

Università di Pisa

INGEGNERIA DEI TESSUTI BIOLOGICI: STRESS-STRAIN TEST

Giorgio Mattei

giorgio.mattei@centropiaggio.unipi.it

31 March 2016

Stress-strain basics

Stress-Strain curve is the relationship between the stress and the strain exhibited by a given material. It is *unique* for each material and is found by recording the amount of deformation (strain) at distinct intervals of tensile or compressive loading (stress). [Wikipedia]

Stress-Strain curve: utility

Evaluate material mechanical properties

Stress-Strain: standard vs real sample

Standard «dog-bone» shaped sample

"...It has two shoulders and a gauge (section) in between. The shoulders are large so they can be readily gripped, whereas the gauge section has a smaller cross-section so that the deformation and failure can occur in this area..." [J. R. Davis, Tensile testing (2nd ed.), ASM International, 2004]

Real Sample

Depends on what you are testing and typically it is **NOT standard**!

- No sufficient material
- Heterogeneous (especially tissues or natural materials)

Obtaining experimental data

Zwick/Roell ProLine Z005

- Uniaxial testing device
- Precision crosshead guidance
- Easy change of application:
 - flexible plug and T-slot system allows specimen grips/test fixtures to be changed enabling a wide range of tests to be performed with the same testing machine
 - load cell can be changed depending on the required force resolution

Zwick/Roell ProLine Z005

- ProLine is available with **test speeds from 0.0005 to 1500 mm/min,** depending on type. Testing machine speed is independent of the test load.
- The high test-speed range can be used without restriction. In addition, test loads up to 110% of machine nominal load are permissible to compensate for heavy combinations of test fixtures, accessories etc.
- ProLine is available for test loads up to 100 kN and with test area heights from 1050 mm to 1450 mm.
- ProLine can be operated with standard commercial PCs or laptops and requires no special expansion card.

🍞 testXpert II - C:\ZWICK\TESTX	<pre>KPERT II\DATA\gelatina_A.zs2</pre>	2			_ @ 🗙		
File Machine Specimen management	Configuration Options Help						
Apri Forza 0 LE	Start Stop M	Muovi Ricalcola	Stampa Fine Ctrl+D	Zwick	Roell		
Series layout Specimen layout ₩	fizard						
Expanded 🚺	Parameterise the mac	hine's start positi	on here		<u>Help</u>		
Test definition		🧼 Grip to grip	separation at the start position	A 79.70	mm 🗸		
🔷 Start position 🗸		🤝 Velocità di	posizionamento a LE	500	mm/min 🔽		
Pre-load		🔷 🗌 Accett	a la posizione corrente della traversa com	e posizione iniziale			
Specimen data		Percorso o	li approccio	No	~		
AAA Conditioning phase		🤝 Preselezio	ne per il tratto utile della traversa	Distanza tra i tool	~		
Test phase		🔷 🗹 Correzi	one del tratto utile				
Load application phase							
🚧 End of test	The current value of the machin	neis					
Results	accepted by activating the action	button					
🚖 Actions after test							
Test data memory							
Control parameters							
Parameters for the report							
F		0.001	Grip to grip separation		103 895		
[N]		0.001	[mm]		100.000		
DUPS - Drive system is ready				Test environment name: Defa	ault User: Impedenzimetro		
🚺 Start 🔰 🧐 🙆 👘 test	tXpert II - C:\ZWI 🧖 Microso	ft PowerPoint		()	0 👷 👷 🦁 3:31 PM		

TestXpert II software: wizard

🇊 testXpert II - C:\ZWICK\TESTXPE	RT II\DATA\gelatina_A.zs2							Jax
File Machine Specimen management Cor	figuration Options Help							
Apri Forza 0 LE	Start Stop Muovi	Ricalcola	Stampa Fine					
					Ζ	w <i>i</i> cl	k / Ro	ell
Series layout Specimen layout Wiza	rd	F8	L(II+D					
Expanded 🚺 7	Fest phase							<u>Help</u>
Test definition		🧇 🗹 Tipo di	fase di misurazione		Cicli			v
Start position	-	Number of	cycles			1		
Pre-load		Speed of c	ycles	Strain controlled	*	0.07	mm/min	~
Specimen data	$ \land \land \land \land$	🧇 Point of loa	ad application of the cycles	Strain	~	80	mm	~
Conditioning phase		🧇 🗌 Increas	e at the point of load applicat	tion of the cycles		1	mm	~
💋 Test phase 🖌 🗸		🧇 🗌 Holding	; time at the point of load appl	lication of the cycles		5	\$	~
Load application phase		Other s 🔍 🔍	peed for load removal at	controlled positioning	~	10	mm/min	~
🗱 End of test	Selection of the test phase's tune	Point of load	ad removal of the cycles	Strain	~	0.000	mm	~
Results		🧇 🗌 Increas	e at the point of load removal	l of the cycles		1	mm	~
Actions after test		🧇 🗌 Holding	; time at the point of load remo	oval of the cycles		1	S	~
Test data memory		🧇 🗌 Start cy	cles at the point of load remo	oval				
			l certain cycles only					
Parameters for the report								
_		_						-
F [N]		0.001	Grip to grip separat [mm]	tion			103.8	95
DUPS - Drive system is ready				Te	st environ	ment name: D	efault User: Imped	lenzimetro
🐉 start 🦻 🧐 👘 testXpe	rt II - C:\ZWI 🧕 👩 Microsoft Powe	rPoint			0	🔶 🇞 🔞 🤆	0 1 1 1 1 1	:31 PM

Zwick/Roell ProLine Z005

- direct reading of the distance measured with high accuracy and precision
- 0.05 mm resolution

Calliper: how to use it

- **1. Outside jaws**: used to measure external diameter or width of an object
- 2. Inside jaws: used to measure internal diameter of an object
- 3. Depth probe: used to measure depths of an object or a hole
- 4. Main scale: scale marked every mm
- 5. Main scale: scale marked in inches and fractions
- 6. Vernier scale gives interpolated measurements to 0.1 mm or better
- 7. Vernier scale gives interpolated measurements in fractions of an inch
- **8. Retainer**: used to block movable part to allow the easy transferring of a measurement

Micrometer: how to use it

Micrometers use the principle of a screw to amplify small distances (that are too small to measure directly) into large rotations of the screw that are big enough to read

Resolution 0.01mm
(10μm)

*Sleeve is the most prevalent name. May also be called the barrel or stock.

**Aka lock-ring. Some mics have a lock lever instead.

Micrometer: how to use it

Modelling the linear response

In statistics, **linear regression** is an approach to modeling the *relationship* between a dependent variable y and one or more independent variables denoted x.

In linear regression, data are modeled using linear predictor functions, and unknown model parameters are estimated from the data.

Relationship between *input* and *output* is assumed as:

$$y = \alpha + \beta \cdot x + e$$

where

- **y** is the experimental output observed in response of an input **x**
- *α* and *β* are the unknown parameters to estimate (i.e. intercept and slope of the linear fit)
- *e* is a random error term such that $E\{\varepsilon_i\} = 0$ $\sigma^2\{\varepsilon_i\} = \sigma^2$ $\sigma\{\varepsilon_i, \varepsilon_j\} = 0$ $\forall i, j \ni i \neq j$

Parameters are estimated by minimizing the of *sum of squared residual* (SS_R)

$$y = \alpha + \beta \cdot x$$

$$SSR = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

residual = vertical distance between real data and estimated curve

Assumptions:

- (x_i, y_i) are independent and identically distributed observations
- x_i are random and sampled together with y_i

Parameters are estimated by minimizing the of *sum of squared residual* (SS_R)

$$y = \alpha + \beta \cdot x$$

$$SS_{R} = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

The SS_R is an index of inherent variability, quantifying how much the fitted line differs from the real output due the error (**e**)

Linear Regression

R^2 : a measure of goodness-of-fit of linear regression

The **better the linear regression** (on the right) fits the data in comparison to the simple average (on the left), the **closer the value of** R^2 **is to 1**. The **areas of** the **blue squares** represent SS_R. The **areas of** the **red squares** represent the S_{vv}.

Linear Regression

R^2 : a measure of goodness-of-fit of linear regression

$$R^2 := 1 - \frac{SS_R}{S_{yy}}$$

The coefficient of determination (R^2) ranges from 0 (model does not fit the data) to 1 (perfect fit)

$$SS_{R} = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$S_{yy} = \sum_{i} (y_i - \bar{y})^2$$

Microsoft Excel: Linear Regression

Two ways to evaluate fit parameters

• Directly on the plot: add trendline

🔟 🛃 🤊	• @ •	₹	-	-	Ca	rtel1 - Mic	rosoft E	xcel		-			St	rumen	iti grafico									
File	Home	Inserisci	i Lay	out di pagi	na Fo	rmule	Dati	Revisione	Visu	alizza	Team	Proge	ttazion	e I	Layout	Format	0							
Serie1 Line	a di tende o selezior osta secor zione corr	enza 2 × ne ido lo stile ente	Immagi	ne Forme	A Casella di testo	Titolo del 1 grafico *	itoli de assi *	gli Legenda Etichette	Etichette dati *	Tabella dati *	Assi A	Griglia •	Area tracci	del ato * g	Parete grafico * g	Base F grafico +	Rotazio 3D	ne l	Linea di ndenza *	Linee	Barr crescenti-deo Analisi	e crescenti	Barre di errore *	Nome grafico: Grafico 2 Proprietà
Gra	afico 2	• (f _x									-											
A		В	С	D	E	F		G	Н	1		J	к	Form	nato linea	di tender	nza							8 23
I I 2 3 3 4 5 6 6 7 8 9 10 11 12 13 13 14 15 16 17 18 20 21 22 23 24 25	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	8 9 16 22 23 30 37 41 47 57 63 68 76 79 84 90 100 1111 116 117 123 132 132 132 132 132 152 52			2		40	- 5003 - 60	γ = 6,008 R ² = (8x+3,577 0,9997	/19 100		20	Op Co Stil On Alc	ozioni linea Nore linea Inbreggiatu one e contr	di tendenz ıra orni sfuma	([[[[Opzic Tipo di	ni linea tendenza, Esp Esp Esp Poli Poli Poli Poli Mec inea di ten utomatico: ersonalizza inea di ten ersonalizza inea di ten ersonalizza inea di ten utomatico: ersonalizza inea di ten utomat	a di ten fregressic onenziale are aritmica nomiale enza lia mobile denza Line to: etta = [etta = [denza ne Ordine: Periodo: are (Serie 1) perio 0,0 I grafico dirato sul gra	2 2 di odi	4	
Pronto	rogilo.	L / FOGIO2	- C Fogi																					

- Easy method
- Data on plot
- GUI help

Microsoft Excel: Linear Regression

Microsoft Excel: Linear Regression

Two ways to evaluate fit parameter

• As a cell function: use linear estimation function

Case of study: the hair

Typical experiment and analysis

Testing the hair: experimental details

- 1. Measure hair diameter using the micrometre to evaluate the sample cross sectional area (A)
- 2. Clamp the hair using acetate sheets, then measure the distance between the latter using the calliper to evaluate sample initial length (l_0)
- 3. Assemble the **testing setup**
- 4. Acquire **force-displacement** curves at a **0.01 s⁻¹ strain rate** using the Zwick/Roell ProLine Z005 testing machine
- 6. Identify the first loading point, then offset force and displacement vectors to start from 0 in correspondence of the initial loading point and convert them into stress $(\sigma = F/A)$ and strain ($\varepsilon = \Delta l/l_0$), respectively
- 7. Plot stress-strain curve of the hair
- 8. Evaluate the elastic modulus of the hair as the slope of the stress-strain curve in the first linear (elastic) tract

When: 6 Apr 2016 - 9.00-13.00

Where: Laboratori Centro di Ricerca "E. Piaggio" – 3° piano Polo A, Scuola di Ingegneria, Università di Pisa

Giorgio MATTEI

Multi-dimensional in-vitro models group (Prof. Arti AHLUWALIA) c/o Centro di Ricerca "E. Piaggio" – 3° piano Polo A, Scuola di Ingegneria

http://www.centropiaggio.unipi.it/research/multi-dimensional-vitro-models.html

Tel: +39 050 2217050 Email: giorgio.mattei@centropiaggio.unipi.it Website: <u>http://www.centropiaggio.unipi.it/~mattei</u>