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Introduction to Motion Planning

A fundamental need in robotics is to have algorithms that convert high-level

specifications of tasks from humans into low-level descriptions of how to move:

motion planning and trajectory planning.

A classical version of motion planning is sometimes referred to as the Piano

Mover’s Problem.
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Robot motion planning usually ignores dynamics and other differential

constraints and focuses primarily on the translations and rotations required to

move the piano.

Recent work, however, does consider other aspects, such as uncertainties,

differential constraints, modeling errors, and optimality.

Trajectory planning usually refers to the problem of taking the solution from a

robot motion planning algorithm and determining how to move along the

solution in a way that respects the mechanical limitations of the robot.
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In artificial intelligence, the terms planning and AI planning take on a more

discrete flavor. Instead of moving a piano through a continuous space, as in the

robot motion planning problem, the task might be to solve a puzzle, such as the

Rubik’s cube or a sliding-tile puzzle, or to achieve a task that is modeled

discretely, such as building a stack of blocks. Although such problems could be

modeled with continuous spaces, it seems natural to define a finite set of actions

that can be applied to a discrete set of states and to construct a solution by

giving the appropriate sequence of actions.
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Natural questions at this point are, What is a plan? How is a plan represented?

How is it computed? What is it supposed to achieve? How is its quality

evaluated? Who or what is going to use it?

Regarding the user of the plan, it clearly depends on the application. In most

applications, an algorithm executes the plan; however, the user could even be a

human. Imagine, for example, that the planning algorithm provides you with an

investment strategy.

Robot (Robotics), agent (AI), controller (Control Theory), decision-maker or

player (game theory) Planning algorithms: find a strategy for one or more

decision makers
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Motivational Examples and Applications

◮ Discrete puzzles, operations, and scheduling .

◮ An automotive assembly puzzle

◮ Sealing cracks in automotive assembly

◮ Making smart video game characters

◮ Virtual humans and humanoid robots

◮ Parking cars and trailers

◮ Flying Through the Air or in Space

◮ Designing better drugs
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A motion computed by a planning algorithm, for a digital actor to reach into a refrigerator 

A planning algorithm computes the motions of 100 
digital actors moving across terrain with obstacles 

An application of 
motion planning to 

the sealing process in 
automotive 

manufacturing 
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Geometric Models

The world generally contains two kinds of entities:

◮ Obstacles: Portions of the world that are “permanently” occupied, for

example, as in the walls of a building.

◮ Robots: Bodies that are modeled geometrically and are controllable via a

motion plan.

Both obstacles and robots will be considered as (closed) subsets of W . Let the

obstacle region O denote the set of all points in W that lie in one or more

obstacles; hence, O ⊂ W . The next step is to define a systematic way of

representing O that has great expressive power while being computationally

efficient.
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Canonical Planning Problem

The assumptions in the canonical planning problem are

◮ The robot is the unique object that is moving (this excludes moving

obstacles and other possible robots).

◮ The robot is a point moving in the space (this does not consider possible

nonolonomy constraints).

◮ Obstacles positions and orientations are known (not true in unstructured

environment).

◮ Obstacles must not be “touched” (this excludes robot-environment

interaction, manipulation)

Such assumptions lead to a purely geometrical problem.
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Representation issues:

◮ Can it be obtained automatically or with little processing?

◮ What is the complexity of the representation?

◮ Can collision queries be efficiently resolved?

◮ Can a solid or surface be easily inferred?

Idea: systematically constructing representations of obstacles and robots using a

collection of primitives.

Both obstacles and robots will be considered as (closed) subsets of W . Let the

obstacle region O denote the set of all points in W that lie in one or more

obstacles; hence, O ⊂ W . The next step is to define a systematic way of

representing O that has great expressive power while being computationally

efficient.
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Regarding obstacles, consider primitives of the form:

H = {(x, y, z) ∈ W|f(x, y, z) ≤ 0}

which is a half-space is f is linear.

Now let f be any polynomial, such as f(x, y) = x2 + y2 − 1. Obstacles can be

formed from finite intersections or unions:

O = H1 ∩H2 ∩ · · · ∩Hn, O = H1 ∪H2 ∪ · · · ∪Hn.

O could then become any semi-algebraic set.

Notions of inside and outside are clear and furthermore collision checking is

performed in time that is linear in the number of primitives.
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Regarding the robot if it is a rigid body, the robot transformations are 2D

Rigid-body transformations:

T =









cos θ − sin θ xt

sin θ cos θ yt

0 0 1









3D Rigid-body transformations: RPY and translation

T =















cosα cos β cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ xt

sinα cos β sinα sin β sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ yt

− sinβ cos β sin γ cos β cos γ zt

0 0 0 1














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The C-Space

The configurations space is the set of all possible transformations of the robot. It

is an important abstraction that allows to use the same motion planning

algorithm to problem that differ in geometry and kinematics.

◮ Path planning becomes a search on a space of transformations

◮ What does this space look like?

◮ How should it be represented?

◮ What alternative representations are allowed and how do they affect

performance?

Three views of the configuration space:

◮ As a topological manifold

◮ As a metric space

◮ As a differentiable manifold

Number 3 is too complicated! There is no calculus in basic path planning
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X topological set if

1. The union of any number of open sets is an open set.

2. The intersection of a finite number of open sets is an open set.

3. Both X and ∅ are open sets.

A set C ⊆ X is closed if and only if X \ C is open. Many subsets of X could be

neither open nor closed.

We will only consider spaces of the form C ⊆ Rn. Rn comes equipped with

standard open sets: A set O is open if every x ∈ O is contained in a ball that is

contained in O.
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Let X and Y be any topological spaces. A function f : X → Y is called

continuous if for any open set O ⊆ Y , the preimage f−1(O) ⊆ X is an open set.

A bijection f : X → Y is called a homeomorphism if both f and f−1 are

continuous. If such f exists, then X and Y are homeomorphic.
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Homeomorphic and non homeomorphic subspaces of R2.

R

These are all homeomorphic subspaces of .
———————————————————————————————————–

———————————————————————————————————–
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Manifolds

LetM⊆ Rm be any set that becomes a topological space using the subset

topology.

M is called a manifold if for every x ∈ M, an open set O ⊂M exists such that

1. x ∈ O;

2. O is homeomorphic to Rn;

3. n is fixed for all x ∈M.

It “feels like” Rn around every x ∈ M.

Subspaces of :

Yes

NoYes

Yes

Yes No

Yes No
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Plane, R2 Cylinder, R× S1

Möbius band Torus

Klein bottle Projective plane, RP2

Two-sphere, S2 Double torus
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Examples of configuration space

2D rigid body: Transformation is given by T2 ∈ SE(2) hence in R9.

3D rigid body: Transformation is given by T3 ∈ SE(3) hence in R16.

However rotations and translations can be chosen independently. Translations

are in Rn while rotation suffer of the periodicity of trigonometric functions, e.g.

For 2D bodies θ ∈ [0, 2π[ and the set of rotations is S1.

For a mobile polygonal robot in W = R2 the robot is described by the position of

one of its points (e.g., COM, vertex) and the polygon orientation with respect to

a fixed frame. Hence C = R2 × SO(2) that has dimension 3.

For a mobile polygonal robot in W = R3 the configuration space is

C = R3 × SO(3) that has dimension 6.
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For a planar manipulator with (fixed base) two links and two rotational joints

the configuration space is a subset of (R2 × SO(2))2. The dimension of the

configuration space is 3n− 2n = n since each joint constrains the motion of the

following link (2 constraints per joint). Configuration variables commonly used

are q = (q1, q2) with q1, q2 ∈ [0, 2π). However, such representation is valid only

locally (q1 and q2 close in W far apart in Q). Hence Q should be represented by

SO(2)× SO(2).
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C-space for a unicycle with configurations (x, y, θ).
Or a square box with the top and bottom identified:
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C-Space Obstacles

Given world W , a closed obstacle region O ⊂ W , closed robot A, and

configuration space C. Let A(q) ⊂ W denote the placement of the robot into

configuration q. The obstacle region Cobs in C is

Cobs = {q ∈ C|A(q) ∩ O 6= ∅},

which is a closed set.

The free space Cfree is an open subset of C:

Cfree = C \ Cobs

We want to keep the configuration in Cfree at all times!

Consider Cobs for the case of translation only. The Minkowski sum of two sets is

defined as

X ⊕ Y = {x+ y ∈ Rn|x ∈ Xand y ∈ Y }
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The Minkowski difference of two sets is defined as

X ⊖ Y = {x− y ∈ Rn|x ∈ Xand y ∈ Y }
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2D translation only Cobs

O
A

Cobs O

β1

β2

α1

α3

β4

β3

α2

β4

β1β3

β2

α1

α2

α3

Inward and outward normals Sorted around S1



L. Pallottino, Sistemi Robotici Distribuiti - Versione del 28 Maggio 2015 149

2D translation and rotation Cobs ⇒ 3D subset of R2 × S1.

θ

x

y
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2D contact types:

A O OA

Type EV Type VE

Equation polynomials in xt, yt, cos θ, sin θ arise.
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3D contact types:

O
A

A
O

A

O

Type FV Type VF Type EE

Equation polynomials in xt, yt, cos θ, sin θ arise.

For two-links C = S1 × S1
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Basic motion planning problem

Given robot A and obstacle O models, C-space C, and qI , qG ∈ Cfree.

Given robot and obstacle models, C-space , and

Cobs

qI

qG

Cfree

Cobs

Cobs

Automatically compute a path τ : [0, 1]→ Cfree so that τ(0) = qI and τ(1) = qG.
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There are three main philosophies for addressing the motion planning problem:

◮ Combinatorial (or roadmap) planning (exact planning)

◮ Sampling-based planning (probabilistic planning, randomized planning)

◮ Artificial potential fields methods

All work in the configuration space and most of the method require preliminary

(expensive!) computation of Cobs and Cfree. The computation of Cobs can be

exact (algebraic model needed) or approximate (grid decomposition).
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A planning algorithm may be:

◮ Complete: If a solution exists, it finds one; otherwise, it reports failure.

◮ Semi-complete: If a solution exists, it finds one; otherwise, it may run

forever.

◮ Resolution complete: If a solution exists, it finds one; otherwise, it

terminates and reports that no solution within a specified resolution exists.

◮ Probabilistically complete: If a solution exists, the probability that it

will be found tends to one as the number of iterations tends to infinity.

First for Combinatorial approach, the others for the sampling approach
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Combinatorial Motion Planning (∼ 1980)

There are generally two good reasons to study combinatorial approaches to

motion planning:

1. For many special classes, elegant and efficient algorithms can be developed.

These algorithms are complete, do not depend on approximation, and can

offer much better performance than other planning methods.

2. It is both interesting and satisfying to know that there are complete

algorithms for an extremely broad class of motion planning problems. Thus,

even if the class of interest does not have some special limiting assumptions,

there still exist general-purpose tools and algorithms that can solve it. These

algorithms also provide theoretical upper bounds on the time needed to solve

motion planning problems.
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Combinatorial approaches construct a finite data structure (named Roadmap)

that exactly encodes the planning problem.

Some of the algorithms first construct a cell decomposition of Cfree from which

the roadmap is consequently derived (cell decomposition methods). Other

methods directly construct a roadmap without the consideration of cells

(maximum clearence roadmap).

Both methods typologies produce a topological graph G:

- Each vertex is a configuration q ∈ Cfree
- Each edge is a path τ : [0, 1]→ Cfree for which τ(0) and τ(1) are vertices.
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A roadmap is a topological graph G with two properties:

1. Accessibility: From anywhere in Cfree it is trivial to compute a path that

reaches at least one point along any edge in G.

2. Connectivity-preserving: If there exists a path through Cfree from qI to

qG, then there must also exist one that travels through G.

We consider polygonal obstacle regions where clever data structures can be used

to encode vertices, edges, regions (e.g. Doubly connected edge list)

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 9 / 72

Figura 16: Left: Polygonal obstacles, Right: Example of roadmap
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Cell Decomposition Methods

Given Cfree cells are obtained with the following properties:

◮ Planning in a cell is trivial

◮ Adjacency information can be extracted easily to build the roadmap

◮ Exists an efficient way to determine the cells containing qI and qG.

Once the roadmap has been constructed a graph path computation is performed

(see chapter on Graph Optimization).

Cell decomposition methods are divided in Approximate and Exact Cell

Decomposition.
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Approximate Cell Decomposition

Idea: Decompose the space into cells with predefined shapes so that any path

inside a cell is obstacle free. The union of such cells is a lower approximation of

Cfree.

Define a discrete grid in C-Space and mark any cell of the grid that intersects

Cobs as blocked. Find a path through remaining cells by using algorithms for

discrete optimization.
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As described, the method can be incomplete:

Indeed, it cannot find a path, in the case in figure, even though one path exists.

A possible solution is to distinguish between

– Cells that are entirely contained in Cobs (FULL) and

– Cells that partially intersect Cobs (MIXED)

Try to find a path using the current set of cells. If no path is found subdivide the

MIXED cells and try again with the new set of cells.
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Exact Cell Decomposition

Idea: Any straight path within one cell is guaranteed to not intersect any

obstacle. The difference with respect to approximate cell decomposition is that

the union of cell is exactly Cfree.

Trapezoidal decomposition

The construction is based on the sweep vertical line method that corresponds to

a method to span the entire space with a vertical line and select lines that pass

through vertex of obstacles or environment. Then sample point for each cell and

for segments of the cells borders are considered as nodes of the graph, straight

segments connecting nodes of cells with the nodes of the cells borders are the

edges.
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The resulting roadmap G:
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Triangulation decomposition

Another method is to triangulate Cfree by connecting vertices of obstacles with

vertices of other obstacles or vertices of the environment that are in line of sight.

Center of triangles and midpoints of triangle edges are the nodes of the roadmap.

The straight arcs from the centers to the borders are the edges of the roadmap.

Compute triangulation: O(n2) time naive, O(n) optimal, O(n logn) a good

tradeoff. Build easy roadmap from the triangulation:

More complex decompositions may be considered. Some are more suitable for

generalization to higher dimensional spaces.
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Direct roadmap construction

In case of requests such as the computation of minimum length paths or of paths

that maximize the distance from obstacles, the roadmap can be constructed

without subdividing the configuration space into cells.

In case of shortest paths requirements the shortest-path roadmaps can be

constructed based on the Visibility graph concept.

Visibility Graphs

In case of obstacles absence, the shortest path from qS to qG is the straight line.

On the other hand, in presence of obstacles, it is a sequence of straight lines.
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The path is obtained in the closure of Cfree and hence the robot can touch the

obstacles.

We consider as nodes in the roadmap the

reflex vertices that are vertices of the

polygons for which the interior angle (in

Cfree) is greater than π
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Edges of the roadmap are the arcs bet-

ween two consecutive reflex vertices and

the arcs corresponding to bitangent lines

between (mutually visible) reflex vertices

To solve a query the initial and final con-

figurations qS and qG are connected to

visible vertices
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The optimal path is then computed on

the roadmap
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Known also as reduced visibility graph

The shortest-path roadmap, G, is constructed as follows: a reflex vertex is a

polygon vertex for which the interior angle (in Cfree) is greater than π. The

vertices of G are the reflex vertices. Edges of G are formed from two different

sources:

Consecutive reflex vertices: If two reflex vertices are the endpoints of an edge of

Cobs, then an edge between them is made in G.

Bitangent edges: If a bitangent line can be drawn through a pair of reflex

vertices, then a corresponding edge is made in G. A bitangent line, is a line that

is incident to two reflex vertices and does not poke into the interior of Cobs at any

of these vertices. Furthermore, these vertices must be mutually visible from each

other.
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We obtain shortest path but with this choice we try to stay as close as possible to

obstacles. Hence, any error in the execution of the path may lead to a collision.

Moreover, the approach is too complicated in higher dimensional spaces.

From the implementation point of view a radial sweep can be performed for the

edges computation.
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Maximum–clearance roadmaps

We may be interested in moving along not-shortest paths but along paths that

are far from obstacles. This can be done through the construction of the

Maximum–clearance roadmaps that try to keep the robot as far as possible from

obstacles and environment limits. Other names: generalized Voronoi diagrams or

retraction method.

Peculiarity: each point of the roadmap (vertices and points on edges) are

equidistant from two points of the boundary of the environment or of obstacles.

Retraction: the set S of points on the roadmap is the deformation retract of

X = Cfree (in case of topological spaces): let h : X × [0, 1]→ X such that

◮ h(x, 0) = x ∀x ∈ X,

◮ h(x, 1) = g(x) ∀x ∈ X where g : X → S is continuous,

◮ h(s, t) = s ∀s ∈ S, t ∈ [0, 1].
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Voronoi Diagram: The set of line segments separating the regions corresponding

to different colors.

◮ Line segment: points equidistant from 2 data points;

◮ Vertices: points equidistant from more than 2 data points.

http://www.cs.cornell.edu/Info/People/chew/Delaunay.html
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In case of polygonal Cobs and environment edges are straight line segments or

arcs of quadratic curves.

Straight edges: Points equidistant from 2 lines

Curved edges: Points equidistant from one corner and one line
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Sample-Based Motion Planning

Idea: Avoid explicit construction of Cobs, conduct a search that prob the C space

with a sampling scheme with a collision detection module as a “black box”.

With this approach planning algorithms are independent of the particular

geometric models.

Distances in C-space

(X , ρ) is a metric space if X is a topological space and ρ : X × X → R is such

that ∀a, b, c ∈ X

1. ρ(a, b) ≥ 0 non-negativity,

2. ρ(a, b) = 0⇔ a = b reflexivity,

3. ρ(a, b) = ρ(b, a) symmetry,

4. ρ(a, b) + ρ(b, c) ≥ ρ(a, c) triangle inequality
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Lp metrics in Rn: ρ(x, y) = (
∑n

i=1 |xi − yi|
p
)

1
p .

L2 Euclidean metric, L1 Manhattan metric (in R2 length of a path moving along

axis-aligned grid), L∞(x, y) = maxi=1, ..., n |xi − yi|.

Lp norms induced by the Lp metrics:

‖x‖p = (
∑n

i=1 ‖xi‖p)
1
p

With the norms: ρ(x, y) = ‖x− y‖ that is convenient for computations.
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Sampling Theory

The C-space is uncountably infinite while there is a countable number of samples.

The performance of algorithms based on sampling depends on how the C-space is

sampled and on the sequence with which samples are chosen (the algorithm will

end after a finite number of samples).

The gap between the infinite sampling sequence and the uncountable C-space

leads to the concept of denseness.

Given U, V ⊂ X topological spaces, U is dense in V if the closure of U is V , i.e.

cl(U) = U ∪ ∂U = V .

For example (0, 1) is dense in [0, 1], Q is dense in R.
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The goal is to have a dense sequence of samples in C-space, but dense in

probability!

For example, consider C = [0, 1], let I = [a, b] =⊂ C with b− a = l. Consider a

sequence of k independent random samples, the probability that no one of the

samples falls into I is p = (1− l)k. When the number of samples tends to infinity

the probability p tends to 0. Hence, the probability that any nonzero length

interval contains no point converges to zero. In other words, the infinite sequence

of samples is dense in C with probability 1.
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Random Samples

The goal is to generate uniform random samples, i.e. to determine a uniform

probability density function on the C-space. Random sampling is the easiest of all

sampling methods for the C-space because it often consists of Cartesian product.

If a uniform sample is taken from X1 and X2 the uniformity is obtained also for

X1 ×X2. Hence, for 5 robots with translational movements in [0, 1]2 we have

C = [0, 1]10. Given 10 points uniformly at random form [0, 1] we may rearrange

them in a 10D vector obtaining a uniform distribution over C.

Low-dispersion Sampling

In case of a grid, the resolution can be increased by decreasing the step size of

each axis. A possible extension of this concept is the criterion of dispersion:

Definition 1. In a metric space (X , ρ) the dispersion of a finite set P of

samples is

δ(P ) = sup
x∈X
{min
p∈P
{ρ(x, p)}}
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L2 and L∞ dispersions:

(a) 196 pseudorandom samples (b) 196 pseudorandom samples
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Collision Detection

Once samples have been obtained it is necessary to check if a configuration is in

collision. Hence, a collision detection algorithm is crucial since it will also take

the largest amount of time in the planning algorithm. Even though it is often

treated as a black box, it is important to study its inner workings to understand

the information it provides and its associated computational cost.

For 2D convex robots and convex obstacles linear-time collision detection

algorithm can be determined.

Whenever we are able to determine a model of Cobs we can consider a logical

predicate φ : C → T, F with T = true and F = false, where q ∈ Cobs ⇒ φ(q) = T

and q /∈ Cobs ⇒ φ(q) = F . The logical predicate may be easily implemented

based on the available model. However, it is not sufficient in some cases, for

example the logical predicate is a boolean function and it does not provide any

information on how far the robot is from the obstacle.
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In this case, a distance function is preferred. Let d : C → [0, +∞) be the distance

between q and the closest point in O.

For E, F closed sets of Rn ρ(E,F ) = mine∈E, f∈F ‖e− f‖.

Consider the case of a robot with m links A1, . . . , Am and an obstacle set O

with k connected components. The detection of collisions is difficult and can be

faced with a two-phase approach. The broad phase: the idea is to avoid

computation for bodies that are far away from each other. A bounding–box can

be placed around the objects and overlapping between bounding–boxes may be

easily checked. The narrow phase: individual pairs of probably closer bodies are

checked.
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A hierarchical approach can be used:

consider two complicated non–convex sets E, F to be checked for collisions.

They can be part of the same robots or of a robot and an obstacles. They are

subsets of R2 or R3, defined using any kind of geometric primitives, such as

triangles. The idea is to decompose a body into a set of bounding boxes. Such

boxes may be as tight as possible around the part of the body or may be as

simple as possible so that intersection test is easy.

regions has a distance greater than the smallest distance computed so far, t
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Consider a tree TE and TF for each set E and F a vertex corresponds to a region

X of points of E (or F ) in a bounding-box. Two child-vertices are constructed

by defining two smaller subset of X with associated bounding-boxes whose union

cover X.

If root vertices e0 and f0, of TE and TF respectively, do not overlap no collision

occurs between E and F . If they overlap we consider the children e1,1 and e1,2 of

the root e0 of TE and we check the overlapping between their bounding-boxes

and the bounding-box of the root f0 of TF . In case of overlapping (e.g. e12 with

f0) we test e1,2 with the children f1,1 and f1,2. The procedure is iterated.

For each non overlapping node ei,j or fi,j the region is not further explored by
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creating new children nodes and hence the branch is cut.
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Collision detection along paths

Motion planning algorithm will also require that an entire path is in Cfree.

Hence, given a parametrization of the path τ : [0, 1]→ C we must be able to

check whether τ([0, 1]) ⊂ Cfree.

A possible solution is to determine a resolution ∆q in Cfree that induce a step

size t2− t1 where t1, t2 ∈ [0, 1] and ρ(τ(t1), τ(t2)) ≤ ∆q where ρ is a metric on C.

If ∆q is too small we incur in high computational times. On the other hand, if it

is too large we may miss collisions.

Choosing a resolution in [0, 1] may lead to a non efficient resolution in C and to a

collision missing.
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Incremental Sampling and Searching

Such methods are similar to those shown in the chapter on discrete optimization.

The main difference is that in those algorithm edges were representing control

action while incremental sampling and searching algorithm construct a

topological graph where edges are path segments.

The main idea behind such algorithm may be synthetized as follows:

1. Initialization: consider a graph G(V, E) with E = ∅ and V contains at

least qI and qG (and possibly other points in Cfree).

2. Vertex Selection Method (VSM): Choose vertex qcur ∈ V to expand the

graph.

3. Local Planning Method (LPM): For some qnew ∈ Cfree try to construct

a path τ : [0, 1]→ Cfree with τ(0) = qcur and τ(1) = qnew. If a collision

occurs along τ go to step 2.

4. Insert edges and nodes to the graph: Insert τ in E and if not already in

V insert qnew in V .

5. Check for a solution: Check if in G there is the desired path.

6. Iterate: Iterate unitl a solution is found or termination conditions are met.
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Algorithms usually differ on implementations of VSM (similar to priority queue)

and LPM.

Similarily to algorithms for graph explorations, unidirectional (single-tree),

bidirectional (two-trees) or multi-directional (more than two trees) methods can

be used. Bidirectional and multi-directional methods are useful in case of

complex spaces with “traps” but are more difficult to manage.

qI
qG

qI qG

(a) (b)

qG
qI

qG
qI

(c) (d)

For bidirectional trees we can alternate between trees when selecting vertices
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while, in case of more than two trees, heuristics on which pair of trees should be

selected for connection must be used.

Re-adaptation of grid search algorithms

Grid search algorithm can be used with the proposed sample and searching

scheme. The basic idea is to discretize each dimension of the C–space obtaining

k-neighbourhood with k ≥ 1. The algorithm start searching the closest

1-neighbourhood (or k-neighbourhood) that are in Cfree.

For example:

N2(q) = {q ±∆qi ±∆qj |1 ≤ i, j ≤ n, i 6= j} ∪N1(q).

A candidate vertex is extracted from the k-neighbourhood of qcur, it is checked

for collision. Then a path on the grid from qcur is computed and tested for

collision. The grid graph is computed on the fly.
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If a solution is not found there are two possible alternatives: increase resolution

by tuning parameters (how? how much? how often interleave between search

and sampling?) renounce to the grid and work on the continuous space.
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Rapidly Exploring Dense Tree

Idea: no parameter tuning but incrementally construct a search tree that

gradually improves the resolution. The tree will densely cover the space in the

limit (nodes and edges arbitrarily close to any configuration of the space).

At the base of such algorithm there is a dense sequence of samples α(i). If the

sequence is random the tree is called Rapidly exploring Random Tree (RRT)

while in general is called Rapidly exploring Dense Tree (RDT).

Consider first only the exploration of the tree in a obstacle free C–space. An

RTD is a topological graph G = (V, E). With S ⊂ Cfree we denote the set of all

points reached by G (swath of the graph):

S =
⋃

e∈E

e([0, 1])

Scheme of RDT Algorithm with no obstacle ,

1 G.init(q0)
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← NEAREST(S(G), α(i));
5 G.add edge(qn, α(i));
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45 iterations 2345 iterations
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Scheme of RDT Algorithm ,

1 G.init(q0)
2 for i = 1 to k do
3 qn ← NEAREST(S(G), α(i));
4 qs ← STOPPING-CONFIGURATION(qn, α(i));
5 if qs 6= qn then
6 G.add vertex(qs);
7 G.add edge(qn, qs);

Two possible approaches for NEAREST computation: exact and approximation.

Exact approaches may be very difficult in case on paths that are not segments

(e.g. in SO(3)), while approximate approaches require a resolution parameter.
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Planning on a RDT

For a single-tree search the idea is to grow a tree from qI and periodically (k

iterations) check is qG is reachable in Cfree. This can be done by considering qG

as the sampled node.

In case of a bidirectional search two RDT are grown from qI and qG and the

growth should be balanced between the two. After a given number of iteration a

node added in a tree is used as a random sample for the other one. When the

cardinality of a tree is larger than the other the procedure is swapped between

the two trees. The cardinality of a tree can be computed in terms of number of

nodes or total length of all arcs.



L. Pallottino, Sistemi Robotici Distribuiti - Versione del 28 Maggio 2015 194

More formally, we first introduce the following concepts

Let r ∈ R+, n, d ∈ N, the Random r-Disc Graph in d dimensions Gdisc(n, r) is a

graph whose n vertices {X1, . . . , Xn} are independent and uniformly distributed

random variables in (0, 1)d and such that (Xi, Xj) with i, j ∈ {1, . . . , n}, i 6= j

is an edge if and only if ‖Xi −Xj‖ < r.

Theorem (Penrose 2003): Connectivity of random r-Graphs

Given a random r-disc Graph in d dimensions, Gdisc(n, r), it holds

lim
n→+∞

P ({Gdisc(n, r) is conncected}) =







1 if ζdr
d > log(n)/n

0 if ζdr
d < log(n)/n

where ζd is the volume of the unit ball in d dimensions.

Let n, d, k ∈ N, the Random k-Nearest Neighbour Graph in d dimension

Gnear(n, k) is a graph whose n vertices {X1, . . . , Xn} are independent and

uniformly distributed random variables in (0, 1)d and such that (Xi, Xj) with

i 6= j is an edge if and only if Xj is among the k nearest neighbours of Xi or

viceversa.
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SAMPLING: A sample procedure is a map that provides a sequence of points

in C such that the samples are independent and identically distributed. It may

be convenient to consider a map (SampleFree in the following) that provides a

subsequence of points in Cfree.

NEAREST NEIGHBOUR: is a map that given graph G = (V,E) and a point

x ∈ C provides the closest vertex v = Nearest(G, x) to x for a given distance

function. For example, v = argminv̄∈V ‖x− v̄‖. The function

k −Nearest(G, x, k) = {v1, . . . , vk} provides the k nearest vertex of V to x.

NEAREST VERTICES: is a map that given graph G = (V,E) a point x ∈ C

and a parameter r ∈ R provides the subset of vertices in V that are contained in

a ball of radius r centered in x:

Near(G, x, r) = {v ∈ V |v ∈ Bx,r}

where the same distance of Nearest function is used.
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STEERING: given two configurations x, y ∈ C and a value η > 0 the map

provides the point closer to y than x is:

Steer(x, y) = argminz∈Bx, η
‖z − y‖

COLLISION TEST: given to configurations x, x′ ∈ C the function

ObstacleFree(x, x′) returns True if the line segment between x and x′ lies in

Cfree, False otherwise.
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Probabilistic RoadMaps (PRM)

Consider the case of multiple queries for the same robot and environment. In

this case, it worth spending more time in sampling than searching in order to

preprocess the models to better handling future queries. Hence, a roadmap is

built based on Probabilistic Roadmap Methods (or Sampling-based Roadmaps).

The basic method consists in the preprocessing phase and the query phase.

The idea of the preprocessing phase is to build a graph by attempting

connections among n randomly sampled points in C. The graph should be easily

accessible from any point in Cfree

Scheme of PRM Preprocessing ,

1 V ← ∅; E ← ∅;
2 for i = 0, . . . , n do
3 qrand ← SampleFree(ωi)
4 U ← Near(G, qrand, r)
5 V ← V ∪ {qrand}
6 for each u ∈ U (in order of increasing ‖u− qrand‖) do
7 if qrand and u are not in the same connected component of G then
8 if ObstacleFree(qrand, u) then E ← E ∪ {(qrand, u), (u, qrand)}
9 return G

For construction the roadmap is a forest.
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α(i)

Cobs

Cobs

The query phase can be processed only when the tree is sufficiently complete to

cover the whole space. Indeed, given qI and qG they can be used as samples and

tried to be connected to G.

If connection is found a classical graph path search is conducted. Otherwise, with

the obtained resolution (given by the sampling dispersion) no solution is found.
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Visibility Roadmap

Another possible approach is to consider a smaller representation of the roadmap

that is based on the visibility concept. This approach has larger computational

costs but suits well for multi-query cases.

V (q)

q

(a) Visibility definition (b) Visibility roadmap

A vertex q ∈ V of graph G is a Guard if no other guards lay on the visibility

region V (q) of q, i.e. ∃q̃ guard such that q̃ ∈ V (q). q ∈ V of graph G is a

Connector if there are at least two different guards in its visibility region, i.e.

∃q̃1, q̃2 guards such that q ∈ V (q̃1) ∩ V (q̃2).

The neighbourhood function returns the entire set V and hence each sample α(i)

tries to connect with all vertices. However, if α(i) cannot be connected to any

guards (i.e., α(i) /∈ V (qG) ∀qG guards), α(i) becomes a guard and it is inserted in
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G. If α(i) can be connected to two guards of two different connected component

of G, α(i) and the two edges towards the guards are inserted in G. Otherwise,

α(i) is discarded.

A positive aspect of this approach is that there is a dramatic reduction in the

number of vertices thanks to the possible discard of samples. Notice that the

algorithm is probabilistic complete if random samples are used and is resolution

complete if sample are dense even though samples are discarded.

A drawback is that better guards can came up during tree construction but are

not taken into account.
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Rapidly Exploring Random Tree (RRT)

Consider the case of single query, the RRT scheme is as follows

Scheme of RRT ,

1 V ← {qinit}; E ← ∅;
2 for i = 0, . . . , n do
3 qrand ← SampleFree(ωi)
4 qnearest ← Nearest(G, qrand)
5 qnew ← Steer(qnearest, qrand)
6 if ObstacleFree(qnearest, qnew) then
7 V ← V ∪ {qnew}; E ← E ∪ {(qnearest, qnew)}
8 return G

Figures from Prof. Karaman website: http://sertac.scripts.mit.edu/web/?p=502
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Optimality in sample based methods

In case we are interest in finding optimal paths, a cost function must be

introduced and the RRT and PRM methods can be modified accordingly to

provide optimal paths. Since the methods are sample based the optimality is in

probability (almost sure convergence to optimal solutions). One of the main

differences between RRT* (PRM*) and RRT (PRM) is the use of a varying value

of r in the function Near. The idea is to chose a value that decreases for

increasing number of vertices in the graph guaranteeing that a neighbour vertex

exists with high probability.

Optimal Probabilistic RoadMap

Scheme of PRM* Preprocessing ,

1 V ← {qinit} ∪ {SampleFree(ωj)|j = 1, . . . , n}; E ← ∅;
2 for each v ∈ V do
3 U ← Near(G, qrand, r(n)) \ {v}
4 for each u ∈ U do
5 if ObstacleFree(v, u) then E ← E ∪ {(v, u), (u, v)}
6 return G

where r(n) = γPRM

(

log(n)
n

)1/d

e γPRM > γ∗

PRM = 2(1 + 1/d)1/d(µ(Cfree)/ζd)
1/d,

µ(Cfree) is the volume of Cfree. The connection radius decay with n and the average

number of connection attempted is proportional to log(n).
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RRT*

The main concept of RRT* is the rewiring of paths that are not optimal when a

new node is inserted. Hence, arcs are added and removed from the tree based on

the cost of the paths.

Let Line(q1, q2) : [0, s]→ C be the straight line between the configurations q1

and q2. Let denote with Parent(v) the unique vertex u such that (u, v) ∈ E.

Cost : V → R+ maps a vertex v in the cost of the unique path from the root

vertex v0 to v. We suppose Cost(v) = Cost(Parent(v)) + c(Line(Parent(v), v))

and Cost(v0) = 0.

Let r(|V |) = min{γRRT∗(log(|V |)/|V |)1/d, η} with

γRRT∗ ≥ 2(1 + 1/d)1/d(µ(Cfree)/ζd)1/d, µ(Cfree) is the volume of Cfree.
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Scheme of RRT* ,

1 V ← {qinit}; E ← ∅;
2 for i = 0, . . . , n do

3 qrand ← SampleFree(ωi)
4 qnearest ← Nearest(G, qrand)
5 qnew ← Steer(qnearest, qrand) (depends on value η)
6 if ObstacleFree(qnearest, qnew) then
7 Qnear ← Near(G, qnew, r(|V |))
8 V ← V ∪ {qnew}; E ← E ∪ {(qnearest, qnew)}
9 qmin ← qnearest; cmin ← Cost(qnearest) + c(Line(qnearest, qnew))

10 for each qnear ∈ Qnear do

11 if ObstacleFree(qnear, qnew) ∧ Cost(qnear) + c(Line(qnear , qnew)) < cmin

then

12 qmin ← qnear; cmin ← Cost(qnear) + c(Line(qnear, qnew))
13 E ← E ∪ {(qmin, qnew)}
14 for each qnear ∈ Qnear do

15 if

ObstacleFree(qnew, qnear)∧Cost(qnew) + c(Line(qnew, qnear)) < Cost(qnear) then
16 qparent ← Parent(qnear);
17 E ← (E \ {(qparent, qnear)}) ∪ {(qnew, qnear)}
18 return G
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Figures from Prof. Karaman website: http://sertac.scripts.mit.edu/web/?p=502
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Kynodynamic Planning

Consider the problem of determining a control law u to steer a dynamic system

ẋ = f(x, u) from x(0) = x0 toward a reachable point xG avoiding all obstacles.

Consider also the cost function J(x) =
∫ T

0
g(x(t))dt to be minimized.

Let dist : X × X → R+ be the optimal cost of a trajectory that connects the two

points avoiding all obstacles. More formally

dist(z1, z2) = minT∈R+,u:[0, T ]→U J(x)subject to

ẋ = f(x, u), ∀t ∈ [0, T ]

x(0) = z1

x(T ) = z2

Also in this case the Nearest function is given by

Nearest(G, z) = argminv∈V dist(v, z).

In order to define the set of vertices near a sample we first have to consider small

time controllable points. Let

Reach(z, l) = {z′ ∈ X : dist(z, z′) ≤ l ∨ dist(z′, z) ≤ l} where l(n) is chosen so

that Reach(z, l(n)) contains a ball of volume γ log(n)/n. The set of near vertices
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is hence Near(G, z, n) = V ∩Reach(z, l(n)) with n = |V |.

The (local) steering function computes then an optimal path between two points

z1 and z2 with ‖z1 − z2‖ ≤ ǫ. The function provides both the control and the

time that are solution of the optimal control problem above.

Example of an optimal planning for a Dubins car is reported in figure:

Figura 17: From a) to c) from 500 to 6500 samples for RRT*, in d) RRT after

2000 samples. Picture from Karaman, Sertac, and Emilio Frazzoli. “Optimal

Kinodynamic Motion Planning Using Incremental Sampling-basedMethods.” 49th

IEEE Conference on Decision and Control (CDC). Atlanta, GA, USA, 2010. 7681-

7687.
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Artificial potential based planning

For online planning it can be useful to use the artificial potential field approacha.

The idea is to let a point (representative point of the robot such as the center of

mass) move under the action of a potential field U . The potential field is the

combination of an attractive action toward the desired target and a repulsive

action from Cobs. The most promising direction of motion is given by the

opposite of the gradient −∇U(q).

Attractive potential

Let qg be the goal configuration we want to steer the system to. qg is hence

considered as a minimum of a potential, e.g. Ua1
(q) = 1

2kae
T (q)e(q) = 1

2ka‖e‖
2

with ka > 0 and e(q) = q − qg. Ua1
is positive definite with a global minimum in

qg. The attractive force fa1
= −∇Ua1

(q) = kae(q) has large module for

configuration far from qg.

Another possible choice is Ua2
(q) = ka‖e(q)‖ with a corresponding attractive

force fa2
= −∇Ua2

(q) = ka
e(q)

‖e(q)‖ that is constant in module but it is not defined

in qg.
aRefer to the book: “Robotics: Modelling, Planning and Control” by Siciliano, B., Sciavicco,

L., Villani, L., Oriolo, G., Springer-Verlag London, 2009.
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A possible trade-off between the two potentials is to glue them in ‖e(q)‖ = 1 to

have an attractive force that is limited in module and is defined everywhere:

Ua(q) =







Ua2
for ‖e(q)‖ ≥ 1

Ua1
otherwise

Repulsive potential

To avoid collisions with Cobs the idea is to overimpose a repulsive potential to the

one that attracts the robot toward qg. For any COi convex component of Cobs we

define the following repulsive potential

Uri(q) =







kr,i

γ

(

1
ηi(q)

− 1
η0,i

)γ

for ηi(q) ≤ η0,i

0 otherwise

where kr,i > 0 and ηi(q) = minq′∈COi
‖q − q′‖ is the distance of q from COi. η0,i

is the radius of influence of Ur,i. The constant γ is typically chosen equal to 2.

The repulsive force is

fri(q) = −∇Ur,i =







kr,i

η2
i (q)

(

1
ηi(q)

− 1
η0,i

)γ−1

∇ηi(q) for ηi(q) ≤ η0,i

0 otherwise
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From the convexity of any COi we have that qm = argminq′∈COi
‖q − q′‖ exists

and it is unique. ∇ηi(q) is orthogonal to the equipotential curve through q and it

is directed as the oriented half-line from qm through q.

The total repulsive potential is Ur(q) =
∑p

i=1 Ur,i(q). We suppose that the goal

configuration is out of the radius of influence of any COi, i.e.

η(qg) > η0,i, ∀i = 1, . . . , p.

The total potential the robot is subject to is Ut(q) = Ua(q) + Ur(q) with a

corresponding force ft(q) = −∇Ut = fa(q) +
∑p

i=1 fr,i(q).

The problem with such approach is that there exists a unique global minimum

but there may be several local minima where the robot can steer to. Hence, as it

is the method is not complete and techniques to avoid local minima must be

considered.

Planning Method

The potential fields can be used in different ways to steer a robot. In case of

online planning, the force ft generated by the potential field can be used as

generalized forces acting on the dynamical system: τ = ft(q). This approach will

lead toward a more natural motion since the effect of ft is filtered by the

dynamic of the robot. Another possible approach is to consider the robot as a
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unitary mass point moving under the effect of ft: q̈ = ft(q); or the force can be

seen as a reference speed: q̇ = ft(q). The latter provides faster reaction to the

effects of ft and is used as kinematic control where low level control references

are provided. The former approach requires inverse kinematic resolution. The

first two methods will steer the robot toward the final destination but with not

null speed as the latter does. In such cases a damping term must be added to ft.

Potential planning methods can be used also in discrete (or discretized) state

space where to each cell a value of the potential field is associated. The idea is

still to move the robot toward potential minimizers.
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Figures from Prof. Oriolo course: http://www.dis.uniroma1.it/˜oriolo/amr/
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Behaviour based Algorithms: Bug Algorithms

In case of robots with on-board sensors that provide only local knowledge of the

environment, the classical planning algorithms can not be applied without an a

priori information on the environment. The behaviour based planning algorithms

are usually applied in case of such limited knowledge. The main idea is that

robot reacts to what it detects in the environment by following pre-assigned rules.

The bug algorithm is a very simple behaviour based planning method for mobile

robots and is based on two behaviours (control laws): move straight to the goal,

follow a wall. Few assumptions must be made: robots are points that know the

direction toward the goal and can measure both the traveled distance and the

distance between two points. The robots have on board (tactile) sensors that

detect the contact with obstacles and are able to follow the obstacle contour. The

world is supposed to be a bounded subset of R2 with a finite number of obstacles.
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Scheme of Bug-0 Algorithm ,

1 Head toward the goal;
2 if the goal is achieved then stop else

3 if a contact with an obstacle is detec-

ted then follow the obstacle’s boudary

(on the left) until heading toward the

goal is again possible
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The Bug-0 Algorithm is not complete
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Consider now a smarter bug that is able to compute the distance from the goal,

to compute the traveled distance and to recognize a point previously crossed.

Scheme of Bug-1 Algorithm ,

1 Head toward the goal;
2 if the goal is achieved then stop else

3 if a contact with an obstacle is de-

tected then circumnavigate the obsta-

cle (toward the left), identify the clo-

sest point L to the goal in the obsta-

cle’s boundary and return to this point

along the shortest path along obstacle

boundary.

How the bug can recognize that the goal is not reachable? (e.g. from L the

direction toward the goal points into an obstacle the goal is unreachable).

A lower bound of the distance T traveled by the bug is the distance D from start

to goal. An upper bound is T ≤ D + 3/2
∑

Pi with
∑

Pi is the sum of the

perimeters of all obstacles.
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Consider another extension

Scheme of Bug-2 Algorithm ,

1 Head toward the goal along the goal–

line;
2 if the goal is achieved then stop else

3 if a hit point is reached follow the ob-

stacle’s boundary (toward the left) until

the goal–line is crossed at a leave point

closer to the goal than any previous hit

point on the same side of the goal–line.

A lower bound of the distance T traveled by the bug is the distance D from start

to goal. An upper bound is T ≤ D + 1/2
∑

niPi where the sum is done over all

the obstacles intersected by the goal–line, Pi is the perimeter of the intersected

obstacles and ni is the number of times the goal–line intersects obstacle i.
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Comparison between Bug-1 and Bug-2




