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1. What is the interesting part of Motion
planning in Robotics

Ok, lets first talk about problem faced in
robotics doing motion planning. Robotics
iIncludes:

* Perception: Get information about the
environment using sensors (Cameras,
Laser...)

. . Decide the steps to follow in
order to perform a task.

« Execution: Control the robot to perform

this action (Prof Bicchi talked about this: Computed
torque, Back steeping, Arimoto, Feedforward control, Sliding

modes ... OMG )
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The Motion Planning Problem

* Consider a Configuration Space (CS) as a compact set of gdi €RTd
elements called configurations. Defining the obstacle region as

CSlobs €CS, CSLfree:=CS\CSlobs is the free region. Thus, we
need to find a continuous path

g [0,1]-CSLfreel{o(0)=qglini, o(1)=qglfinal}

~

Obstacle
Space



... Just recalling

* The three main philosophies for addressing the motion planning
problem are:

e Combinatorial planning (exact Planning)
* Sampling-based planning
* Artificial potential fields methods



State of the art in combinatorial planning
(cell decompositions)

* Fast Marching Method (FMM)
* It is based on the solution of Eikonal equations over a grid
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FMM: Algorithm

input : A grid map G of size m X n
input : The set of cells Or: where the wave is originated
output: The grid map G with the T value set for all cells
Initialization
foreach g;; € Ori do
gz-j.T +— 0;
gij.state < FROZEN;
foreach gy € gij.neighbours do
if gri = FROZEN then skip; else
gi1. T + solveEikonal(gir);
if gi;.state = NARROW BAND then
narrow_band.update_position(g_kl);
if g;.state = UNKNOWN then
gr1-state < NARROW BAND;
narrow_band.insert_in_position(gkl);
end

end
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FMM: Algorithm - I

lterations

while narrow band NOT EMPTY do

gij < narrow_band.pop_first();

foreach gy € gij.neighbours do

if gry = FROZEN then skip; else

gr1- I + solveEikonal(gy;);

if gp;.state = NARROW BAND then

narrow_band.update_position(g_kl);

if gr;.state = UNKNOWN then
gii.state +— NARROW BAND;
narrow_band.insert_in_position(gkr);

end

end

end

end

end
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State of the art in combinatorial planning
(cell decompositions)

Advantages:

Optimality is guaranteed

Can be applied over manifolds
Disadvantages

Resolution complete

Slow in high dimensional spaces
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... Just recalling

* The three main philosophies for addressing the motion planning
problem are:

 Combinatorial planning (exact Planning)

* Artificial potential fields methods
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The Configuration Space

xd2
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tixed point

L (measured to the
midpoint of the weight.

weight w

xl1

Possible configurations lies on

g=(xl1 ,xd2 )ERT2 |1 T2 +x4272
=/ xl2

xd1

In this case the topological space 571
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The Configuration Space

xl2
fixed point
e Sl -
L (measured to the < >
midpoint of the weight. <--- \/ ---

weight w

e

U = {x € Sl|x2 > 0},

xi1 Uy = {x € §7|x2 < 0},
Us = {x € St|x; > 0},
Us = {x € St|x; < 0},
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The Configuration Space

iy )'

Topological Space
CS=ST1 xXST1 =772
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The Configuration Space — Typical
Examples

¢ ST1 XS5T1 X...XS5T1 (ntimes)=7Tn+STn
o ST1 XST1 XST1 +50(3)
« SE(2)+RT3

» SE(3)+ART6

* #T1 and SO(2) are 1-dimension manifolds

o T2 ,5T7T2 and 7’72 are 2-dimension manifolds

* 13 and S£(2) SO(3) and are 3-dimension manifolds
* 76, S£(3) and 776 are 6-dimension manifolds

R



The Configuration Space — Typical

Examples

Robot Type

CS Representation

Robot movil with planar translation

Robot movil with planar translation and rotation
Rigid object with traslations in 3D

Free Rigid Object in 3D

Robot arm with 7 articulations

Planar mobile robot with an Robot arm with ~ articulations mounted on it

RT2

SE(2) or RT2 xST1

RT3

SE(3) Or RT3 x50(3)

T'Tn

SEQR)XTTn




Random Sampling-based Methods

&l /
] \ fﬁff:{ff

. . ¥ ) Y
* There exist two main v
approaches ~ e

i

 RRT (Rapidly-Exploring Random PN N
L o ‘ }\ 0\

Trees) -

 PRM (Probabilistic Roadmap
Method)




What do | need to apply this algorithms?

* Local motion planning policy (gradient-based, interpolation, optimal
control)

 Collision detector (PQP, SOLID, V-Clip, Rapid, V-Collide). Example

* Cost function (Metric in topological spaces: Euclidean norm,
Manhattan norm, Lp-norm)

* Sampling Method (Uniform, normal/biased sampling, manipulability)

 Geometric information about robot and environment (Mesh of links
and obstacles)

* Smoothing function



What is the Idea”?

* The method: Instead of Exploring
exhaustively all possibilities, why
not exploring randomly a sub-set of
these possibilities but maintaining
progress in exploration.

* The Cost: Relax Completeness and
optimality of the solution

* The aim: Trade-off among quality
of the solution and computational
time

26/05/15
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PRM — The method

* The objects are already
augmented using Minkowsky
sum, thus the robot can be
considered as a point.

forbidden space Frt/ee/feasible space

* Cost Function: Euclidean Norm
* Local planning: Interpolation

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M. H. (1996), "Probabilistic roadmaps for
path planning in high-dimensional configuration spaces", IEEE Transactions on Robotics and
Automation 12 (4): 566—580




PRM — The method

* Explore CSUf7ree using a finite
number of randomly sampled
configuration




PRM — The method
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PRM — The method

* Find all feasible connections in
all remaining points in CS¢f7ree

 Also called learning phase

* Roadmap is donell!
* Let’s make a query

26/05/15
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PRM — The method

* Find a path!!!
 Dijktra’s, A*...

* Connect Initial and final
configuration to the roadmap

26/05/15
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PRM — Application examples

Multiple PRM is used to connect the complete space
going through singular configurations

26/05/15
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PRM — Application examples

Finding better grasp configurations — Using continuation
Methods

PRM is performed in the object

PRM VIDEOS

26/05/15
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RRT — The method

pop- - *Topology of the space : CS=AT2
Gl L :~|~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
T q
A—
.
A , '
9 rand

Lavalle, S.M. (1998). "Rapidly-exploring random trees: A new tool for path planning". Computer

Science Dept, lowa State University, Tech. Rep. TR: 98-11.
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* RRT algorithm using 200 samples

* RRT algorithm using 600 samples

* Is the same path !!!
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RRT and PRM Differences

* RRT * PRM
* Single query : you have * Multiple query : If the
to build a tree for each environment does not
query change the roadmap is
 Fastinitial solution reusable.
* Better for dynamic * Slow but the quality of
environments the path is better

* Better for static
environments

Applicable in real time

This methods deliver a global solution, there are local minima
(using uniform distribution)

What if we combine them? It depends on your application!



RRT”
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b ; ; : : : -

Can we Rewire??

10

RRT* 200 samples

Basically you have to apply the _
A* algorithm in each iteration Is it better?? ®

Sertac Karaman and Emilio Frazzoli. Incremental Sampling-based Algorithms for Optimal
Motion Planning, 2010.
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RRT* 200 samples
RRT* 2000 samples

12k

Y S
s

RRT vs. RRT*

RRT 2000 samples

RRT 200 samples
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RRT vs. RRT*in 777
RRT RRT*

Kuka LWR-IV Collision deti®@ & D Kuka LWR-IV Collision deti®@ & D

Time RRT = ~.97sec
RRT*=~1.8sec

Cost Function 4.28 2.23
Samples 5000 5000

CAllicinn NDNatarcrtar PDOYD All thiec in O4+41+ A~ 0O



5. RRT vs. RRT~

26/05/15
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Summarizing

* + Positive Issues * - Negative Issues

* Probabilistic Completeness but * Behavior is not good when narrow
not deterministic passages.

* |t is not necessary to build the * Connection among nodes is
Configuration Spaces. difficult when there exist

« Easy application in High- additional constraints
Dimensional Spaces * It is difficult to guarantee

* Fast queries completeness and optimality.

Remember to use an smoother to apply paths in real
robots Videac



State of the Art

e Constrained Motion Planning (Projection, rejection, direct sampling)
* Kavraki 20001, Cortes 2005, Stilman 2010, Stilman 2013, Berenson 2013

* Acceleration level constraints (Kinodynamic Planning)
e Lavalle 2001, Masoud 2010

* Introduce Compliant (Can we relax constraints through compliance?)
* Relaxing Constraints
e Reactive Planning



Considering non-holonomic constraints

The difference resides in the local planning
policy



The Motion Planning Problem with

constraints

* Consider a Configuration Space (CS)EARTd as a compact set of gd/
elements called configurations. Defining the obstacle region as

CSlobs €CS, CSLfree:=CS\CSlobs is the free region. Then a
constrained subspace is defined by CSYcon :={qgli | F(gli )=0}.
Thus, we need to find a continuous path

g [0,1]-CSlvalid |{o(0)=qglini, o(1)=qglfinal}

Where CSlvalid =CSlfree NCSicon



The Motion Planning Problem with
constraints

‘].%A

-
/ q>

qi
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What is the main problem

* First £:SYcon is defined by in an implicit function #(g{7 ) describing,
thus impossible use direct sampling

o (Sycon has lower dimension than €S
* The probability of sampling a point in C:S{con is defined by
p=vol(CSicon)/vol(CS), this is zero!!!



State of The art

 Random sampling approaches for constrained systems can deal with
 Nonholonomic Constraints (Lavalle 2000)
* Closed kinematic Chains (Cortes 2005)
e Task Constraints (Stillman 2007)
 Dynamic Constraints (Masoud 2010)

e The main methods are:

Direct Sampling (It requires a splicit

Rejection Projection
’ . parameterization of CSdvalid



State fo the Art

 What are the problems with this approaches?
* Most (practically all) samples are rejected in method one
* Projections take long computational time
* PRM and RRT are far from optimality (unnecessary complex motions typically

appear)
* There is no provision for planning or controlling interaction forces

* Good News !!!
* Most of the times, motions need not to exactly match the plan
* Indeed, execution will not coincide with plans, and environments are not as
modeled, so some built-in robustness is mandatory
* Systems are not rigid — indeed, modern robots are rather soft, or even have
variable stiffness



So what can we do?

* Relax!!!
* Instead of planning on #(gl/ )= 0 we can plan in /(g )<|€|

* Now there is a narrow but fully dimensional boundary
layer. Thus, there is probability of picking a point on the £
Slvalid
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So what can we do?

e Recently Recenlty Frazzoli in 2013 propose a method to bias new
samples to free space using an weighted kd-tree.

 We can use it to bias new samples to the manifold.

26/05/15
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Algorithm 1: GenerateSample (H, v)

. 1 if v.c[0] = v.c[1] = () then
Adaptive £d-tree " sl

3 v +—v.T+1;
4 r = Collision-free () ;
5 if r then
6 V.T T

. T v.F «—v.F+1;
8 (v.c[0],v.c[1]) < Split (v, x) ;
9 for i = {0,1} do
10 v.cli].P + v ;
11 v.cli].j « (v.j+ 1) mod d ;
12 w < Measure (v.c[i]) /Measure (v) ;
13 v (:[i].T —w-v.T;
14 v.efi]. F — w-v.F ;
15 v.c[i].M = (%H—;) Measure (v.cli]) ;
16 else
17 u — SampleUniform ([0, v.M]) ;
18 if u <wv.c[0].M then
19 | (x,7) < GenerateSample (v.c[0]) ;
20 else
21 | (z,7) « GenerateSample (v.c[1]) ;
2 v.M = v.c[0].M + v.c[1].M ;

23 return (z,7)
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What does relaxation means in real
robots?

Pulling Forces

Pushing Forces

26/05/15
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So we need a Controller

* Controller task
* Follow the planned path
* Project back the configurations to the constraint
* Maintain desired interaction forces

* We can do this with Force/Position Controllers

* There are a lot of approaches to do that (linear,
nonlinear, robust, adaptive, Force-position
subspaces, etc.)



Linear Controller

* Linearized dynamic equations of the system

i = Ar + B, 7' + B,w

&
/

T

W
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Linear Controller

* Linearized dynamic equations of the system

i = Az + B;7 + Bow

T Ci
r = qz;-uZ; 0f 071
=1 —J .,
_’ Rigid Body motions
W — (Tfeq.

Internal forces

26/05/15

Cp = [0700]

[[\'.] — KGT B,J — BGT]
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Linear Controller

* Linearized dynamic equations of the system

Internal forces

i = Ar + B, 7' + B,w T

w = Gieg. Y
Y
Y

26/05/15

CiAx + Cy BT/
CiAx + ETB,JM; ‘1)

Rigid Body motions

Cy Az + Cy B,
CyAx + 07}

C A%r + C AB. T}
C A%r + 07}
CyAx + C A’B, 7}
C,A%r + fiﬁ[{;lGBq.M[,:lr:.
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Linear Controller

* Linearized dynamic equations of the system

i =Ar+ B.7" + B,w

("u A? : (’u A?
- S N & P = o and Q) = 3
r = [ng “Zq 0f (,,)T] ! CiA ] @ [ C' ]
=1 —Jt,, |
w = Gtegq. r=—-Q (Px+71")
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The method

Noninteracting
Control Real robot

RRT* on the
boundary layer
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Results
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4 dof Example

() (8) (h) (i) i)

Fig. 7. Final path from the presented experiment. a) Initial position and j) final position.
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Things to add to randomized planning

* Exploit Randomized planers (Not to expect just a yes/no answer)
* Compliance (Bonilla)
* Planning for contact points (Houser)
 Minimal Constraint Removal (MCR) problem (Hauser)
* Uncertaintity (Zito)
 Bias for High Dimensional Spaces (Stilman)



Libraries for Motion Planning

* OMPL http://ompl.kavrakilab.org/

* Moveit (ROS Interface for OMPL) http://moveit.ros.org/
* Klampt http://motion.pratt.duke.edu/klampt/

* Openrave http://openrave.org/

* There is a repository on github with the kuka nimanual platform of
centro piaggio. Ask for an account to use it.
http://github.com/centroepiaggio

* Manue.bonilla@centropiaggio.unipi.it
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