

multiD in-vitro models

"The stress of shear" Arti Ahluwalia University of Pisa

Why is oxygen the problem in vitro?

Typical concentrations

	Blood	Interstitial fluid
Oxygen	5-8 mM	<0.2 mM
Glucose	4-7 mM	2-7 mM

Estimating oxygen consumption rates in vivo

Consumption is highly dependent on organ/tissue function and total number of cells or cell density (usually Michaeles Menten type)

R=Consumption rate (moles/s)

R_c=specific consumption (moles.s⁻¹/cell)

R_{vol}= volumetric consumption rate (moles.m⁻³. s⁻¹)

R_{vol}=R_c*cell density

Michaelis Menten $R_{volt}(c) = V_{max} \cdot \frac{C}{K_m + C}$

Oxygen consumption rates

Organ/tissue	R	Rs (moles.s ⁻¹ /cell)
Whole body	260 mL O ₂ /min \rightarrow (5×10 ¹³ cells)	3×10 ⁻¹⁷
Liver	58 mL O ₂ /min \rightarrow (2×10 ¹¹ hepatocytes)	3×10 ⁻¹⁶
Cartilage		3×10 ⁻¹⁹
Bone marrow SC		1.5 ×10 ⁻¹⁷

INTERSTITIAL FLOW

1) interstitial flow is due to a concentration gradient 2) all tissues are permeated by interstitial flow 3) the flow is through a microporous medium

Swartz & Fleury, ARBE Vol. 9: 229-256.2007

Diffusion

Solute transport is due to the concentration gradient dc/dx. J is molecular flux rate across unit surface area (moles/m²/s). D is the diffusion constant (m²/s)

$$J = -D \frac{\partial c}{\partial x}, \quad \frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

FLOW and SHEAR

Only epithelial cells (skin, blood vessels, intestine) and the non adherent cells of the immune system and blood can support direct fluid flow.

The motion of fluid across a mobile or semi mobile surface gives rise to shear stress

The shear stress on a monolayer of cells in a flat chamber with flow Q is

$$\tau_{yx} = -\frac{6Q\mu}{wh^2}$$

Optimal shear stress in bioreactors

Cell	Shear	Flow rate	Ref
Human trabecular bone, 3D	5.10 ⁻⁵ Pa	0.01 mL/min	Porter. Journal of Biomechanics, 38, 543, 2005
Human osteosarcoma cells, 3D	0-0.021 Pa	Max. 25 mL/min	Laganà.Biomedical Microdevices, 14(1), 225, 2012
hBMSC, 3D	0.015 Pa	3 mL/min	Li. Tissue Eng. A, 15, 2773,2009
HepG2, 2D	0.14 Pa	0.0025 mL/min	Tanaka et al, Meas. Sci. Technol. 17 ,3167–3170, 2006
Human hepatocytes, 2D+ gel	5.10 ⁻⁵ Pa	0.25 mL/min	Vinci et al. Biotech J., 6(5):554, 2011
Rat hepatocytes, 2D+ fibroblasts	0.014 Pa	0.06 mL/min	Tilles et al, Biotech & Boeng. 73 (5),379 ,2001

Wall shear stress in blood vessels: 1-0.01 N/m²

For all other (non epithelial) tissues shear is much less (0.01-0.00001 N/m²), and is due to interstitial flow (few microL/min).

Adding flow

$$R_{vol} = \frac{V_{max}c}{K_m + c}.\delta$$

Example 2: Oxygen diffusion in perfused gel encapsulated islets in a bioreactor

The islets are encapsulated in a non porous gel Nutrients will only get to the cells by diffusion through the gel

Solved by coupling the Navier-Stokes equations for the fluidic domain with convection and diffusion

Islets in a bioreactor perfusion chamber, flow velocity of 4 mm/s.

The size limit is between 200 and 300 microns - larger constructs have to be porous

Flow through pores

Darcy –Brinkman equations: enable calculation of average flow rate and shear in porous media, correlating pore level flow effects to the bulk fluid motion. In Darcy's model, the average fluid velocity depends on the permeability and the pressure gradient , so the tissue is seen as a continuum with a certain resistance to flow rather than an architectured mesh.

Oxygen consumption

Simulation

Adding reaction, and diffusion, convection multiphysics. Sponge seeded with hepatocytes.

