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Material mechanical properties

• Little consensus in the literature

S Marchesseau et al, Progr in Biophys and Mol Biol 103:185-96 (2010) G Mattei and A Ahluwalia, Acta Biom 45:60-71 (2016)



Elastic, viscous and visco-elastic response



Deborah Number

• Originally proposed by Markus Reiner, professor at Technion in Israel, who chose the name inspired 
by a verse in the Bible "The mountains flowed before the Lord" in a song by prophet Deborah

– For man – in his relatively short lifetime – the mountains are solid, but for the Lord with an infinite observation 

time, the mountains flow.

 = Maxwell relaxation time (time 

for material to “reach” equilibrium 

after perturbation)

= Observation time

High De: material is more like 

elastic solid

Low De: material is more like a 

viscous fluid



Examples of viscoelastic materials



Stress Relaxation

When a body is deformed (or strained) and that deformation (or strain) is held constant, 

stresses in the body reduce with time.

Figure from Fung “Biomechanics” 2nd ed.



Creep

When a body is loaded (or stressed) and the stress is held constant, the body continues to 

deform (or strain) with time.

Figure from Fung “Biomechanics” 2nd ed.



Hysteresis

When a body subjected to cyclic loading, load-displacement (or stress-strain) behavior for increasing 

loads is different than behavior for decreasing loads.  

The area between the curves represents energy loss (dissipation).

Figure from Fung “Biomechanics” 2nd ed.



Viscoelasticity

• Behavior exhibited by a material (or tissue) that has both viscous and elastic

elements in its response to a deformation (or strain) or load (or stress)

• Represented by:

– Spring for elastic element

• Assumed to linearly elastic

– Dashpot/damper for viscous element

• Follows Newtonian fluid constitutive law 
𝜎 = 𝜂

𝑑𝜀

𝑑𝑡

𝜎 = 𝜇𝜀 (or 𝜎 = 𝐸𝜀)



Lumped parameter models

The Maxwell, Voigt and Kelvin (SLS)

models are all composed of

combinations of linear springs (µ or E)

and dashpots (η).

A linear spring with spring constant 

theoretically produces a deformation

proportional to the load.

A linear dashpot with coefficient of

viscosity  produces a velocity

proportional to the load.



Maxwell model

• Represented by a purely viscous damper (η) and a purely elastic spring (E) connected in series

• The model can be represented by the following differential equation (DEQ):

• Predicts/models a stress that decays exponentially with time to zero with permanent
deformation

• Model doesn’t accurately predict creep (constant stress). Predicts that strain will increase
linearly with time. Actually strain rate decreases with time

Stress relaxation experiment 



Voigt model

• Represented by a Newtonian damper (η) and Hookean elastic spring (E) in parallel

• The model can be expressed as a linear first order DEQ

• Represents a solid undergoing reversible viscoelastic strain

• Models a solid that is very stiff but will creep (e.g. crystals, glass, apparent behavior of cartilage). At
constant stress (creep), predicts strain to tend to σ/E as time continues to infinity

• The model is not accurate for predicting stress-relaxation in a material/tissue

Creep and recovery response



Standard Linear Solid (SLS) model

• Represented by a Hookean spring in parallel to a Newtonian damper + Hookean spring arm

• The model can be expressed as a linear first order DEQ:

• Represents a solid undergoing an elastic and a reversible viscoelastic strain

• At constant stress (creep), predicts an initial strain from the spring which will creep over time until 
the parallel spring carries all the applied load

• The model is a linear approximation of viscoelastic materials/tissues that are time dependent but 
completely recover from applied loads
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Summary: creep and relaxation responses
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Generalized Models

• Generalized Maxwell model consists of Maxwell elements in parallel to a pure spring

• Generalized Voigt model consists of Voigt elements in series to a pure spring



Maxwell model creep



Creep functions

• Solving the DEQs for the Maxwell, Voigt, and Kelvin models for displacement ε = c(t), when the
stress (t) is a unit step function 1(t)

• We obtain a set of results known as the creep functions

• These functions represent the elongation (strain) in the viscoelastic material which is produced by a
sudden application of unit stress at time = 0

c(t) = (1/ + t/)1(t) Maxwell

c(t) = 1/ (1-e-(/)t)1(t)                  Voigt

c(t) = 1/ER [ 1 – (1-/)e-t/]1(t) SLS

where  = 1/1 ,  = (1/0)(1 + 0/1), and ER = 0 



Maxwell model relaxation



Relaxation Functions

• Solving the DEQs for stress [(t) = k(t)] when the applied strain is a unit step function ε(t) =1(t) yields 
the relaxation functions

• These represent the resisting stress as a function of time

k(t) = e-(/)t1(t) Maxwell

k(t) = (t) + 1(t) Voigt

k(t) = ER [ 1 – (1 - /)e
-t/]1(t) SLS

where  = 1/1 ,  = (1/0)(1 + 0/1), and ER = 0 



Linear model summary

Maxwell
• Good for predicting stress-relaxation

• Poor at predicting creep

• Used for soft solids with non-recoverable deformations

Voigt
• Good for predicting creep with small elastic deformation

• Not accurate with predicting stress relaxation

• Used for polymers, rubber, cartilage when the load is not too high

Standard Linear Solid
• Predicts both creep and stress-relaxation

• Fully recoverable & initial elastic displacement

Generalized
• Used for fitting experimental data to an arbitrary level of accuracy



Nano-indentation

• A popular technique to characterise material mechanical properties at the micro-scale

• Typically, a probe is brought in contact with a surface, pushed into the material and then retracted,
recording load (P) and displacement (h) over time (t)

• The P-h-t data are then analysed with a range of models, such as elastic, elastoplastic, viscoelastic
or poroviscoelastic, to derive material mechanical properties



Why nanoindentation?

• Ideal for probing local gradients and heterogeneities (typical of e.g. natural materials) and
investigating their hierarchical multi-scale organization

• Does not require extensive sample preparation prior to testing (in contrast with most classical
techniques, e.g. tensile testing which requires “dog-bone” shaped samples)

• Allows the measurement of very small forces and displacements (generally in the range of µN ÷ mN
and nm ÷ µm, respectively)

• Requires small volumes of materials, and is thus particularly suitable for valuable samples

• Very small forces are applied, thus the technique is well suited for soft biomaterials (e.g. hydrogels),
which due to their pliable and highly hydrated nature, are a challenge to characterise using
macro-scale techniques



Why nanoindentation?

• A variety of deformation modes can be studied at typical cell length-scales by changing
experimental time scales, indenter tip geometry and loading conditions



Why nanoindentation?

• Most commercial nano-indentation systems come with an automated x-y stage that allows spatial
mapping of sample local mechanical properties



Why nanoindentation?

• The mechanical behavior of biological tissues generally changes with

• Thus, nanoindentation can also be attractive in the biomedical context as a potential diagnostic 
tool or for engineering smart cell culture scaffold based on intelligent materials

development ageing disease



ELASTIC PROPERTIES



Elastic properties: unloading curve analysis 

Oliver-Pharr model

• Introduced in 1992 and revised in 2004, it is based on an elastic–plastic contact model and uses 
three key parameters from the indentation test:

– the peak indenter force (𝑃𝑚𝑎𝑥)

– the peak indenter displacement (ℎ𝑚𝑎𝑥)

– the unloading slope or stiffness (𝑆 = 𝜕𝑃/𝜕ℎ) 



Elastic properties: unloading curve analysis 

Oliver-Pharr model

• The Oliver–Pharr method begins by fitting the unloading portion of the indentation load–depth
data to the power-law relation shown below:

• Once the three fitting parameters α, m and hf are obtained, the contact stiffness S, which is
defined as the slope of the unloading curve at the maximum indentation depth, can be computed
from

• The contact depth of the spherical indentation hc can be calculated by following the Oliver–Pharr
method as



Elastic properties: unloading curve analysis 

Oliver-Pharr model

• The contact area Ac can be computed directly from the contact depth hc and the radius of the
indenter tip R

• The contact stiffness S and the contact area Ac are then used to calculate the reduced (or
effective) modulus

where β is a dimensionless correction factor which accounts for the deviation in stiffness due to the
lack of axisymmetry of the indenter tip, with β=1.0 for axisymmetric indenters, β=1.012 for a square-
based Vickers indenter, and β=1.034 for a triangular Berkovich punch

• β = 1 for spherical indenter tips



Elastic properties: unloading curve analysis 

Oliver-Pharr model

• After obtaining the reduced modulus Er, the indentation modulus from the Oliver–Pharr method
can be finally determined by

where vs is Poisson's ratio of the specimen, Ei and vi are respectively the elastic modulus and
Poisson's ratio of the indenter. For ordinary single phase materials, the indentation modulus
obtained is the elastic modulus of the specimen.

• If the indenter elastic modulus Ei is much larger than that of the specimen (e.g., SMAs, hydrogels,
soft (bio)materials), the indenter can be treated as a rigid body and Eop can be simplified as



Elastic properties: loading curve analysis 

Hertz model

• The analysis of the loading portion of nano-indentation data collected with a spherical tip is 
generally based on the Hertz model, assuming a linear elastic and isotropic material response.

• The load 𝑃 is expressed as:

where 𝑹 is the radius of the spherical indenter tip, 𝒉 is the penetration depth and 𝑬𝒆𝒇𝒇 denotes the 

effective composite elastic modulus of the indenter and specimen system given by:

𝐸′ and 𝜐′ respectively refer to the modulus and Poisson’s ratio of the indenter, while the other terms 
refer to those of the sample



Elastic properties: loading curve analysis 

Hertz model

• For a rigid spherical indenter, Sneddon showed that the elastic displacements of a plane surface 
above and below the circle of contact are equal and given by ℎ/2, with:

where 𝒂 denotes the contact radius during indentation. Combining previous equations yields:

The left side is generally referred to as the indentation stress (𝝈𝒊𝒏𝒅) or mean contact pressure, while 𝒂/𝑹
on the right side represents the indentation strain (𝜺𝒊𝒏𝒅) 



Elastic properties: loading curve analysis 

Hertz model

• In case of soft materials, where 𝐸′ ≫ 𝐸, it can be approximated that:

• Consequently, the sample elastic modulus can be derived as:



Loading analysis issue: initial contact point

Ideal tests should start out of sample contact  need of displacement-controlled 
experiments and post-measurement identification of the initial contact point

Commercial load-

controlled nano-

indenters

Load-based contact 

point determination

Even small trigger load can cause 

a significant pre-stress on soft 
samples

Cao Y et al., 
J Mater Res 20 (2011)

Kaufman et al., 

J Mater Res 23 (2008)



Loading analysis issue: initial contact point

• A possible solution…

Tirella A et al., JBMR A 102 (2014) Mattei G et al., J Biomech 47 (2014) Mattei G et al., JMBBM (2015)

Last point at which the 

load crosses the P-h 
abscissa during loading 

𝑷

𝒉

Unique identification of the contact 
point both when

✓ Snap into contact is poorly 

evident

✓ Noise around zero load is present



Advantages of loading curve analysis

• Mechanical properties representative of those of the virgin material, returning a constant modulus 
value regardless of the maximum load (or displacement) chosen for the measurements.



Advantages of loading curve analysis

• Moreover, during unloading it is assumed that only the elastic displacements are recovered, thus 
methods based on the unloading curve are unsuitable for testing viscoelastic materials.

𝑺 < 0 !!!



VISCO-ELASTIC PROPERTIES



Creep

• A creep test is based on applying a constant load and measuring the change in displacement
over time due to viscoelastic phenomena

• Hertz-type viscoelastic theory can be used to obtain the effective creep compliance of a material
under a step load (𝑃0, constant over time) imposed by a spherical indenter, obtaining:

In case of soft materials where 𝐸′ ≫ 𝐸, the creep
compliance becomes:



Stress-relaxation

• Stress-relaxation can be considered the dual of creep test. It consists of measuring the load
relaxation over time in response to a constant step indentation input (ℎ0). Assuming 𝐸′ ≫ 𝐸, the
relaxation modulus can be expressed as:

Notably, in general 𝐸(𝑡) ≠ 1/𝐽(𝑡),
except for 𝑡 = 0 where 𝐸 0 = 1/𝐽(0).
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