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" Basic principles of Tissue Engineering
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+ How we may mimic natural tissue?

Three main simuli

Topological

Biochemical




What is a scaffold?

Polymeric structure topogically well-defined and
modulating biochemical and mechanical signals typical
of natural tissue, i.e. a 3D structure which

supports 3D tissue growth




What are the features of
an ideal scaffold?

Biocompatible, cell adhesive, bioerodable
and bioactive

Mechanical properties similar to those of
natural tissue

Optimal meso, micro and nano pores

Well-defined, or quantifiable topology at
meso- micro- and nanoscales



Designer or Random?
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Biochemical stimuli in scaffolds

Synthetic biomaterials
with ligands

Natural biomaterials

Decellularized Tissue

ring News, March 13, 1995

Factors regulating stem cell fate
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Even-Ram s et al, Matrix Control of Stem Cell Fate, Cell. Volume 126, Issue
4, 25 August 2006, Pages 645-647



+  Methods for generating MS
stimuli in scaffolds
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Designer Scaffold




Addltlve rapid prototyping
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Triangle
3D object Toolpath

h s Bl = -

Automatic process plannel Automated fabrication machine

sac1'1ﬁc1al material

FreeCAD Printrun

ca'e

a. Comy lemcntaly support. b. Explicit support.



M Designer Scaffold

Designer Scaffold

Three main groups:
o laser systems
o hozzle based systems

o direct writing systems

Materials?
Speed?
Price?
Fidelity?



Subtractive
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Price?

) I Vozzi, Previti, De Rossi,. Tissue Engineering, 8, 34, 2002. Vozzi,, Flaim, Ahluwalia, Bhatia , Biomaterials, 24,
Fidelity? 2533 2003



W Scaffolds with PAM

Subtractive

100um 1‘.'

Materials?
Speed?

ice?
P rce: Vozzi et al, JBMRA, 71A, 326, 2004.
Fidelity? Mariani et al., Tissue Eng. 12, 547, 2006.
Bianchi et. Al. JBMR 81, 462, 2007.



™ Designer Scaffold

Piston Assisted Microsyringe
(PAM2)

Plunger driven

Materials?
Speed?
Price?

Vozzi, G., Tirella. A., Ahluwalia, A., Computer-Aided
o Tissue Engineering, Springer (2010); Tirella, De Maria,
Fidelity? Vozzi, Ahluwalia Rapid Prot. J (2012); Tirella, Orsini,
Vozzi, Ahluwalia Biofabrication (2009),



The PAM2 system

S

v’ PAM

v' PAM?2

v Diode laser

v' Temperature control
v PAM? software

* 4 Position controlled
brushless motors (resolution
of 10 um £ 1 pum)

* Working space 100x100x80
mm

e Working velocity 1-15 mm
g1

* Design of z-stage to locate

vsgyverakmodules

Speed?

Price?

) M Robotic 3 axis micropositioner.
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Fidelity? Tirella, De Maria, Vozzi, Ahluwalia Rapid Prot. J (2012);



@  Smart-tunable modular
— scaffolds...
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Development of a modular microfabrication system to engineer complex tissues



Subtractive
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Speed?
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LLaser System

CAD/CAM system, 3-axes control of:
* position, £25 mm;

« velocity, 0-4.5 mm/s;

* resolution, 1 ym;

« accurancy and repeatability.

» Thulium laser (1920 nm wavelength, 2W
emission power):

« Control of power emission

« Layer-by-layer processing.




LLaser Structures

20 % PCL x-y velocity 2,15 mm/s 20 % PCL x-y velocity 3,34 mm/s

20 % PLGA+ 1.25% carbon black 20 % PLGA+ 1.25% carbon black 20 % PLGA+ 1.25% carbon black
x-y velocity 1,25 mm/s x-y velocity 2.15 mm/s x-y velocity 3.34 mm/s



ralyes

LLaser Structures

20 % PLGA+ 1.25%Carbon nanotubes

20 % PLGA+ 1.25% carbon nanotubesk .
x-y velocity 2.15 mm/s

x-y velocity 1,25 mm/s

1 % Agarose
x-y velocity 3.34 mm/s




Indirect Rapid Prototyping
(iRP)

+ Designer Scaffold

e Molds realised with RP devices
(CAD/CAM)

* Casting of the desired (bio-)
material

e Extraction of the final object

DW Hutmacher et al., Trends in Biotechnology, 22(7):
354 - 362, 2004

Advantages?
Limitations?
Materials?
Speed?
Price?

Fidelity?



“Open source FDM machine:

RepRap Project I¥

en source
ardware

 RepRap is first general-purpose self-replicating
manufacturing machine.

* An open source project with several forks




+ Electrospinning
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+
Chemical Gradient Concentration

Vozzi G. et al, Mol Biotechnol. 2012 Feb;50(2):99-107.



Chemical Gradient Concentration
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+ Production of Hollow Fibers

Topology and cell adhesion with Neuroblastoma cell line

PCL

(M,= 80,000;
T, = 57.5°C;
AH,, =84 J/g)

- Dint = 500-2000 yum
- Wall Thickness= 50-200 um

PU

(M= 77,300;
T, = 59.8°C;
. - AH =16 J/q9 )

- Dint = 300-450 um
- Wall Thickness= 300-400 um
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Production of Hollow Fibers

100 pm

Fluorescence microscopy images of NOBEC-GFP cells (3 days in vitro) on PCL films (A, B) and after
nuclear DAPI staining (C, D). DAPI staining binds strongly to DNA and it is useful to label cell nuclei. DAPI
staining can be used to visualize cells during mitosis phases (indicated by red arrows).



Production of Hollow Fibers

Confocal imaging of regenerated
nerve fibers inside the PCL guides
immunolabelled with the axonal
marker anti-NF-200kD antibody
(A) and the Schwann cell marker
anti-S100 antibody (B); bright
field (C) and merge (D). Nerves
were withdrawn six months after
reconstruction of a 1.5 cm gap in
the rat median nerve. The
presence of a fascicle of
regenerated fibers in the inner
part of the conduit can be clearly
detected. Bar indicates 200 um.



Production of Hollow Fibers

Higher magnification confocal
imaging of regenerated nerve fibers
inside the PCL guides (6 months
postoperative after 1.5 cm gap
repair in the rat median nerve): (A)
Anti-NF-200kD (axonal marker)
immunolabelling; (B) Anti-S100
(Schwann cell marker)
immunolabelling; (C) Bright field;
(D)

Merge. The advanced maturation
stage of nerve fibers formed by
axons (green) surrounded by glial
sheaths can be detected. Bar
indicates 10 um.




Tensione rilevata (mY)  Tensione rilevata {mVv)

Tensione rilevata (mV)

Results of in-vivo implantation of PCL hollow fibers
Electromyographic analysis

Regeneration of pereonal nerve of Wistar rats at 6 months

PCL Hollow Fiber
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Regenerated nerves within the
polymeric scaffold (a,c,e) and distal
stumps (b,d,f) at 30 (a,b), 60 (b,c) and
160 days (d,e) after surgery.
Regenerated nerve are composed of
numerous small, tightly packed fibers
with a thin myelin sheath. Medium fibers
are evident at 60 days (c) and scattered
large fibers are evident at 160 days (f).
Numerous small caliber blood vessels
are also evident in a. Multifocal
regenerating fibers are evident in distal
stumps in each groups (arrows).
Moderate endoneurial fibrosis is evident,
associated with multifocal axonal
degenerations (f). Bar= 30 um (a); 15 um
(c,d,e); 8 um (b,f).



Stress (MPa)

FIGURE 2. (a) Cross section of CNT/PCL hollow fibers with different
dimension and (b) hollow fibers made of PCL, P3HT/PCL, and
CNT/PCL.

15+

.
o
L

w
L

o PCL
@& PCL+CNT 1%
- &= PCL+CNT 3%

000 002 004 006 008 0.10
Strain

Stress (MPa)

Conductive hollow fibers II
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FIGURE 3. Stress-strain graphs of (a) CNT/PCL (b) P3HT/PCL hollow fibers.

Gattazzo et al, ] Biomed Mater Res B Appl Biomater. 2014 Oct 3



Conductive hollow fibers
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FIGURE 4. Impedance (a) magnitude and (b) phase profiles of CNT/PCL hollow fiber and (c) magnitude (d) phase profiles of P3HT/PCL hollow
fiber.



Conductive hollow fibers
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FIGURE 6. (a) Representative images of SH-SY5Y cells stained with synaptophysin (green) after 1 week in culture with retinoic acid (RA) on (1)
cover glass, (2) PCL+ 1 wt % CNT, and (3) PCL+ 3 wt % CNT. Nuclei were stained with DAPI. Scale bar =50 pm. (b) Quantification of neurite
length by tracing method. Data are shown as mean = s.e.m. of three independent replicates. *Significance against glass * at p <0.05; $ Signifi-
cance against PCL at p<0.05 (ANOVA test). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]




Future of Live Scaffold
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