Analysing and presenting data: practical hints

Giorgio MATTEI

giorgio.mattei@centropiaggio.unipi.it

Course: Meccanica dei Tessuti Biologici Date: 17 May 2016

Equal or different? The case of two samples

Independent two-sample t-test

Equal sample sizes (**n**), **equal** variances (**S**_{X1X2})

The *t* statistic to test whether the means of group 1 ($\overline{X_1}$) and group 2 ($\overline{X_2}$) are different can be calculated as follows:

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S_{X_1 X_2} \cdot \sqrt{\frac{2}{n}}} \qquad S_{X_1 X_2} = \sqrt{\frac{1}{2}(S_{X_1}^2 + S_{X_2}^2)} \quad \text{(pooled) standard} \\ \text{deviation}$$

t-test DoFs = 2n - 2

 H_0 is refused with a significance level α if $t < -t_{DoF, α}$ or $t > t_{DoF, α}$

Independent two-sample t-test

Unequal sample sizes $(n_1 \text{ and } n_2)$, equal variances $(S_{X_1X_2})$

The *t* statistic to test whether the means of group 1 ($\overline{X_1}$) and group 2 ($\overline{X_2}$) are different can be calculated as follows:

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S_{X_1 X_2} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad S_{X_1 X_2} = \sqrt{\frac{(n_1 - 1)S_{X_1}^2 + (n_2 - 1)S_{X_2}^2}{n_1 + n_2 - 2}} \quad \text{(pooled) standard}$$

t-test
$$DoFs = n_1 + n_2 - 2$$

 H_0 is refused with a significance level α if $t < -t_{DoF, α}$ or $t > t_{DoF, α}$

Independent two-sample t-test

Unequal sample sizes (n_1 and n_2), **unequal** variances ($S_{X_1X_2}$)

The *t* statistic to test whether the means of group 1 ($\overline{X_1}$) and group 2 ($\overline{X_2}$) are different can be calculated as follows:

$$t = \frac{\overline{X}_1 - \overline{X}_2}{s_{\overline{X}_1 - \overline{X}_2}} \qquad \qquad s_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

«unpooled» standard deviation

t-test DoFs =
$$\frac{(s_1^2/n_1 + s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1 - 1) + (s_2^2/n_2)^2/(n_2 - 1)}$$
Welch–Satterthwaite equation

 H_0 is refused with a significance level α if $t < -t_{DoF, α}$ or $t > t_{DoF, α}$

Mean

Independent two-sample t-test (unequal sample sizes and equal variances): an example

- Two groups of 10 Dapnia magna eggs, randomly extracted from the same clone, were reared in two different concentrations of hexavalent chromium
- After a month survived individuals were measured: 7 in group A and 8 in group B

MATLAB Independent two-sample t-test

'left' \rightarrow " \overline{X} is less than \overline{Y} " (left-tailed test)

MATLAB

Ind. 2-sample t-test: an example

>> X=[2.7 2.8 2.9 2.5 2.6 2.7 2.8]';
>> Y=[2.2 2.1 2.2 2.3 2.1 2.2 2.3 2.6]';
>> [H,P,CI,STATS] = ttest2(X,Y,0.05,'both','equal')

Dependent two-sample t-test

one sample tested twice or two "paired" samples

$$t = \frac{\overline{X}_D - \mu_0}{s_D / \sqrt{n}}$$

- ✓ Calculate the differences between all n pairs (X_D), then substitute their average ($\overline{X_D}$) and standard deviation (s_D) in the equation above to test if the average of the differences is significantly different from μ_0 ($\mu_0 = 0$ under H_0 , DoFs = n 1)
- ✓ The "pairs" can be either one person's pre-test and post-test scores (repeated measures) or persons matched into meaningful groups (e.g. same age)

Example of repeated measures					
Number	Name	Test 1	Test 2		
1	Mike	35%	67%		
2	Melanie	50%	46%		
3	Melissa	90%	86%		
4	Mitchell	78%	91%		

Example of matched pairs					
Pair	Name	Age	Test		
1	John	35	250		
1	Jane	36	340		
2	Jimmy	22	460		
2	Jessy	21	200		

Dependent two-sample *t-test*: an example

Student	Pre-module	Post-module	Difference	
	score	score		
1	18	22	+4	
2	21	25	+4	
3	16	17	+1	
4	22	24	+2	
5	19	16	-3	
6	24	29	+5	
7	17	20	+3	
8	21	23	+2	
9	23	19	-4	
10	18	20	+2	
11	14	15	+1	
12	16	15	-1	
13	16	18	+2	
14	19	26	+7	
15	18	18	0	
16	20	24	+4	
17	12	18	+6	
18	22	25	+3	
19	15	19	+4	
20	17	16	-1	

$$t = \frac{2.05}{0.634} = 3.231 \qquad \text{on 19 df}$$

Since *t*_{19, 0.05} = 2.093 what can we say?

MATLAB Dependent two-sample t-test

MATLAB

Dep. 2-sample t-test: an example

>> X=[22 25 17 24 16 29 20 23 19 20 15 15 18 26 18 24 18 25 19 16]'; >> Y=[18 21 16 22 19 24 17 21 23 18 14 16 16 19 18 20 12 22 15 17]'; >> [H,P,CI,STATS] = ttest(X,Y,0.05,'both')

Equal or different? more than two samples

Ø.		J.	i.
Ø	¢	57	0
	C	71	\mathcal{O}

ANalysis Of VAriance (ANOVA)

More than 2 groups: NO pairwise comparisons (t-test)

↑ groups → ↑ overall probability that at least one of them is significant (e.g. α =0.05 and n=20 → in average 1 group will be significantly different for the case, even if H₀ is true)

• ANOVA

- uses Fisher's distribution (F-distribution)
- the sources of variations on observed values of two or more groups can be decomposed and accurately measured
- the source of variation is called EXPERIMENTAL FACTOR (or TREATMENT) and can be multi-levelled
- each unit or observation of the experimental factor is called REPLICATION

one-way ANOVA: an example The problem

 Content of iron in air in 3 different zones (A, B, C) of a city (µg/N mc at 0 °C and 1013 mbar)

	EXPERII	MENTAL			
	Α	В	С		
	2,71	1,75	2,22		
	2,06	2,19	2,38		
	2,84	2,09	2,56		
	2,97	2,75	2,60		
	2,55		2,72		
	2,78				
$\sum X_j$	15,91	8,78	12,48	$\sum X$	37,17
n	6	4	5	n	15
X.	2,652	2,195	2,496	<u> </u>	2,478

MATLAB one-way ANOVA

p-value for H0(means of thegroups are equal)va

ANOVA table values **Structure of statistics** useful **for performing a multiple comparison of means** with the **MULTCOMPARE** function

[P,ANOVATAB,STATS] = anova1(X,GROUP,DISPLAYOPT)

Matrix with 1 group per column (requires equal-sized samples)

Character array: one row per column of X, containing the group names

Vector of data

Vector: one group name for each element of X

'on' (the default) to **display figures containing a standard one**way anova table and a boxplot, or 'off' to omit these displays

>> X=[2.71,2.06,2.84,2.97,2.55,2.78,1.75,2.19,2.09,2.75,2.22,2.38,2.56,2.6,2.72]'; >> GROUP=['A','A','A','A','A','B','B','B','B','C','C','C','C']'; >> [P,ANOVATAB,STATS] = anova1(X,GROUP)

MATLAB one-way ANOVA: example

COMPARISON = multcompare(STATS)

two-way ANOVA: an example The problem

 Content of Pb in air in 5 different urban zones revealed every 6 hours during the day

	TREATMENTS (urban zone)					x _{ij}	_
BLOCKS (time)	1	2	3	4	5	sums	means
6 am	28	25	30	22	26	131	26,2
12 am	34	32	37	31	30	164	32,8
6 pm	22	21	24	20	19	106	21,2
12 pm	36	31	40	33	29	169	33,8
sums	120	109	131	106	104	570	
means	30,00	27,25	32,75	26,50	26,00		28,50

MATLAB two-way ANOVA

p-value for H0(means of the
groups are equal)ANOVA table
values

Structure of statistics useful **for performing a multiple comparison of means** with the **MULTCOMPARE** function

[P,ANOVATAB,STATS] = anova2(X,REPS,DISPLAYOPT)

Matrix of data (balanced ANOVA → equal number of repetitions)

REPS indicates the **number** of **observations per "cell"**

Columns: 1st factor Rows: 2nd factor A "cell" contains REPS number of rows

'on' (the default) to **display a standard two**way anova table, or 'off' to skip the display

MATLAB two-way ANOVA: example

>> X=[28 25 30 22 26; 34 32 37 31 30; 22 21 24 20 19; 36 31 40 33 29]; >> [P,ANOVATAB,STATS] = anova2(X)

COMPARISON = multcompare(STATS, 'estimate', 'column' (default) or 'row')

Columns (i.e. urban zones)

Rows (i.e. times)

MATLAB anovan: N-way analysis of variance

