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Pletismografia ad impedenza
• Il monitoraggio cardiovascolare è generalmente eseguito tramite tecniche invasive che 

danno informazioni molto precise 

• cateterismo (portata, pressione….) 

• Necessità di individuare tecniche alternative che permettano lo studio del sistema 
cardiovascolare  in modo totalmente non invasivo e non pericoloso per i pazienti 

• Pletismografia ad impedenza elettrica: metodo semplice e non invasivo che permette 
di acquisire in modo continuo importanti informazioni relative all’apparato 
cardiocircolatorio 

• Utilizzabile sopratutto quando si vuole misurare la variazione di una grandezza 
piuttosto che il suo valore assoluto 

• variazione di impedenza di una sezione di torace dovuta in gran parte al respiro ma 
anche all’attività cardiaca 

• In generale la Pletismografia riguarda il cambiamento di volume di un tessuto 
corporeo



Pletismografia ad impedenza
• In che modo una sezione di tessuto può variare la propria 

impedenza nel tempo?  

• Il corpo può essere trattato come un conduttore 

• il sangue, rispetto ai tessuti, può essere considerato un buon 
conduttore elettrico 

• Una diminuzione di impedenza può indicare che un certo 
volume di sangue è stato introdotto nella zona di interesse 

• Ogni cambiamento di conducibilità di una regione del corpo 
produce nel segnale di impedenza una variazione 
proporzionale alla quantità di corrente che fluisce in quella 
regione
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Abstract-The change in mutual impedance AZ resulting from a

change Ag in the conductivity of a particular region of a volume con- AC

ductor is shown to be given by AZ -AgJLf, L4 dv. L, and Lp, are t +

the lead fields associated with the two ports used to measure AZ. A V

The integration is over the region where the conductivity has \
changed. The superscript t indicates that the lead field is to be D

evaluated following the change in conductivity. An example involving
a spherical conductor is provided. (a) (b)

I NTRODUCTION

NFORAMATION about the internal conductivity
of an insulated volume conductor can be gained
from impedance measurements at its surface. Fig.

1 (a) shows an arrangement commonly used. A (sinusoi-
dal) current I is injected at the terminal pair A,B. The
voltage at C,D is then meastured and the ratio of voltage
to current gives a mutual impedance Z [1]. Fig. 1(b)
shows a generalization of this scheme in which a num-

ber of sites are used on the surface of the conductor.
If the conductivity of a particular internal region is

chainging wvith tiimie, then Z will also vary with time.
Therefore, informiation max be gained concerninig the
changing internal conductivity as in the technique of
impedance plethysmography. By appropriately select-
ing the location of surface electrode sites and resistor
values it should be possible to develop an arrangenmeint
for which the miiutual inmpedance is selective for and
sensitive to a particular region. 0. H. Schmllitt [6] has
suggested that the concept of lead transfer imnpedance
used in electrocardiograph)- should be applicable here,
and that the mutual impedance should be proportional
to the dot product of the transfer impedances asso-

ciated, respectively, with the curreInt terminals and
voltage terminals. This paper will present a formal
development of this idea.
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Fig. 1. Measurement of mutual impedance. Volume conductor is
treated as a two-port system. (a) A simple four-electrode arrange-
ment is used. (b) Resistor weighting networks are used both at
the current and the voltage electrodes.

Fig. 2. Diagram showing terminology used. Current 4, at port A,B
gives rise to voltage 0CD. Current 4, at port C,D gives rise to
voltage 1AB.

THEORY

For simplicity the scheme of Fig. 1(a) will be coIn-
sidered. Generalization to the scheme of Fig. 1(b) is
straightforward. In Fig. 2 the volume conductor is
linear and is surrounded by an insulator, air. A current
LI, impressed at A,B gives rise to a voltage 4CD at ter-

minals C,D. Conversely, a current 1I impressed at C,D
results in a voltage i/AB. By definition, the mutual im-
pedance Z is

OCD 1AB

14f Ip
(1)

The second equality is a consequence of the reciprocity
theorem, as will be shown in the following.

I

38

• Come si misura? 
• 4 elettrodi 
• Si inietta corrente tra due punti 
(A,B) (elettrodi di corrente) 

• Si rileva tensione in altri due 
punti (C,D) (elettrodi di 
voltaggio)

Z(t) =
V (t)

I(t)
V (t) = Z(t) I(t)

I(t) -> correnti a diversa frequenza in modo da massimizzare la 
separazione tra diversi tessuti
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the measured impedance changes and the changes in conductivity within a volume conductor. John Lehr
(1972) later presented another proof of this relationship. In the following we give the result of Geselowitz
using the terminology and sign convention of this book. (Note that Geselowitz (1971) defined the lead
fields as the electric fields per reciprocal current and we define them as the current fields per unit
reciprocal current. These are, of course, directly related by Ohm's law.)

(25.1)

where   ΔZ = impedance change [Ω/m³]
 t0, t1 = time instants
 Δσ = conductivity change between the two time instants [S/m = 1/Ω·m]
 LE = lead field of the voltage measurement electrodes for unit reciprocal current [1/m2]
 LI = lead field of the current feeding electrodes for unit current [1/m2]
 v = volume [m3]

In Equation 25.1, the region v consists of an inhomogeneous volume conductor whose conductivity
(as a function of position) at time t0 is σ(t0). At t1, this has changed to σ(t1), and it is this change (t1) - (t0)
= Δσ which is responsible for the measured impedance change ΔZ. Thus Equation 25.1 describes how the
changes in volume conductor conductivity are converted into the impedance change evaluated from a
measured voltage (at the voltage electrode pair) divided by applied current (at the current electrode pair).
Note that the 4-electrode impedance method underlies Equation 25.1. 

A special case of Equation 25.1 is one where we consider σ(t1) = εσ(t0), where ε is very small:

(25.2)

where all variables are evaluated at t0. Equation 25.2 describes how the macroscopic resistivity Z
(impedance per unit volume) is derived from the spatial distribution of conductivity σ weighted by the dot
product of the lead fields of the current and voltage electrodes. Note the similarity between Equation 25.2
and the fundamental equation of the lead field theory, Equation 11.30 (or 11.52), which describes the
electric signal in the lead produced by a volume source formed by a distribution of the impressed current 

i. In these equations the corresponding variables are the measured signals: VLE and Z (= measured
voltage per applied current), the distributions of sensitivity: LE in both of them, as well as the source
distributions: i and LI. 

If the introduction of the current is done with the same electrodes as the voltage measurement is
made, the sensitivity distribution, that is the lead field LE is the same as the distribution of the applied
current LI. This technique is, however, seldom used because of the artifact due to the electrode
impedance. If the current-feeding electrodes are different from those of the voltage measurement
electrodes, the sensitivity distribution is the dot product of the lead fields of the voltage electrodes LE
and the current electrodes LI. Thus, any previous discussion in this book on the electric and magnetic
lead fields in general (Chapters 11 and 12), in the head (Chapters 13 and 14) or in the thorax (Chapters 15
... 18 and 20) may readily be applied to impedance plethysmography. Just as in the study of
electrocardiography, one can design electrode systems for impedance measurement to give special
emphasis to particular regions (the aorta, the ventricles, etc.). One can even have situations where the dot
product is negative in a particular region so that if the conductivity increases in that region, the impedance
Z will also increase. Some examples can be found in Plonsey and Collin (1977) and Penney (1986). 
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Let 4 and 61 be the electric scalar potentials associated
with I.46 and 1,, respectively. From Green's theorem
[2], [3],

E f[ vcpf-4V;I)-g"(V"Vcp"- "v+')j *dSj

= f ('V -gV4-V -A gVit) dtv (2)

where Sj is a surface separating regions of conductivity
g' and g", and Si is directed from the primed region to
the double-primed one. Since there are no internal cur-
rent sources, the volume integral on the right vanishes.
On each surface the potential and the normal component
of current density are continuous. Therefore, 4'=4)",
iif=4"'1, g'V)' dSj=g"V01" dSj, and g'Vi/ . dSj=g"V4
-dSi. Equation (2) then becomes

gg(VIV- OV4t).dSo = 0 (3)

where S0 is the outer surface of the volume conductor.
The quantity gV) is just the negative of the current

density on the surface and is zero everywhere except at
A and B. Similarly, gVif vanishes everywhere except at
C and D. Equation (3) therefore becomes

I-O(PA - VIB) -4I/AB = I46(4C - OD) = I4CD. (4)

Equation (4) is a statement of the reciprocity theorem
used in (1).

Consider that the conductivity of one internal region
changes from gi to gi+Ag, resulting in a redistribution
of the current 4< associated with a change in potential
from 4 to 4)+A4). On the other hand, let the scalar func-
tion +V remain unchanged. Under these circumstances (2)
becomes

14I'AB - I(4AB + A4AB)

+ jw-(Of + AO')[(gi+ Ag)V#' - g"57ViJ dSI = 0 (5)

where Si is the surface enclosing the region of conductivi-
ty gi. With the use of (4) and the boundarv condition
giV41' dS = g"VJ1"dS1, (5) becomes

where the integration is over the region whose con-
ductivity has changed. The change in mutual impedance
is

AOAB VV(O +AO) VA
AZ= = -VAg ± -- dv.

I46 14 I4 (8)

Theoretical studies in electrocardiography have been
concerned with surface potentials arising from electric
sources inside a volume conductor. A particular ter-
minal pair in which a voltage is developed is called a
lead. Leads may involve simply a pair of electrodes on
the body surface such as A,B or C,D of Fig. 1(a). Al-
ternatively, they may involve a series of electrode sites
and an associated resistor network illustrated by A',B'
or C',D' in Fig. 1 (b). The voltage generated in a lead by
a current dipole element at a particular point in the
volume conductor may be expressed as the dot product
of the dipole moment and a vector transfer impedance
[4]. It follows from the reciprocity theorem that the
vector transfer impedance function is identical at each
point to the electric field that would exist at that point if
unit current were injected into the lead [5 ]. This field is
called the lead field.

In the case of mutual impedance, no internal sources
are present. Nevertheless one can consider terminals
A,B to constitute a lead whose lead field is then

- V4Lo = 1
Io (9)

Similarly,

(10)146L~= .~.
Io

In the analysis that led to (8), Lp is the lead field asso-
ciated with a fixed conductivity gi. On the other hand,
L46 changes as the conductivity of the region changes.
We will indicate this fact by using a superscript t. Thus

V(o + AO)Lo' = - -1
Io (1 1)

and (8) becomes

AZ= -Agf Lo4*Lp dv.
(6)

The surface integral on the right can be converted to a

volume integral through use of the divergence theorem.

-I4AOAB = Agf V- [(p +FA+))V ]dv

= Ag V(@ + A+, -V dz (7)

(12)

From symmetry it follows that the change in mutual
impedance can also be written as

AZ = - AgJLo -Lotdv (13)

where Lx is now associated with a fixed conductivity in
the region of integration while Lp is the lead field that
changes with time as the conductivity changes.

I4&4AB = - f (4 + AO)AgV41*dSj.
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• Considerando un volume V di conduttore la variazione di 
conducibilità Δσ tra due instanti di tempo t0 e t1 causerà 
una variazione di impedenza ΔZ 

• La seguente equazione (GESELOWITZ, 1971) descrive la 
relazione tra variazione di conducibilità di un volume e 
variazioni di impedenza 
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where   ΔZ = impedance change [Ω/m³]
 t0, t1 = time instants
 Δσ = conductivity change between the two time instants [S/m = 1/Ω·m]
 LE = lead field of the voltage measurement electrodes for unit reciprocal current [1/m2]
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 v = volume [m3]

In Equation 25.1, the region v consists of an inhomogeneous volume conductor whose conductivity
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changes in volume conductor conductivity are converted into the impedance change evaluated from a
measured voltage (at the voltage electrode pair) divided by applied current (at the current electrode pair).
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A special case of Equation 25.1 is one where we consider σ(t1) = εσ(t0), where ε is very small:
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where all variables are evaluated at t0. Equation 25.2 describes how the macroscopic resistivity Z
(impedance per unit volume) is derived from the spatial distribution of conductivity σ weighted by the dot
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density on the surface and is zero everywhere except at
A and B. Similarly, gVif vanishes everywhere except at
C and D. Equation (3) therefore becomes

I-O(PA - VIB) -4I/AB = I46(4C - OD) = I4CD. (4)

Equation (4) is a statement of the reciprocity theorem
used in (1).

Consider that the conductivity of one internal region
changes from gi to gi+Ag, resulting in a redistribution
of the current 4< associated with a change in potential
from 4 to 4)+A4). On the other hand, let the scalar func-
tion +V remain unchanged. Under these circumstances (2)
becomes

14I'AB - I(4AB + A4AB)

+ jw-(Of + AO')[(gi+ Ag)V#' - g"57ViJ dSI = 0 (5)

where Si is the surface enclosing the region of conductivi-
ty gi. With the use of (4) and the boundarv condition
giV41' dS = g"VJ1"dS1, (5) becomes

where the integration is over the region whose con-
ductivity has changed. The change in mutual impedance
is

AOAB VV(O +AO) VA
AZ= = -VAg ± -- dv.

I46 14 I4 (8)

Theoretical studies in electrocardiography have been
concerned with surface potentials arising from electric
sources inside a volume conductor. A particular ter-
minal pair in which a voltage is developed is called a
lead. Leads may involve simply a pair of electrodes on
the body surface such as A,B or C,D of Fig. 1(a). Al-
ternatively, they may involve a series of electrode sites
and an associated resistor network illustrated by A',B'
or C',D' in Fig. 1 (b). The voltage generated in a lead by
a current dipole element at a particular point in the
volume conductor may be expressed as the dot product
of the dipole moment and a vector transfer impedance
[4]. It follows from the reciprocity theorem that the
vector transfer impedance function is identical at each
point to the electric field that would exist at that point if
unit current were injected into the lead [5 ]. This field is
called the lead field.

In the case of mutual impedance, no internal sources
are present. Nevertheless one can consider terminals
A,B to constitute a lead whose lead field is then

- V4Lo = 1
Io (9)

Similarly,

(10)146L~= .~.
Io

In the analysis that led to (8), Lp is the lead field asso-
ciated with a fixed conductivity gi. On the other hand,
L46 changes as the conductivity of the region changes.
We will indicate this fact by using a superscript t. Thus

V(o + AO)Lo' = - -1
Io (1 1)

and (8) becomes

AZ= -Agf Lo4*Lp dv.
(6)

The surface integral on the right can be converted to a

volume integral through use of the divergence theorem.

-I4AOAB = Agf V- [(p +FA+))V ]dv

= Ag V(@ + A+, -V dz (7)

(12)

From symmetry it follows that the change in mutual
impedance can also be written as

AZ = - AgJLo -Lotdv (13)

where Lx is now associated with a fixed conductivity in
the region of integration while Lp is the lead field that
changes with time as the conductivity changes.

I4&4AB = - f (4 + AO)AgV41*dSj.

39

GESELOWITZ: ELECTROCARDIOGRAPHIC LEAD THEORY AND IMPEDANCE PLETHYSMOGRAPHY

Let 4 and 61 be the electric scalar potentials associated
with I.46 and 1,, respectively. From Green's theorem
[2], [3],

E f[ vcpf-4V;I)-g"(V"Vcp"- "v+')j *dSj

= f ('V -gV4-V -A gVit) dtv (2)

where Sj is a surface separating regions of conductivity
g' and g", and Si is directed from the primed region to
the double-primed one. Since there are no internal cur-
rent sources, the volume integral on the right vanishes.
On each surface the potential and the normal component
of current density are continuous. Therefore, 4'=4)",
iif=4"'1, g'V)' dSj=g"V01" dSj, and g'Vi/ . dSj=g"V4
-dSi. Equation (2) then becomes

gg(VIV- OV4t).dSo = 0 (3)

where S0 is the outer surface of the volume conductor.
The quantity gV) is just the negative of the current

density on the surface and is zero everywhere except at
A and B. Similarly, gVif vanishes everywhere except at
C and D. Equation (3) therefore becomes

I-O(PA - VIB) -4I/AB = I46(4C - OD) = I4CD. (4)

Equation (4) is a statement of the reciprocity theorem
used in (1).

Consider that the conductivity of one internal region
changes from gi to gi+Ag, resulting in a redistribution
of the current 4< associated with a change in potential
from 4 to 4)+A4). On the other hand, let the scalar func-
tion +V remain unchanged. Under these circumstances (2)
becomes

14I'AB - I(4AB + A4AB)

+ jw-(Of + AO')[(gi+ Ag)V#' - g"57ViJ dSI = 0 (5)

where Si is the surface enclosing the region of conductivi-
ty gi. With the use of (4) and the boundarv condition
giV41' dS = g"VJ1"dS1, (5) becomes

where the integration is over the region whose con-
ductivity has changed. The change in mutual impedance
is

AOAB VV(O +AO) VA
AZ= = -VAg ± -- dv.

I46 14 I4 (8)

Theoretical studies in electrocardiography have been
concerned with surface potentials arising from electric
sources inside a volume conductor. A particular ter-
minal pair in which a voltage is developed is called a
lead. Leads may involve simply a pair of electrodes on
the body surface such as A,B or C,D of Fig. 1(a). Al-
ternatively, they may involve a series of electrode sites
and an associated resistor network illustrated by A',B'
or C',D' in Fig. 1 (b). The voltage generated in a lead by
a current dipole element at a particular point in the
volume conductor may be expressed as the dot product
of the dipole moment and a vector transfer impedance
[4]. It follows from the reciprocity theorem that the
vector transfer impedance function is identical at each
point to the electric field that would exist at that point if
unit current were injected into the lead [5 ]. This field is
called the lead field.

In the case of mutual impedance, no internal sources
are present. Nevertheless one can consider terminals
A,B to constitute a lead whose lead field is then

- V4Lo = 1
Io (9)

Similarly,

(10)146L~= .~.
Io

In the analysis that led to (8), Lp is the lead field asso-
ciated with a fixed conductivity gi. On the other hand,
L46 changes as the conductivity of the region changes.
We will indicate this fact by using a superscript t. Thus

V(o + AO)Lo' = - -1
Io (1 1)

and (8) becomes

AZ= -Agf Lo4*Lp dv.
(6)

The surface integral on the right can be converted to a

volume integral through use of the divergence theorem.

-I4AOAB = Agf V- [(p +FA+))V ]dv

= Ag V(@ + A+, -V dz (7)

(12)

From symmetry it follows that the change in mutual
impedance can also be written as

AZ = - AgJLo -Lotdv (13)

where Lx is now associated with a fixed conductivity in
the region of integration while Lp is the lead field that
changes with time as the conductivity changes.

I4&4AB = - f (4 + AO)AgV41*dSj.

39

• Considerando un volume V di conduttore la variazione di 
conducibilità Δσ tra due instanti di tempo t0 e t1 causerà 
una variazione di impedenza ΔZ 

• La seguente equazione (GESELOWITZ, 1971) descrive la 
relazione tra variazione di conducibilità di un volume e 
variazioni di impedenza 
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the lead fields associated with the two ports used to measure AZ. A V

The integration is over the region where the conductivity has \
changed. The superscript t indicates that the lead field is to be D

evaluated following the change in conductivity. An example involving
a spherical conductor is provided. (a) (b)

I NTRODUCTION

NFORAMATION about the internal conductivity
of an insulated volume conductor can be gained
from impedance measurements at its surface. Fig.

1 (a) shows an arrangement commonly used. A (sinusoi-
dal) current I is injected at the terminal pair A,B. The
voltage at C,D is then meastured and the ratio of voltage
to current gives a mutual impedance Z [1]. Fig. 1(b)
shows a generalization of this scheme in which a num-

ber of sites are used on the surface of the conductor.
If the conductivity of a particular internal region is

chainging wvith tiimie, then Z will also vary with time.
Therefore, informiation max be gained concerninig the
changing internal conductivity as in the technique of
impedance plethysmography. By appropriately select-
ing the location of surface electrode sites and resistor
values it should be possible to develop an arrangenmeint
for which the miiutual inmpedance is selective for and
sensitive to a particular region. 0. H. Schmllitt [6] has
suggested that the concept of lead transfer imnpedance
used in electrocardiograph)- should be applicable here,
and that the mutual impedance should be proportional
to the dot product of the transfer impedances asso-

ciated, respectively, with the curreInt terminals and
voltage terminals. This paper will present a formal
development of this idea.
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Fig. 1. Measurement of mutual impedance. Volume conductor is
treated as a two-port system. (a) A simple four-electrode arrange-
ment is used. (b) Resistor weighting networks are used both at
the current and the voltage electrodes.

Fig. 2. Diagram showing terminology used. Current 4, at port A,B
gives rise to voltage 0CD. Current 4, at port C,D gives rise to
voltage 1AB.

THEORY

For simplicity the scheme of Fig. 1(a) will be coIn-
sidered. Generalization to the scheme of Fig. 1(b) is
straightforward. In Fig. 2 the volume conductor is
linear and is surrounded by an insulator, air. A current
LI, impressed at A,B gives rise to a voltage 4CD at ter-

minals C,D. Conversely, a current 1I impressed at C,D
results in a voltage i/AB. By definition, the mutual im-
pedance Z is

OCD 1AB

14f Ip
(1)

The second equality is a consequence of the reciprocity
theorem, as will be shown in the following.
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Let 4 and 61 be the electric scalar potentials associated
with I.46 and 1,, respectively. From Green's theorem
[2], [3],

E f[ vcpf-4V;I)-g"(V"Vcp"- "v+')j *dSj

= f ('V -gV4-V -A gVit) dtv (2)

where Sj is a surface separating regions of conductivity
g' and g", and Si is directed from the primed region to
the double-primed one. Since there are no internal cur-
rent sources, the volume integral on the right vanishes.
On each surface the potential and the normal component
of current density are continuous. Therefore, 4'=4)",
iif=4"'1, g'V)' dSj=g"V01" dSj, and g'Vi/ . dSj=g"V4
-dSi. Equation (2) then becomes

gg(VIV- OV4t).dSo = 0 (3)

where S0 is the outer surface of the volume conductor.
The quantity gV) is just the negative of the current

density on the surface and is zero everywhere except at
A and B. Similarly, gVif vanishes everywhere except at
C and D. Equation (3) therefore becomes

I-O(PA - VIB) -4I/AB = I46(4C - OD) = I4CD. (4)

Equation (4) is a statement of the reciprocity theorem
used in (1).

Consider that the conductivity of one internal region
changes from gi to gi+Ag, resulting in a redistribution
of the current 4< associated with a change in potential
from 4 to 4)+A4). On the other hand, let the scalar func-
tion +V remain unchanged. Under these circumstances (2)
becomes

14I'AB - I(4AB + A4AB)

+ jw-(Of + AO')[(gi+ Ag)V#' - g"57ViJ dSI = 0 (5)

where Si is the surface enclosing the region of conductivi-
ty gi. With the use of (4) and the boundarv condition
giV41' dS = g"VJ1"dS1, (5) becomes

where the integration is over the region whose con-
ductivity has changed. The change in mutual impedance
is

AOAB VV(O +AO) VA
AZ= = -VAg ± -- dv.

I46 14 I4 (8)

Theoretical studies in electrocardiography have been
concerned with surface potentials arising from electric
sources inside a volume conductor. A particular ter-
minal pair in which a voltage is developed is called a
lead. Leads may involve simply a pair of electrodes on
the body surface such as A,B or C,D of Fig. 1(a). Al-
ternatively, they may involve a series of electrode sites
and an associated resistor network illustrated by A',B'
or C',D' in Fig. 1 (b). The voltage generated in a lead by
a current dipole element at a particular point in the
volume conductor may be expressed as the dot product
of the dipole moment and a vector transfer impedance
[4]. It follows from the reciprocity theorem that the
vector transfer impedance function is identical at each
point to the electric field that would exist at that point if
unit current were injected into the lead [5 ]. This field is
called the lead field.

In the case of mutual impedance, no internal sources
are present. Nevertheless one can consider terminals
A,B to constitute a lead whose lead field is then

- V4Lo = 1
Io (9)

Similarly,

(10)146L~= .~.
Io

In the analysis that led to (8), Lp is the lead field asso-
ciated with a fixed conductivity gi. On the other hand,
L46 changes as the conductivity of the region changes.
We will indicate this fact by using a superscript t. Thus

V(o + AO)Lo' = - -1
Io (1 1)

and (8) becomes

AZ= -Agf Lo4*Lp dv.
(6)

The surface integral on the right can be converted to a

volume integral through use of the divergence theorem.

-I4AOAB = Agf V- [(p +FA+))V ]dv

= Ag V(@ + A+, -V dz (7)

(12)

From symmetry it follows that the change in mutual
impedance can also be written as

AZ = - AgJLo -Lotdv (13)

where Lx is now associated with a fixed conductivity in
the region of integration while Lp is the lead field that
changes with time as the conductivity changes.

I4&4AB = - f (4 + AO)AgV41*dSj.
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1 (a) shows an arrangement commonly used. A (sinusoi-
dal) current I is injected at the terminal pair A,B. The
voltage at C,D is then meastured and the ratio of voltage
to current gives a mutual impedance Z [1]. Fig. 1(b)
shows a generalization of this scheme in which a num-
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If the conductivity of a particular internal region is

chainging wvith tiimie, then Z will also vary with time.
Therefore, informiation max be gained concerninig the
changing internal conductivity as in the technique of
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ing the location of surface electrode sites and resistor
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for which the miiutual inmpedance is selective for and
sensitive to a particular region. 0. H. Schmllitt [6] has
suggested that the concept of lead transfer imnpedance
used in electrocardiograph)- should be applicable here,
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development of this idea.

Manuscript receixved Jujne 4, 1970. This work was supported by
Grant HE-08805 from the Nationial Institutes of Health of the UT. S.

Public Health Service.
The author is with the Department of Biomedical Enginieering,

Moore School of Electrical Engineering, Philadelphia, Pa., and the
Department of Medicinie, School of Medicine, LTniversity of Pennsyl-
vania, Philadelphia, Pa. 19104.

Fig. 1. Measurement of mutual impedance. Volume conductor is
treated as a two-port system. (a) A simple four-electrode arrange-
ment is used. (b) Resistor weighting networks are used both at
the current and the voltage electrodes.

Fig. 2. Diagram showing terminology used. Current 4, at port A,B
gives rise to voltage 0CD. Current 4, at port C,D gives rise to
voltage 1AB.

THEORY

For simplicity the scheme of Fig. 1(a) will be coIn-
sidered. Generalization to the scheme of Fig. 1(b) is
straightforward. In Fig. 2 the volume conductor is
linear and is surrounded by an insulator, air. A current
LI, impressed at A,B gives rise to a voltage 4CD at ter-

minals C,D. Conversely, a current 1I impressed at C,D
results in a voltage i/AB. By definition, the mutual im-
pedance Z is

OCD 1AB

14f Ip
(1)

The second equality is a consequence of the reciprocity
theorem, as will be shown in the following.
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I� ! �CD

I !  AB

imposta tra 
A e B

imposta tra 
C e D

Lead fields

• Se gli elettrodi sono gli stessi (misura a due punte) -> JLE = 
JLI 
• Usato raramente perché la tensione rilevata dipende in 

larga misura dall’impedenza degli elettrodi



Cardiografia ad impedenza

Metodi per l’analisi del respiro

Pletismografia ad impedenza

� Il valore dell’impedenza lo si ricava dal rapporto tra il 
potenziale rilevato e la corrente introdotta
– Corrente con range di frequenze di 20-100 KHzCorrente con range di frequenze di 20-100 KHz

� Il segnale ottenuto è costituito da tre componenti
– Impedenza Basale (Z0)Impedenza Basale (Z0)

– Attività respiratoria

– Componente sincronizzata con l’attività cardiaca

Page � 6

!
• Sistema a 4 elettrodi (r iduzione 

dell’artefatto dovuto all’impedenza degli 
elettrodi) 
• si usano 4 bande ma possono essere 

sostituiti con elettrodi standard da 
ECG 

• Vengono iniettate correnti a bassa 
intensità (2 elettrodi) 

• Viene rilevata la tensione tra altri due 
2 elettrodiI

Configurazione tetrapolare

Z(t) =
V (t)

I(t)

Misurata
Imposta
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� Il valore dell’impedenza lo si ricava dal rapporto tra il 
potenziale rilevato e la corrente introdotta
– Corrente con range di frequenze di 20-100 KHzCorrente con range di frequenze di 20-100 KHz
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– Impedenza Basale (Z0)Impedenza Basale (Z0)
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Respiro

Attività  
cardiaca

•Componente basale Z0≈25Ω 
•Cuore: 0.1Ω 
•Respiro: 1.5Ω

Misura di Z(t) e 
della derivata nel 

tempo 

Quali parametri di 
interesse clinico 

potrebbero essere 
rilevati?



Cardiografia ad impedenza
• Rilevazione dello stroke volume tramite cardiografia ad impedenza 

• In fisiologia, il volume sistolico o gittata sistolica (in inglese stroke 
volume, spesso indicato con la sigla SV) è la quantità di sangue 
pompato dal ventricolo destro all’aorta. Normalmente esso aumenta 
all'aumentare della forza di contrazione del ventricolo stesso. 

• Principio di funzionamento!

• L’impedenza toracica è dovuta all’impedenza dei tessuti e quella del 
fluido sanguigno!

• in assenza di respiro, tutte le componenti che concorrono alla misura 
dell’impedenza sono costanti, eccetto che per la quantità e la 
distribuzione del sangue che variano col ciclo cardiaco 

• Maggiore quantità di sangue presente nel volume di interesse, 
maggiore la conducibilità e minore l’impedenza



Cardiografia ad impedenza

Attenzione! 
Z è in forma di 
ammettenza: cresce 
all’aumentare della quantità 
di sangue compresa nel 
volume di interesse! 
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• Modello semplificato del torace 

• Cilindro di lunghezza L, sezione A e resistività del 
fluido all’interno ρ (prevalentemente sangue)

Equazione di Kubicheck (1966)

Troppo semplificativo risultati non attendibili

devo identificare il ΔZ generato 
dalla variazione di stroke 

volume

A L
utilizzata per stimare 

stroke volume
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Determinazione stroke 
volume

• Ipotesi di partenza: la variazione di impedenza (ΔZ) è determinata 
principalmente dalla variazione di conducibilità polmonare!

• …. e quindi dalla quantità di sangue presente nei polmoni 

• Sistole: il ventricolo inietta un volume di sangue, attraverso l’aorta nei 
polmoni (contribuendo ad una diminuzione della Z misurata).  

• In contemporanea, una certa quantità di sangue lascia i polmoni e 
fluisce indietro dai polmoni all’atrio destro  (contribuendo ad un 
aumento della Z misurata)-> non tutta la variazione di impedenza è 
dovuta allo stroke volume 

• Il volume di sangue nei polmoni inizialmente cresce e poi inizia a 
decrescere già durante la sistole 

• suoni cardiaci: definiscono l’intervallo di sistole



Determinazione stroke 
volume

• Idea di base: lo stroke volume viene calcolato dal grafico di 
impedenza che si avrebbe se il sangue non uscisse dai polmoni 
durante la sistole 

• si prolunga la curva di impedenza per tutta la durata della sistole 
(ottenuta dai suoni cardiaci), ipotizzando che l’impedenza 
toracica decrescerebbe continuamente alla massima velocità 

• se usassi il ΔZ misurato tenderei a sottostimare! 

• La massima velocità si ottiene dal picco (minimo) della derivata 
prima di Z(t) 

• attenzione! nel grafico rovesciato (ammettenza) 
corrisponderà a un picco massimo



Determinazione stroke volume
The ejection time can be determined from the first-derivative impedance curve with the help of the

phonocardiogram or carotid pulse. Then, the impedance curve itself is used only for control purposes
(e.g., checking the breathing). 

The resistivity of the blood is of the order of 160 Ωcm. Its value depends on hematocrit, as
discussed in Section 7.4.

Fig. 25.6 Determination of the impedance change corresponding to the stroke volume.

25.3.5 Discussion of the Stroke Volume Calculation Method

The method described above, developed by Kinnen and Kubicek, is widely used to estimate stroke
volume from impedance recordings. We discuss later efforts to identify the source or sources of the
measured changes in impedance. It will be seen that such research implicates changes in blood volume in
the vena cava, atria, ventricles, aorta, thoracic musculature, and lungs. Obviously, the two-compartment
model, above, is a gross simplification. Furthermore, the assumed cylindrical geometry is also a highly
simplified approximation. And, finally, the change of blood conductivity with change in velocity has been
entirely neglected in this model.

25.4 ORIGIN OF IMPEDANCE SIGNAL IN IMPEDANCE CARDIOGRAPHY

25.4.1 Model Studies

Misuro: Z(t), dZ/dt e te (dai suoni cardiaci) 
Ricavo (dZ/dt)min e ΔZ



Determinazione stroke 
volume

• Si approssima graficamente Z(t) con la la tangente alla 
curva di impedenza nel punto di massima velocità di 
decrescita 

• La variazione di impedenza che si avrebbe viene 
considerata calcolando ΔZ, tramite l’approssimazione,  
tra inizio e fine sistole (intervallo te - tempo di 
emissione, misurato con il phono-cardiogramma) 

• Graficamente si ottiene:

�Z = f 0(Z) te = |dZ
dt min

| ⇤ te
Attenzione: minimo della derivata 

perchè il grafico è in forma di 
ammettenza!



Determinazione stroke 
volume

• Sostituendo si ottiene:


