Analysing and presenting data: practical hints

Giorgio MATTEI

giorgio.mattei@centropiaggio.unipi.it

Course: Meccanica dei Tessuti Biologici Date: 12 May 2016

Basic probability theory

$$Pr\{A\} = P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

 $Pr\{S\} = P(S) = \mathbf{1}$

$$p(x) = \lim_{\Delta x \to 0} \frac{Pr\{x \le \overline{x} \le x + \Delta x\}}{\Delta x}$$

Event A probability

Certain event probability

Probability density function (*pdf*) of x(\overline{x} is a random variable that assumes a given value x after the experiment)

For $n \rightarrow \infty$ the relative frequency density approximates the *pdf*

Expectation operator and normal distribution

• Mean (μ) and variance (σ^2) for a random variable (\bar{x}) with a given *pdf* (p(x)) can be calculated through the **expectation operator**

$$\mu = \int xp(x)dx = E(\overline{x})$$

$$\sigma^2 = \int (x - \mu)^2 p(x)dx = E\left\{(x - \mu)^2\right\} = Var(\overline{x})$$

• $ar{x}$ is **normal** with mean $oldsymbol{\mu}$ and variance $oldsymbol{\sigma}^2$ if its *pdf* is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Standard normal variable (μ =0, σ^2 =1) and variable standardisation

• Standardised normal probability density

$$p(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \quad \text{Pr} \{-1.96 \le z \le 1.96\} = 0.95 = 95\%$$

• Generic normal variable standardisation $(\overline{x} \rightarrow \overline{z})$

- Population parameters (μ and σ^2) are constant but unknown
- Observed sample parameters (\overline{m} and $\overline{s^2}$) are random variables that may change with samples, according to a given *pdf*
- Population parameters can be inferred from observed samples knowing the pdf of the sample statistics
- \overline{m} is an **un-biased estimator** of μ (from probability theory)

$$\frac{\overline{m}-\mu}{\sigma/\sqrt{n}} = \overline{z}$$

Standardised $ar{m}$

Confidence interval (CI) estimations

- In general $\mu \neq \overline{m}$, but $\mu = \overline{m} \pm \Delta$ and $\uparrow CI \rightarrow \uparrow \Delta$
- 95% CI means that the error Δ is such that

 $Pr\{\overline{m} - \varDelta \le \mu \le \overline{m} + \varDelta\} = 95\% \quad \longrightarrow \quad Pr\{\mu - \varDelta \le \overline{m} \le \mu + \varDelta\} = 95\%$

Case A: unknown μ , known σ^2 \bar{z} statistic

$$\frac{\overline{m} - \mu}{\sigma / \sqrt{n}} = \overline{z}$$

 $Pr\{-z_0 \le \overline{z} \le +z_0\} = 95\%$

From tables *z*_{0.05} = **1.96**, hence:

Thus **95% CI** is given by:

$$\mu = m \pm z_{0.05} \frac{\sigma}{\sqrt{n}} = m \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

95% of **CI include actual \mu** (unknown)

Practical interpretation of 95% CI

Case B: unknown μ and σ^2 \bar{t} statistic (i.e. use \bar{s} instead of σ)

Hypothesis testing

- $H_0 = null$ hypothesis \rightarrow the sample belongs to a known population (with known μ and, eventually, σ^2)
- H_1 = alternative hypothesis \rightarrow the 2 treatments are different each other
- Hypothesis test evaluates the discrepancy between the sample and the H₀, establishing whether it is statistically i) significant or ii) not significant for a significance level α

i) H_0 is refused with a significance level α

ii) H_0 cannot be refused with a significance level α

Case A: unknown μ , known σ^2 \bar{z} statistic (*z*-test)

- Mean survival time from the diagnosis of a given disease
 - Population = 38.3 ± 43.3 months ($\mu_0 \pm \sigma_0$)
 - 100 patients treated with a **new technique** = 46.9 months (\overline{m}) and σ = σ_0
- $H_0 \rightarrow \mu = \mu_0$ or $H_1 \rightarrow \mu \neq \mu_0$

$$\overline{c} = \frac{\overline{m} - \mu_0}{\sigma_0 / \sqrt{n}} = \frac{46.9 - 38.3}{43.3 / \sqrt{100}} = \frac{8.6}{4.33} = 1.99$$

H₀ is refused with a significance level α if $\overline{z} < -z_{0.05}$ or $\overline{z} > z_{0.05}$

Since *z*_{0.05} = 1.96 and *z*_{0.01} = 2.58 what can we say?

Cl estimations and hypothesis testing are equivalent

95% Cl
$$m - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < m + 1.96 \frac{\sigma}{\sqrt{n}}$$
 46.9±1.96.4.33= 38.4 ÷ 55.4.
 \overline{m} (38.3) $< \mu^{-} \rightarrow refuse H_{0}$
99% Cl $m \pm 2.58 \frac{\sigma}{\sqrt{n}} = 46.9 \pm 2.58.4.33 = 35.7 \pm 58.07$
 $\mu^{-} < \overline{m}$ (38.3) $< \mu^{+} \rightarrow H_{0}$ cannot be refused

A confidence interval can be considered as the set of acceptable hypotheses for a certain level of significance

Case b: unknown μ and σ^2 \bar{t} statistic (t-test)

- Rat uterine weight
 - **Population** = **24** mg (μ_0)
 - *n*=20 rats: [9, 14, 15, 15, 16, 18, 18, 19, 19, 20, 21, 22, 22, 24, 24, 26, 27, 29, 30, 32]
 - v = n 1 = 19

•
$$H_0 \rightarrow \mu = \mu_0$$
 or $H_1 \rightarrow \mu \neq \mu_0$
 $\bar{t} = \frac{\overline{m} - \mu_0}{\overline{s}/\sqrt{n}} = \frac{21 - 24}{1.3219} = -2.27$

Since $t_{19, 0.05} = 2.093$ and $t_{19, 0.02} = 2.539$ what can we say?

• Equivalence between *t-test* and Cl estimations

$$m - t_{v,0.05} \frac{s}{\sqrt{n}} < \mu < m + t_{v,0.05} \frac{s}{\sqrt{n}}$$

95% CI 21±2.093·(1.3219)= 18.23 ÷ 23.77

98% CI 21±2.539·(1.3219)= 17.64 ÷ 24.36

Sample and population are significantly different with a significance level comprised between 2 % and 5 % (0.02 < *p* < 0.05; calculated *p*-value for *t*_{19, p} = 2.27 is *p* = 0.035)

MATLAB z-test

>> X=[8.3 9.2 12.5 7.6 10.2 12.9 11.7 10.8 11.7 9.6]; >> sigma=2.1; >> mean=12; >> alpha=0.05;

>> [H,P,CI,ZVAL]=ztest(X,mean,sigma,alpha)

MATLAB t-test

>> X=[22.3 25.1 27 23.4 24.7 26.5 25.7 24.1 23.9 22.8]; >> mean=23;

>> alpha=0.05;

>> [H,P,CI,STAT]=ttest(X,mean,alpha)

Interpreting the *p*-value

observed (or more extreme) result arising by chance

In conclusion, the smaller the *p*-value the more statistical evidence exists to support the alternative hypothesis (H₁)

