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Abstract— The Electroencephalogram (EEG) can be consid-
ered as the output of a nonlinear system whose dynamics is
significantly affected by motor tasks. Nevertheless, computa-
tional approaches derived from the complex system theory has
not been fully exploited for characterising motor imagery tasks.
To this extent, in this study we investigated EEG complexity
changes throughout the following categories of imaginary motor
tasks of the upper limb: transitive (actions involving an object),
intransitive (meaningful gestures that do not include the use
of objects), and tool-mediated (actions using an object to
interact with another one). EEG irregularity was quantified
following the definition of Fuzzy Entropy, which has been
demonstrated to be a reliable quantifier of system complexity
with low dependence on data length. Experimental results
from paired statistical analyses revealed minor topographical
changes between EEG complexity associated with transitive
and tool-mediated tasks, whereas major significant differences
were shown between the intransitive actions vs. the others. Our
results suggest that EEG complexity level during motor imagery
tasks of the upper limb are strongly biased by the presence of
an object.

I. INTRODUCTION

Understanding the neural bases of upper limb motor
control is fundamental not only to give insights on the
underpinning brain dynamics organisation but also to con-
tribute to the assessment of pathological conditions (such as
stroke), and pave the path towards the design of effective
brain-machine interfaces, e.g., in rehabilitation. For such
a challenging investigation, it is possible to consider the
analysis of the electrical activity of the human cortex as
the output of a nonlinear dynamical system characterised by
complex dynamics [1].

Among others, entropy measures are among the most
commonly used quantifiers for a dynamical system com-
plexity. Entropy has been successfully applied to Elec-
troencephalographic (EEG) series for the characterisation
of brain dynamics in health and disease, including new-
borns [2], schizophrenia [3], drug abuse [4], epilepsy [5]
and Alzheimer’s diseases [6]. Particularly, increased EEG
complexity was found during different kinds of cognitive
tasks [7], [8], whereas a decreased EEG complexity has been
associated with working memory tasks [9]. Furthermore, a
direct relationship between the difficulty level of a cognitive
task and EEG signal complexity was reported [10].
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Starting from the definition of Approximate Entropy
(ApEn) [11], further refinements on its calculation have
been proposed. It is worthwhile mentioning the so-called
Sample Entropy (SampEn) [12], Permutation Entropy [13],
Conditional Entropy [14], and the more recent Fuzzy Entropy
(FuzzyEn) [15], [16], whose approach relies on the use of
fuzzy theory as embedded within the traditional SampEn
algorithm [15]. More specifically, it is based on fuzzy
membership functions, i.e., a family of exponential functions
providing (fuzzy) boundary for similarity measurements,
which are smooth compared with standard more rigid so-
lutions, e.g., the Heavyside function. Furthermore, FuzzyEn
was demonstrated to show better properties as continuity,
less biasing, broader possibility on parameter selections, and
robustness to noise in comparison with standard ApEn and
SampEn [17]. Such positive aspects come with a cost, since
FuzzyEn needs one additional parameter compared to ApEn
and SampEn. Indeed, it is a function not only of the length
of the time series, the embedding dimension, the similarity
tolerance, but also the gradient of the boundary of the fuzzy
membership function.

While previous studies have investigated EEG complexity
changes during visual, memory, and other cognitive tasks,
they failed to characterise brain complexity during motor
imagery tasks especially referring to the upper limb. To this
end, we studied changes in EEG complexity as estimated
through FuzzyEn measures among three different classes of
upper limb motor imagery tasks: transitive (actions involving
an object), intransitive (meaningful gestures that do not
include the use of objects), and tool-mediated (actions using
an object to interact with another one) [18]. These movement
categories were proven to be associated with distinct neu-
roanatomical correlates [19], [20], being especially useful for
the characterisation of apraxia, i.e., a syndrome characterised
by the subject’s inability to perform routine gestures [21].
Furthermore, distinct neural correlates of transitive, intransi-
tive, and tool-mediated actions have been recently identified
using functional magnetic resonance imaging analysis [22].

Here, we show experimental results gathered from thirty-
three healthy subjects enrolled in the frame of the European
project SoftPro (Synergy-based Open-source Foundations
and Technologies for Prosthetics and RehabilitatiOn), who
underwent EEG acquisitions during the imagination of motor
acts. Methodological details, as well as results and conclu-
sions follow below.
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Fig. 1: Logic scheme of the experimental protocol timeline
comprising 3 repetitions of 10 transitive, intransitive, and
tool-mediated movements. Each task included a first motor
imagery phase, an actual movement recording, and a final
resting state.

II. METHODS
A. Experimental dataset

Thirty-three healthy volunteers (26.6 years on average, 17
females, all right handed) were recruited among the students
of the University of Pisa. All experimental procedures were
approved by the local ethical committee. Each subject re-
peated 30 tasks related to imaginary and actual movements
of the right upper limb three times, therefore performing a
total of 90 tasks.

An operator was appointed to instruct the subject by
mimicking the action to be performed. Each task comprised
the following three phases (see Figure 1): first, the subject
was asked to imagine a specific upper limb movement for
3s; then, the subject was asked to actually perform the
movement. Finally, 3s resting state completed the task.

As mentioned in the Introduction, in this study we grouped
the different motor tasks into three different categories, de-
pending on the kind of interaction with objects: (i) transitive
tasks involving the use of an object. (e.g., reach and grasp
an apple, and mimic biting); (ii) intransitive for object-free
movements (e.g., point with the index to the in-front wall);
and (iii) tool-mediated for actions in which an object was
used to interact with another one (e.g., reach and grasp a
pen, write a line and put the pen in a pencil-case).

Throughout the experiment, 128-channels EEG signals
were continuously acquired using the Geodesic EEG Systems
300 (Electrical Geodesics, Inc.) with a sampling rate of
500 Hz, being synchronised with the optical registration
of the upper limb movements. Kinematic recordings were
performed using a commercial system for 3D motion track-
ing with active markers (Phase Space). Ten stereo-cameras
working at 480Hz tracked 3D position of markers fastened to
supports rigidly attached to upper limb links. An exemplary
experimental set-up is shown in Figure 2. In this study, the

Fig. 2: Exemplary experimental set-up. The subject is
equipped with high resolution EEG sensors and active optical
markers for motion tracking.

first 3s of imaginary movements of the upper limb were
retained for further analyses.

B. EEG analysis

The EEG processing chain comprised data filtering,
segmentation, artefact detection and removal, data re-
referencing, and bad channels interpolation. The EEG signals
were filtered by means of an 8th-order band-pass finite
impulse response filter with Butterworth approximation and
cut-off frequencies of 0.5Hz and 45 Hz. Afterwards, each
signal was segmented into time windows corresponding to
the start and end of each motor imagery sub-task of each
repetition. An independent component analysis (FastICA)
was applied in order to decompose the signals into indepen-
dent components and detect those related to eye-blinks, heart
and muscles electrical activity, head and arm movements by
visual inspection. The visual inspection was performed by
an expert researcher. The mean of all the EEG channels was
used to re-reference each signal from each EEG channel.
Finally, corrupted channels, defined as signals with clearly
artefacted dynamics including high-frequency noise, were
interpolated using spherical interpolation from the closest
non-corrupted channels. Most of the aforementioned process-
ing stages were implemented using the EEGLAB toolbox
routines for Matlab 2017b [23].

C. Fuzzy Entropy

In order to calculate the FuzzyEn measure of a N-point
time series u(i) : 1 < i < N, the series phase space has to
be reconstructed using a specific embedding dimension m.
The distance d;} between two vectors in the phase space is
defined as follows:
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where (i,7 =1: N —m,j # i), and E is the Expectation

operator. The similarity degree D], in the phase space, is

defined using the fuzzy membership function (d;}, n,7), as
shown in eq. 2:
Dit = p(di},n,r) = exp )" (2)
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where n, r are the gradient of the boundary and the width
of the exponential function, respectively.
Thus, the FuzzyEn of a time series with a sequence length
of N can be formulated as follows:
FE(m,n,r,N) = A}im [In¢™(n,r) —Ing™ (n,r)], (3)
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Of note, a non proper choice of the m and r values can
lead to information loss, or a sensible increasing in noise
sensibility [24], [25]. In this study, as per [25], the value of
m was chosen equal to 13 and r = p - SD, where p is the
chosen tolerance, in this case 0.2, and SD is the standard
deviation of the signal, as suggested by [24].
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D. Statistical analysis

Aiming at investigating differences in EEG complexity
between the three groups of movements (transitive, intran-
sitive, and tool-mediated), a multi-vector statistical test has
been applied for FuzzyEn samples gathered from each EEG
channel. In this preliminary study, we did not account for
intra-group differences, and considered the average value
of EEG FuzzyEn per subject among all motor imagery
tasks belonging to the same class. Since the distribution of
the FuzzyEn samples was non-Gaussian (p < 0.001 from
Kolmogorov-Smirnov test with null hypothesis of Normally
distributed samples), a Friedman non-parametric test for
paired data was applied on the three groups of movements.

Then, a post-hoc analysis using Wilcoxon signed tests
was performed to investigate paired differences between
movement classes. The significance threshold was de-
creased following a Bonferroni correction rule (ttpost—hoc =

- )
number—of—comparisons’*
III. RESULTS
A. Topographic Entropy Maps

Figure 3 shows the EEG FuzzyEn topographic maps
calculated for the 89 channels over the scalp. Values were
averaged across the estimates gathered from 33 subjects, con-
sistently grouped for each of the three classes of movements.

Specifically, the midline area of the cortex, in both cen-
tral and parietal regions, showed the minimum values of
FuzzyEn at each class of actions, while brain activity over
the lateral cortices were associated with a higher complexity.
The intransitive and transitive imaginary movements were
associated with higher entropy values over the right temporal
lobe, whereas tool-mediated imaginary movements were
associated with higher complexity over the right parietal
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Fig. 3: Topographic maps of EEG Fuzzy Entropy estimates
for each class of movement.
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Fig. 4: p-values topographic maps showing results from
a 3-class Friedman test (bottom topoplot), and 2-class
Bonferroni-corrected Wilcoxon non-parametric tests for in-
transitive (Intr), transitive (Tr), and tool-mediated (T.M.)
paired comparisons.

cortex. Furthermore, the tool-mediated class showed also a
significant complexity decrease over the left-frontal region.

B. Statistical Analyses

Results from a Friedman non-parametric test (see Figure
4) demonstrated that brain complex dynamics associated with
59 out of 89 channels significantly changes between the
three classes of movement (p-value < 0.05). Particularly,
left and right temporal cortices, as well as the dorso-parietal
and fronto-temporal cortices showed significant differences
with p < 0.05. A post-hoc analysis revealed few significant
differences between transitive and tool-mediated imaginary
tasks, especially localised over the right-temporal and left-
frontal regions. Conversely, several significant differences
were found in comparing EEG complexity between intran-
sitive vs. transitive, and intransitive vs. tool-mediated imagi-
nary tasks. The former comparison showed differences over
the dorso-parietal cortex, and occipital and anterior temporal
cortices, whereas the latter comparison showed differences
over the temporal and dorso-parietal cortices.



IV. DISCUSSION AND CONCLUSION

In this preliminary study, we investigated EEG complexity
changes during motor imaginary tasks. To this aim, thirty-
three young healthy subjects were asked to imagine different
upper limb movements. These movements were grouped into
three categories, namely transitive, intransitive, and tool-
mediated movements [18] according to the kind of interac-
tion with objects. For the estimation of the brain complexity
level, we applied a recently proposed definition of FuzzyEn,
which has been demonstrated to outperform other kinds of
entropy measures for applications involving short time series
corrupted by noise [17].

As motor imagery tasks affect motor cortex dynamics,
results showed a clear reduction of the cortical complexity
level over the central cortex and midline brain regions, as
expected, quite independently from the kind of action. On
the other hand, upper limb imaginary movements induced
a high EEG complexity level over the right tempo-parietal
lobe, i.e., the ipsilateral motor region, which is known to be
associated with the representation of the human hand in the
cortex [26].

Concerning the statistical comparison between the three
classes of action, results showed clear significant differences
between intransitive vs. transitive and tool-mediated tasks,
i.e., between motor imagery tasks involving vs. not involving
the use of an object through the upper limb. This result
suggests that the complexity of brain dynamics, in case of
imaginary movement of the upper limb, is more affected by
the (imaginary) presence of an object than by the specific
kind of interaction with the object itself.

Interestingly, some of the cortical regions highlighted as
significant by our statistical analyses were also identified
as crucial brain areas characterising transitive, intransitive,
and tool-mediated tasks in a former functional neuroimaging
study involving healthy volunteers [22]. Specifically, brain
activity from the left parietal lobe was proved to discriminate
between intransitive and tool-mediated, whereas the occip-
ital area contributed in discerning between intransitive and
transitive actions (see Figure 4 for a direct comparison with
[22]).

Future endeavours will be directed to exploiting this
knowledge towards novel and reliable brain-machine inter-
face applications driven by EEG complexity during motor
imagery tasks. More specifically, perspective robotics ap-
plications may exploit brain complexity levels to trigger
grasping actions and object interaction in neuroprosthetic
applications. Furthermore, differences and similarities in
brain complex dynamics between real and imaginary upper
limb movements, as well as related gender differences will
be investigated.
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