis of the results for completeness of information.
For the PWR blocks, the duration of activation of multiple
DoFs during each trial was normalized over the total activation
time during that trial and used to quantify subjects’ use of
simultaneous control.

D. Physical Experiments

After the analysis in virtual environment described in
Sec.II-C, the same group of amputee subjects took part in
a physical experiment. The PWR and the DC methods were
used to control a 2-DoFs device consisting of the SHP and
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(a)

(b)

Figure 2: Virtual experiment. (a) A graphical representation of
the target acquisition task and all of the possible movements
of the cursor. The dashed circle represents the cursor, while
the orange thick circle represents the target. Arrows are used
to indicate target width (W) and distance from the cursor (D).
(b) Subject controlling a ring-shaped cursor using PWR and
DC to complete a Fitts’ law test in virtual environment.

the RIC wrist. According to previous studies (e.g. [38]) which
highlights the predominance of the wrist flexion/extension
movement over the other DoFs, only this movement was
activated in the RIC wrist for the proposed investigation. Since
all the subjects were naive to both devices, the experimental
protocol was designed including an initial training phase to
familiarize with the prosthesis, followed by two standardized
tests and a subjective evaluation. Both algorithms were tested
with each subject and in a random order. The experiment
lasted a maximum of 4 hours (including the preparation
phase) and was performed on a separate session from the
virtual experiment. To prevent muscle fatigue, each subject
had frequent breaks during the session. The experiment was
conducted as follows:

1) Set-up and training of the prosthesis with one control
algorithm. The training phase was considered over at
the earliest of the following conditions: either after 20
minutes or when the subject affirmed to be able to
control the hand and the wrist satisfyingly.

2) Box and Blocks Test (BBT), conducted as described
in [39]. The subjects were asked to transfer as many
wooden blocks as they could from one box to another
within 60s (see Fig 3(a)). The blocks needed to be picked
up one at a time and transported to the other box without

(a)

(b)

Figure 3: Physical experiment. Subject performing (a) Box and
Blocks Test and (b) Cubbies Task. The tests were completed
using a hand-wrist prosthesis controlled with PWR and DC.

dropping them. Subjects were granted 15s of training
before the experiment. The number of blocks transferred
in 60s was used as the main outcome measure.

3) Cubbies Task, conducted as described in [40]. The task
consisted in picking up wooden blocks from a 4x3
cubicle system and place them on a table (see Fig 3(b)).
A block was placed in each cubicle, and three blocks
were placed along the top of the cubicle set, which was
at the subject’s eye level. The total time to complete
the task was recorded and used as the main outcome
measure.

4) Set-up and training of the prosthesis (conducted as in
step 1) and using the remaining control strategy.

5) BBT, conducted as in step (2).
6) Cubbies Task, conducted as in step (3).
7) Subjective Evaluation, subjects were asked which was

their preferred control modality and to complete tasks
that mimicked daily life activities (e.g. opening/closing
a fridge door, picking up objects from tables at various
heights and drinking from a bottle) with the selected
method. The subjects were free to perform the tasks in
the way they considered the most efficient. Finally, free
comments about the selected method were collected.

Time durations of hand activation, wrist activation and
simultaneous activation (when applicable) were also measured
during BBT and Cubbies Task.
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E. Statistical Analysis

The normality of all the data sets was evaluated using a
Kolmogorov-Smirnov Test. The data of the virtual test were
found to be normally distributed. For these results, paired t-
tests were conducted to evaluate differences between PWR
and DC, for the 2-DoFs and the 3-DoFs control configu-
rations. A multi-factorial ANOVA was used to evaluate the
effect of control algorithm choice, population, tasks and their
interference on path efficiency for the 2-DoFs and the 3-DoFs
control configurations and throughput for 1-DoF, 2-DoFs and
3-DoFs target complexities. For the physical test, since data
distributions were not gaussian, the Kruskal-Wallis test (a
nonparametric analysis of variance) was used to evaluate the
main outcome measures obtained with PWR and DC.

Statistical significance for all tests was set at α = 0.05.
Means are reported as mean ± standard error. Standard error
is represented in figures with error bars.

III. RESULTS

A. Virtual Experiment

1) Able-Bodied Subjects 3-DoFs Control: In the 3-DoFs
control configuration, able-bodied subjects were able to
successfully acquire 95.1% ± 1.5% of targets using PWR,
which was significantly lower than DC (98.6%± 0.7%, with
p-value p < 0.01). For 1-DoF, 2-DoFs and 3-DoFs targets,
subjects experienced significantly improved throughput when
using PWR compared to DC (Fig 4(a)), with p-values
p = 0.023, p = 0.008 and p = 0.022 respectively. These
data show significant interaction effects between the control
method and tasks (p < 0.01), but not between subjects and
tasks or control methods (p > 0.05 for all cases). As Fig 4(b)
shows, PWR resulted in significantly lower path efficiency
compare to DC for 2-DoFs and 3-DoFs targets (respectively
p = 0.008 and p = 0.003), while no statistically significant
difference was found for 1-DoF targets. Significant interaction
effects between tasks and control is present (p < 0.01), but
no significant effects were found from the interaction with
the population (p > 0.05 for all cases). Moreover, the average
time per target obtained with PWR, 6.02s ± 0.56 s, was
significantly lower than the average time per target obtained
with DC, 7.98s ± 0.55 s, with a p-value p < 0.001. Mean
completion times are plotted in Fig 4(c) and Fig 4(d); linear
relationships were found between the completion times and
indexes of difficulty: the R2 values were greater than 0.90 in
all cases except for 2-DoFs targets with DC (R2 = 0.63) and
3-DoFs targets with PWR (R2 = 0.73). Finally, average values
of simultaneous activation for 1-DoF, 2-DoFs and 3-DoFs
targets are reported in Table III.

2) Able-Bodied Subjects 2-DoFs Control: In the 2-
DoFs control configuration, subjects successfully completed
97.5% ± 0.8% of targets using PWR, and 99.2% ± 0.3%
of targets using DC algorithm, but this difference was
not statistically significant (p > 0.05). Subjects experienced
significantly improved throughput when using PWR compared
to DC for both 1-DoF and 2-DoFs targets (Fig 5(a)), with
p-values respectively of p = 0.013 and p < 0.001. Regarding

path efficiency (Fig 5(b)), PWR performance was significantly
worse than DC performance when comparing results for
1-DoF targets (p = 0.0097) but significantly better when
comparing results for 2-DoFs targets (p = 0.02). Moreover for
2-DoF targets, the average time per target when using PWR
(3.17s±0.28 s) was significantly lower than the one obtained
when using DC (4.49s ± 0.34 s, with p < 0.001). Mean
completion times varied linearly with indexes of difficulty
(Fig 5(c) and Fig 5(d)), with the R2 values for the empirical
Fitt’s law regression models ranging from 0.75 and 0.93.
Finally, average values of simultaneous activation for 1-DoF
and 2-DoFs targets are reported in Table IV.

3) Amputee Subjects 3-DoFs Control: Subject TR4 ex-
perienced discomfort while performing pronation/supination
movements and therefore did not complete the evaluation
for the 3-DoFs control configuration; the following results
are relative to TR1, TR2 and TR3 only. The completion
rate obtained with PWR was 95.1% ± 3.3% and the one
obtained with DC was 93.2%±1.6%. This difference was not
statistically significant (p > 0.05). The values of throughput
and path efficiency are represented respectively in Fig. 6(a)
and Fig 6(b); as can be seen, the differences in performance
are marginal and not statistically significant (p > 0.05 for all
cases). No significant interaction effects between tasks, subject
population and control method was found (p > 0.05 for all
cases). Moreover, the average acquisition time per target was
of 8.62s±1.04 s for the PWR trials and 9.96s±0.43 s for the
DC trials, but this difference was not statistically significant
(p = 0.37). As shown in Fig 6(c) and Fig 6(d), in the majority
of the considered cases, mean completion times did not vary
linearly with indexes of difficulty: in two out of three cases
for both PWR and DC, R2 values for the empirical Fitt’s law
regression models were equal to or less than 0.54. Finally,
average values of simultaneous activation for 1-DoF, 2-DoFs
and 3-DoFs targets are reported in Table III.

4) Amputee Subjects 2-DoFs Control: For 2-DoF targets,
the four amputee subjects completed 99.2%±0.8% of targets
using PWR, which was significantly higher than DC perfor-
mance (95.0% ± 2.0% of targets, with p < 0.01). Fig 7(a)
and Fig 7(b) show that, when comparing the performance of
PWR and DC relative to 2-DoFs targets, subjects experienced
significantly higher throughput (p= 0.017) and path efficiency
(p = 0.012). No significant difference in terms of path effi-
ciency or throughput was found for 1-DoF targets (p > 0.05).
Data show no significant interaction effects between tasks,
subject population and control strategy (p> 0.05 for all cases).
Moreover, the average time per target obtained with PWR
(4.15s±0.46 s) was significantly lower than the result obtained
with DC (7.96s± 1.11 s, with p = 0.029). Mean completion
times are shown in Fig 7(c) and Fig 7(d); the R2 values for
the empirical Fitt’s law regression models ranged from 0.38, in
the case of 1-DoF targets with DC, to 0.91, for 1-DoF targets
with PWR. Finally, average values of simultaneous activation
for 1-DoF and 2-DoFs targets are reported in Table IV.
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(a) (b) (c) (d)

Figure 4: Results of the virtual experiment in the 3-DoFs configuration and with able-bodied subjects: (a) compares PWR and
DC throughputs for different levels of target complexity; (b) compares PWR and DC path efficiencies for different levels of
target complexity; (c)-(d) present the relationship between completion time and index of difficulty respectively for PWR and
DC. The R2 values for the regression models are reported in the legend. Statistical significance (p < 0.05) is denoted with “*”.

(a) (b) (c) (d)

Figure 5: Results of the virtual experiment in the 2-DoFs configuration and with able-bodied subjects: (a) compares PWR and
DC throughputs for different levels of target complexity; (b) compares PWR and DC path efficiencies for different levels of
target complexity; (c)-(d) present the relationship between completion time and index of difficulty respectively for PWR and
DC. The R2 values for the regression models are reported in the legend. Statistical significance (p < 0.05) is denoted with “*”.

(a) (b) (c) (d)

Figure 6: Results of the virtual experiment in the 3-DoFs configuration and with amputee subjects: (a) compares PWR and
DC throughputs for different levels of target complexity; (b) compares PWR and DC path efficiencies for different levels of
target complexity; (c)-(d) present the relationship between completion time and index of difficulty respectively for PWR and
DC. The R2 values for the regression models are reported in the legend. Statistical significance (p < 0.05) is denoted with “*”.

(a) (b) (c) (d)

Figure 7: Results of the virtual experiment in the 2-DoFs configuration and with amputee subjects: (a) compares PWR and
DC throughputs for different levels of target complexity; (b) compares PWR and DC path efficiencies for different levels of
target complexity; (c)-(d) present the relationship between completion time and index of difficulty respectively for PWR and
DC. The R2 values for the regression models are reported in the legend. Statistical significance (p < 0.05) is denoted with “*”.
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2 DoFs 3 DoFs
Simultaneously Simultaneously

1-DoF Targets AB 9.7%±2.5% 0.9%±0.5%
TR 9.4%±4.6% 0.4%±0.2%

2-DoF Targets AB 27.4%±2.9% 2.1%±0.9%
TR 20.6%±5.3% 1.3%±0.5%

3-DoF Targets AB 25.8%±3.2% 3.1%±1.0%
TR 24.6%±5.6% 3.5%±1.2%

Table III: Average percentage of simultaneous activation for
1-DoF, 2-DoF and 3-DoF targets reported both for able bodied
subjects (AB) and transradial amputees (TR). The values are
relative to the virtual experiment performed only with the
PWR in the 3-DoF control configuration. The first column
presents average percentage of time that at least 2 DoFs were
simultaneously active, while the second column refer to the
simultaneous activation of 3DoFs. The percentage of simulta-
neous activation at each trial is calculated by normalizing the
duration of activation of multiple DoFs over the total activation
time during that trial.

2 DoFs Simultaneously

1-DoF Targets AB 8.5%±1.2%
TR 15.3%±4.4%

2-DoF Targets AB 31.1%±3.2%
TR 40.8%±5.3%

Table IV: Average percentage of simultaneous activation for 1-
DoF and 2-DoF targets reported both for able bodied subjects
(AB) and transradial amputees (TR). The values are relative
to the virtual experiment performed only with the PWR in
the 2-DoFs control configuration. Data refer to the average
percentage of time that at least 2 DoFs were simultaneously
active. The percentage of simultaneous activation at each trial
is calculated by normalizing the duration of activation of
multiple DoFs over the total activation time during that trial.

B. Physical Experiment

Table V presents the results of the main outcome measures
for each test, control method, and the median of the group.
Table VI shows the total time of hand activation, wrist
activation and, in the case of PWR, a value indicating the
time of simultaneous activation of hand and wrist during the
test. In the BBT, the average results obtained with the PWR
controller (16.25 ± 2.1) are higher compare to the DC (13.75
± 2.5), but no statistically significant difference was found
between the two control methods (p = 0.10). During this test,
all of the subjects made small adjustments to the wrist position
when using PWR (the average wrist activation is 2.3 sec); the
wrist position was left unchanged during the entire DC trial
by all the subjects. In the Cubbies Task, the average score
was 108.46 ± 53.8 for the PWR controller and 120.23 ± 46.8
for the DC method. As presented in Table V, two subjects
obtained better performance using PWR, while the other two
performed better when using DC. No statistically significant
difference was found between the two controllers (p = 0.75).

The wrist was activated more when using PWR (the average
wrist activation is 10.37 sec) with respect to DC (the average
wrist activation is 3.24 sec) by all of the subjects. One of the

Box & Blocks Test Cubbies Task
# of blocks total time (sec)

PWR DC PWR DC
TR1 15 13 74.1 115.5
TR2 18 14 184.4 166.4
TR3 18 11 108.9 141.75
TR4 14 17 66.45 57.3
Median 16.5 13.5 91.5 128.63

Table V: Results of the experiment with the prosthesis. Results
include the number of blocks moved in 60s for the BBT and
the time to complete the test for the Cubbies Task.

Box & Blocks Cubbies
PWR DC PWR DC

TR1 4.00 4.62 4.94 7.70
TR2 3.33 4.29 12.29 11.09
TR3 3.33 5.45 7.26 9.45Time per block (s)

TR4 4.29 3.53 4.43 3.82

Hand activation (s) TR1 19.30 16.57 19.06 30.99
TR2 21.65 17.99 31.73 27.37
TR3 24.00 13.41 31.91 15.88
TR4 26.89 23.35 22.83 21.18

Wrist activation (s) TR1 1.91 0.00 12.83 2.82
TR2 5.47 0.00 18.17 6.29
TR3 0.62 0.00 7.60 3.86
TR4 1.21 0.00 2.87 0.00

Simultaneous activation (s) TR1 0.63 / 2.57 /
TR2 4.20 / 5.22 /
TR3 0.24 / 1.95 /
TR4 0.96 / 1.33 /

Table VI: Results of the BBT and Cubbies Task considering
the average time per block, hand activation, wrist activation
and simultaneous activation (for PWR) during the tests.

subjects managed to complete the task without activating the
wrist at all during the DC trial. Simultaneous activation of
hand and wrist was present in both tests. Fig 8 shows some
of the tasks performed during the subjective evaluation. These
tasks were chosen in order to explore the potentialities of the
method while controlling a hand-wrist prosthesis during daily
life activities. All of the subjects chose PWR over DC as the
preferred control method, also used to complete these tasks.
Finally, we collected free comments from the users:

TR1: “PWR felt faster and more lifelike; it felt more
like a natural hand and wrist”
TR2: “I never tried simultaneous control before but
I feel that was easier to plan movements”
TR3:“I like the PWR but I occasionally experience
unwanted co-activation of hand and wrist”
TR4: “I like the simultaneous control. I believe that
PWR will be very functional with more and more
practice”.

IV. DISCUSSION

A probability-weighted regression (PWR) algorithm was
used with sEMG sensors for the simultaneous and propor-
tional control of multiple degrees of freedom. The algorithm,
originally proposed in [23], had previously been compared to
other techniques, such as linear regression, showing excellent
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 8: Example of activities performed using the hand-wrist prosthesis: in (a-e) and (f-j) the subjects open and close a fridge
door using the wrist movements to follow the door’s trajectory. (k-o) show a bimanual task that involves grasping and opening
a water bottle to drink from it and closing it afterwards; wrist flexion is particularly important to ensure correct positioning of
the bottle with respect to the subject’s lips when drinking. (p-t) show another bimanual task in which the subject has to open
a toothpaste tube and then put some toothpaste on a toothbrush.

performance both in simultaneous control of up to 3-DOFs
and in isolating individual DOFs. Since the algorithm had
previously been used only with iEMG sensors, in the first
experiment, eight able-bodied subjects and four transradial
amputees performed a Fitts’ Law task in a virtual environment,
to evaluate the feasibility of using the PWR algorithm with
sEMG sensors. In the second experiment, the four amputee
subjects used the PWR algorithm to simultaneously and pro-
portionally control a transradial prosthesis composed by the
RIC wrist flexor and the SoftHand Pro. To validate the benefits
of the proposed approach, DC was used for comparison in both
virtual and physical experiment. Since all of the subjects had
high experience with DC, we believe that it constitutes a better
benchmark with respect to other more complicated algorithm.

Two configurations of the PWR algorithm were used during
the virtual experiment: in the 3-DoF control configuration the
algorithm was trained to control wrist pronation/supination,
wrist flexion/extension and hand open/close; in the 2-DOF
control configuration, only wrist flexion/extension and hand
open/close were used. In the 3-DoF control configurations,

able-bodied subjects obtained significantly better throughput
with PWR, but performed worse in terms of completion
rate and path efficiency. In the 2-DoF control configuration,
however, PWR outperformed DC in throughput and path
efficiency, and the only index for which DC obtained better
results was, not surprisingly, the path efficiency for 1-DoF
targets. DC control in fact allows movement only along one
direction at any instant in time, making it relatively easy to
obtain a straight trajectory when acquiring 1-DoF targets.

Also results of amputee subjects show lower performance
with the 3-DoFs control, and no significant difference between
the two controllers in the main outcome measures. While for
able-bodied subjects the R2 values for empirical Fitts’ law
regression were around 0.9 in most cases (indicating that Fitts’
law was appropriate), the R2 values obtained by the amputee
subjects during the PWR 3-DoFs control configuration trials
were relatively low. This result could be due to the low number
of amputee subjects, or could reflect lower control efficiency
in the 3-DoFs control configuration as a consequence of the
limb loss. However, the results of amputee subjects are signif-
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icantly better with the 2-DoFs control configuration of PWR,
improving completion rate, throughput and path efficiency
compare to DC. It is worth to notice that the use of sEMG
sensors could be a determinant factor. With respect to the
results obtained with iEMG [23], amputee subjects performed
much worse when using the 3-DoF control configuration with
sEMG; for instance, completion times were more than double
for all kinds of targets. This finding is hardly surprising,
since intramuscular recordings can acquire signals from deep
muscles and tend to be more reliable [41]. However, when
amputee subjects used the 2-DoF control configurations in
the virtual test, performance improved noticeably, with similar
levels of path efficiency and simultaneous activation with
respect to [23], for 1-DoF and 2-DoFs targets.

The results of the virtual test suggest to use only the 2-DoFs
control configuration for the physical experimental evaluation.
In the BBT, given the familiarity of the subjects with DC
control and since we anticipated no need for switching DoF
in this particular case, we expected DC to perform better
than PWR. However, no significant difference was found
between the two methods and the results obtained in the PWR
trials were not dissimilar from the results obtained by state-
of-art non-simultaneous algorithms for hand-wrist control in
[42] and [43]. Moreover, when using PWR, subjects adjusted
their wrist during the test to reach a more advantageous
posture (the maximum wrist activation time was of 5.47
sec), while when using DC no adjustments were made (see
Table VI), probably because adjusting the wrist would have
entailed an unacceptable loss of time if compared to the
foreseeable benefits. In the case of DC, the total absence of
activation of wrist motion could be partially compensated by
the hand compliance and adaptability, or by the introduction of
compensatory movements, allowing to keep the performance
satisfactory. Also in the results of the Cubbies Task, no
significant difference emerged between the two controllers in
terms of outcome measures. Similarly to BBT, subjects tended
to use the wrist more when using PWR (see Table VI). The
wrist activation reached the maximum time of 18.17 sec for
the PWR, while 6.29 sec were registered for the DC. Despite
the Cubbies Task had been specifically designed to provide an
assessment of subjects’ ability to control wrist flexion [40],
some of the subjects were able to complete the task with
minimal wrist adjustments or, in one case (TR4), no use of
wrist flexion/extension at all. One reason could be that subjects
preferred to exploit the grasp adaptability of the SHP instead
of reaching the optimal angle between the hand and the blocks,
but no qualitative evaluation of these aspects was conducted in
this study. Finally, all of the subjects preferred PWR over DC,
and during the subjective evaluation, they showed enthusiasm
for the potential use of simultaneous control during daily
life activities. One subject reported occasional unwanted co-
activation of wrist and hand; however, as one subject (TR4)
pointed out, simultaneous control of a prosthesis was new
to them and probably with more practice they could have
reached better mastery of the technique. Each experimental
session lasted a maximum of four hours and future work
should examine the learning of subjects over multiple sessions.

It is worth to notice that TMR surgery had probably an

important role in the results of both experimental sessions.
Subject TR4, the only participant who hadn’t undergone TMR
surgery, was the only subject not able to complete the virtual
experiment in the 3-DoFs control configuration. The same user
was the only participant able to perform better with DC in both
assessment of the physical test. Moreover, TR4 made little
or no adjustments of the wrist while using both controllers
and had little hand-wrist simultaneous activation in the case
of PWR. A possible explanation for this discrepancy of TR4
could be related to TMR surgery, but given the involvement
of only one not-TMR subject in the study, it is not possible
to generalize these findings.

In both experimental sessions, all subjects demonstrated
the ability to use PWR to control simultaneously 2-DoFs,
even after receiving little training and with results comparable
to DC. As shown in Table IV, the average percentage of
simultaneous activation for transradial amputees was higher
compare to able-bodied subjects during the virtual test in the
2-DoFs configuration. Also during the physical test (see Table
V) all subjects were exploring the simultaneous activation of
hand-wrist and especially in the case of the Cubbies Task,
specifically designed to promote a more active use of the
wrist to avoid the introduction of considerable compensatory
movements. The results of this preliminary investigation sug-
gest that despite the performance of the two controllers are
comparable, the PWR leads to a more active use of the wrist
and consequently to a more natural grasp, while with DC the
user tends to rely more on the hand itself and limits the use
of the wrist only where strictly needed.

A limitation of this study is that the level of simultaneous
control can be influenced by the choice of the prosthesis; future
work will investigate the use of the PWR method on different
combinations of DoFs and commercial hand prosthesis. In the
authors’ opinion, the grasp adaptability of the SHP could give
the subjects great versatility during the tasks, and relax the
constraints on the wrist configuration in some cases. Future
studies will analyze how this affects the use of the wrist,
along with improvement of algorithm robustness and a more
extensive physical test, in order to realize the transition to a
clinical solution.

V. CONCLUSION

This work explores the feasibility of using a PWR method
with sEMG sensors. The PWR method, which had previously
shown great performance in experiments with iEMG, was
tested by eight able-bodied and four transradial amputee sub-
jects in a virtual environment using sEMG, and performance
compared with the one of a DC. Results show that, while
using sEMG degraded performance for the 3-DoFs control, the
algorithm demonstrated excellent performance in the 2-DoFs
case. Then, the subjects with limb loss used PWR and DC to
control a 2-DoFs hand-wrist prosthesis consist of a soft hand
(the SoftHand Pro) and an active wrist (the RIC Wrist Flexor).
The PWR method allowed the subjects to perform multi-DoF
movements while maintaining the ability to isolate single DoFs
for precise movements. Both subjective and objective measures
indicate that PWR reached performance comparable to DC and
encourage future investigations.
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