Analysing and presenting data: practical hints

Giorgio MATTEI

giorgio.mattei@centropiaggio.unipi.it

Course: Meccanica dei Tessuti Biologici Date: 05 May 2016

Statistics is the study of the collection, organization, analysis, interpretation, and presentation of data. It deals with all aspects of this, including the planning of data collection in terms of the design of surveys and experiments. [*Wikipedia*]

>In general, the population is too large to be studied in its entirety \rightarrow a sample of *n* individuals is extracted from the same population as a representative to study its properties

The statistical process

POPULATION

Tables and frequency graphs Discrete domain: dice throw

Result	Frequency (n)	Relative frequency (n/N)	
1	9	0.18	
2	12	0.24	
3	6	0.12	
4	8	0.16	
5	10	0.2	
6	5	0.1	
TOTAL	50	1	

Tables and frequency graphs Continuous domain: human height

Interval	Central value	Frequency	Relative frequency	
141.5-148.5	145	2	0.01	Need to group data defining histogram bins
148.5-155.5	152	7	0.035	
155.5-162.5	159	22	0.11	
162.5-169.5	166	13	0.065	
169.5-176.5	173	44	0.22	
176.5-183.5	180	36	0.18	
183.5-190.5	187	32	0.16	
190.5-197.5	194	13	0.065	
197.5-204.5	201	21	0.105	
204.5-211.5	208	10	0.05	

There is no best/optimal number of bins and different bin sizes can reveal different features of the data

- ✓ Methods for determining optimal number of bins generally make strong assumptions about the shape of the distribution
- ✓ Appropriate bin widths should be experimentally determined depending on the actual data distribution and the goals of the analysis
- ✓ However there are various useful guidelines and rules of thumb

- stem(X,Y) discrete variables
- **bar(X,Y)** continuous variables
 - f=histc(X, edges) number of elements between edges

Position (or central tendency) mode, median and mean

- Mode: the value(s) that occurs most often
- Median: the middle value of a data set arranged in ascending order
- Arithmetic mean: sum of all of the data values divided by their number

Mean (*m*) calculation What we know?

Case A: values (x_i) of each of the *n* observations

$$m = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

Case B: *x_i* are not known: *n* data grouped in *k* intervals

$$m \cong \frac{l}{n} \cdot \sum_{i=1}^{k} f_i x_i = \sum_{i=1}^{k} x_i \left(\frac{f_i}{n}\right)$$

where f_i is the number of observation within the interval centred on the value x_i

Dispersion (or scatter) *variance* and *standard deviation*

- The measure of scatter should be
 - proportional to the scatter of the data (small when the data are clustered together, and large when the data are widely scattered)
 - **independent of the number of values in the data set** (otherwise, simply by taking more measurements the value would increase even if the scatter of the measurements was not increasing).
 - **independent of the mean** (since now we are only interested in the spread of the data, not its central tendency)
- Both the variance and the standard deviation meet these three criteria for normally-distributed data sets

$$s^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - m)^{2}$$

 $s = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - m)^2}$

Variance

Standard deviation

MATLAB *Position and dispersion*

- mode(X)
- median(X)
- mean(X)
- var(X)
- std(X)
 - Note that std(X) = sqrt(var(X))