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Abstract. In order to stably grasp objects without using object models, tactile feedback from the
fingers is sometimes necessary. This feedback can be used to adjust grasping forces to prevent a
part from slipping from a hand. If the angle of force at the object finger contact can be determined,
slip can be prevented by the proper adjustment of finger forces. Another important tactile sensing
task is finding the edges and corners of an object, since they arc usually feasible grasping locations.

This paper describes how this information can be extracted from the finger-object contact using
strain sensors bencath a compliant skin. For determining contact forces, strain measurements are
easier to use than the surface deformation profile. The finger is modelled as an infinite linear elastic
half plane to predict the measured strain for several contact types and forces. The number of sen-
sors required is less than has been proposed for other tactile recognition tasks.

A rough upper bound on sensor density requirements for a specific depth is presented that is
based on the frequency response of the elastic medium. The effects of different sensor stiffnesses on
sensor performance arc discussed.
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1.0 Introduction

Much of the recent work in tactile sensing has been devoted to recognizing objects and features.
One method is to obtain an image-like array of an object profile using high density tactile sensors
[Hillis, 1981; Overton and Williamsm 1981]. This is uscful for identifying the location, orientation
and shape of an object with complicated surfaces, or identifying surface defects. Another approach
to the recognition problem uses local low level tactile information and object models to recognize
objects [Gaston and [.ozano-Percz, 1983].

There are some low level tactile sensing operations that are useful for basic grasping, where the
intent is keeping an object stably grasped in a hand, rather than recognizing it. The requirements
for grasping polyhedra on a plane with two fingers without object models have been described else-
where [Fearing, 1984]. The most uscful parameters to know are the surface normals, the angle and
magnitude of a force at a contact, and whether the finger is touching a corner or edge. These
parameters are a subset of those required to recognize general features.

This paper attempts to show how this grasping information can be recovered using a simplified
solid mechanics model and basic contact theory. Consideration of the mechanics has been infre-
quent in the design and use of tactile sensors, (an exception is Kinoshita [1977]), but is important
for relating sensory data to physical observables. There has been some work on sensing forces at
fingers using tactile sensation to prevent slip [Stojiljkovic and Clot, 1977]. Other techniques have
relied on using rollers to dctect the slip of an object in parallel jaw grippers [Masuda, Hasegawa,
and Osako 1976]. At a more advanced level, the tactile array approach will provide useful informa-
tion for manipulation, such as finding a specific feature that is crucial to crienting a part accurately.

A finger must have a compliant covering to take advantage of the increased prehension stability
possible at corners [Fearing, 1983]. Another advantage of a soft skin is that contact areas are large
enough to distinguish between features. For example, with a very hard skin, an edge and a side will
contact with the finger at only a few points, and so may be indistinguishable without finger motion.
To distinguish between them, it will be necessary to get either the displacement profile or the con-
tact stresses in a compliant finger covering.

There are two different approaches to the tactile transduction problem. The first approach is
based on measuring the deflection of a flexible membrane when it contacts a rigid object, or the
height of pegs touching an object [Page. Pugh, and Heginbotham, 1976]. The measurcment is some-
times done by an optical sensing scheme [Ozaki,Waku and Mohri, 1982]. The second approach is
based on forces bencath the surface changing electrical contact areas [Hillis, 1981], or compressing
some resistive material without changing the clectrical contacts.

We are interested in determining the actual contact stresses rather than just the contact profile.
Although the profile aids in recognition of an object shape, it is only indirectly useful for determin-
ing the grasping forces. The problem is the indirect relation between the shape of the object and
the profile of deformation, especially when there are both normal and tangential forces applied at
the contact. Because the compliant material is not perfectly compressible, it will tend to pile up
outside the contact region in a complicated manner.

A mathematical problem with treating the contact as a defonmation is that superposition does
not hold. In general, forces superimpose, but displacements do not. For example, the stresses due
to two points close together cach indenting 1 mm. into an elastic medium are not equivalent to the
sum of the stresses from each point indenting 1 mm. by itself.

Consider a grain of sand pressed between a finger and a smooth surface. A profile change due to
the height of the grain is very small, bul high stress concentrations near the edges should be readily
detectable. One researcher notes that a ridge of less than 20 pm height is perceptible for humans
[Lederman, 1978]. '
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2.0 Using Strain for Tactile Sensing

When determining contact stresses, there are practical rcasons for measuring these stresses
beneath the elastic material, rather than on the surface. Since we may be interested in both normal
and tangential (friction) forces at the contact, we would need two different types of sensor at the
surface. When sharp rigid objects indent an elastic material, very high stresses are developed at the
surface. These stresses are reduced by distance from the application area, so a frazile sensor would
be better protected bencath a layer of skin. We note that biological tactile sensors are beneath the
surface of the skin. A rather complete analytical and experimental study of stresses beneath the
skin and the mechanoreceptor responses to contacts without tangential forces was donc by Phillips
and Johnson [1981].

The general three dimensional analysis of stress and strain lcads to very complicated expressions.
If contact forces are constant along a finger, a two dimensional analysis will describe the behavior
in a slice perpendicular to the finger axis. In the remainder of this paper we analyze line, edge, and
plane contacts for which a 2 dimensional analysis is exact for infinitely long contacts, such as a line
load, and approximate for short contact lengths. We will speak of a point indenter or point force
while meaning a planar section of a line contact.

We now examine the 2 dimensional behavior of an infinite homogeneous elastic medium for the
simplest contact case, a point force with negligible contact area. To find the stresses within the elas-
tic half plane, we first find the stress distribution due to a concentrated normal force at the surface,
as in Figure 1. The internal stresses due to a gencral contact stress on the surface can be found
from the superposition principle.

The analysis from Timoshenko [1951] shows that the internal stresses have a “simple radial dis-
tribution”. That is, all the stress is in the direction of a radial line from the point of application of
the force. '

From Timoshenko [1951], for the concentrated normal force we get

—2P cosf
o= ——
T r
opg =10
. =0 (1)

where o, is the radial stress at (r, 8), oy is the stress in the plane at (7, #) normal to the radial
stress, 7,4 is the shearing stress in the »,8 plane, P is the force per length, and r is the distance
from the point of application.

For a force inclined from the vertical by the angle a,

o, = 2P cos{a+ )
nr

cg =0 ' B (2)
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Figure 1. Point Forces on Elastic Half Plane .

To get stresses in cartesian coordinates, we apply the tensor transformation:

o, = 0,C08%0
= .2
g, = o,s8in°f
Ty = 0,sinfcosf 3)

So finally, the internal stress due to a point force is:

G, = =2 cos(a +8)cos*d
wr
_ =2p . 9
oy = —— cosla+0)sin’d
Tay = — P cos(a+8)sing cosd (4)

where

r= /x2+y2

x . x ]
cosf = - sinf = {- s cos(a+4) = Tcosa - %sma

All pressure sensors have an output based on the strain of the sensor, which is the fractional
change in the lincar dimensions of a small cubic volume clement. This volume change is to first
order independent of the shear stresses, which change the angles of the faces in the cube, and not
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the dimensions. If we assume a linear ¢lastic medium, we can apply Hooke’s Law:

%=% _ )

where £ is the modulus of elasticity (N/m?), and e, is the strain along the x axis.

For materials that are not completely compressible, a contraction along one dimension will be
coupled with expansions along the other two. For an incompressible cube which undergoes a strain
of 1% along one axis, there must be corresponding strains in the opposite sense of about .5% along
the other two axes to maintain constant volume. The ratio of these two strains is called Poisson’s
ratio, and characterizes the compressibility of the material. For a completely compressible material,
Poisson’s ratio is 0. For a medium that does not change in volume with compression, such as a
water filled sack or rubber, Poisson's ratio can be taken as 0.5. Since rubber-like materials are
popular for covering robot fingers and tactile sensors this assumption will be used. :

The relations between the swresses and strains are (Timoshenko and Goodier 1951):

gy = —é: 0,—#(0,,4—.0,)}
ey = % O'y‘—l’(O'x"l"Uz)
g, = % o,—v(o,+0,) (6)

where » is Poisson’s ratio=.5, and & is the strain along one dimension.

There are two simplifying assumptions that can be applied to elasticity problems with the
appropriate symmetry. For an infinite line force on an elastic half space, the strain in the direction
of the line must be zero by symmetry. This is the plane strain assumption. Alternatively consider a
slice of unit width out of the elastic half space, with a line load acting on it. On the faces of this
slice, the stresses normal to the face must be zero to satisfy the boundary conditions. This is the
plane stress assumption.

For this analysis, we will assume a state of plane strain; there is no strain in the z direction. This
assumption will be reasonable if the contacts are long compared to the finger radius. Phillips and
Johnson [1981] found that an assumption of plane stress had a better qualitative agreement with the
response of mechanoreceptors in finger skin, but the plane strain assumption will be used here
because the contacts are assumed to be infinitely long. The form of the strains under these two
assumptions is similar.

So from the plane strain assumption e; = 0,

O; = %{U, +a,)

1l etell o3
& = % Lo, 5|9 - 3 = 2E (0x—0,)
I 1 o;+o ] 3 ,
et et | e i | Rl et @
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Figure 2. Strain for Line Load Normal to Surface
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Figure 3. Strain for Line Load Inclined 30 Degrees

For the stresses due to the point indentor or line load (4), the strains from (7) become:

&x = 4—1: _wer cos(a+8) [coszﬂ—sinzal
= —3P 1x cosa — ysina] [xz- 2]
2w Ert 4
fora =10
& = 2;;1:4 x (x2—y?) 8)
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Figure 4. Strain Sensor Based on Resistance

Figures 2 and 3 show the strains in the homogeneous elastic medium for a line load normal to the.
surface and one inclined 30 degrees. '

2.1 Measuring Strain

Since our plane strain assumption gives a change in volume that depends only on the strain in
the x direction, there are some implications for volume dependent strain sensors. Figure 4 shows
how a transducer based on the volume resistance could be used to determine the strain at a certain
depth. Consider a block of conductive material with the electrodes on the top and bottom. The

resistance is given by:

_ pL _ px
= A yz ©)

where p is the resistivity, R is the resistance, L is the length, and A is the area.
For plane strain the new dimensions are:

’

x'= x(1+e,)

y

y(l+e,) = y(1—¢,) since e, = —e,

’

z =2
For a unit volume clement

1+e,
R_p( €x) _

= s(lp Nl sbale » + v)mlolipdes) (10)

This transducer would output the variable of interest. A similar result can be shown for the plane

7
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Figure 5. Three Fqually Spaced Strain Sensors
stress assumption:
= R = m%zp(He;-e,—ez)=p(1+2t~:x)
since —e, = e, +e, (11)

3.0 Determine Force Angle for a Line Load

Can the angle of inclination, location, and magnitude of a line load be recovered from the type
of sensor described previously, that measures only once parameter, £,7 Assuming ncgligible sensor
dimensions, it is straight forward to sct up the cquations for three strain sensors equally spaced on a
horizontal planc bencath the surface. Referring to Figure 5 they are:

-3P [xcosa — (y+b)sina

] [x2 - (y+b)2]

e.'(l = 2
2L [+ +5)]
-3P xcosa—ysinal g
-3P xcosa-(y—b)sina]
€x, = [x2 - (y-—b)zl

ZwElx2 + (y-b)2]2

where x is the sensor depth and b is the sensor spacing.
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Figure 6. Finding the Force Locati_on with Multiple Roots

Tactile Mechanics

We can use “equation counting” methods [Richards, Rubin, and Hoffman, 1981] to determine if
these 3 measurements are sufficient to uniquely determine the line load on the surface. The impli-
cit function theorem [Sokolnikoff and Redheffer 1966] states that if the system of equations (12) is
continuous and has continuous first partial derivatives with respect to the independent variables,
and if the Jacobian is non-zero, then there will be a unique and continuous solution to those equa-
tions. The determinant of the Jacobian of eq. (12) is not identically zero, but does disappear for

some values of parameters.

To determine where the extra solution points are, the system of equations was solved by elimi-
nation of the magnitude and angle of the force, to get a polynomial in y and the measured strains:

Sl = 2e,, [xz - y2]2 [Jr2 - (}'—6)2] [xz--(y +b)2]
— e [+ (y+b)2]2 [ -] [« - -7

- s, [x2 + (y—b)Z]2 [xz—yzl [x2 - (y~f-b)2] =0

—

(13)
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a) Contacts with only normal force

c) Contacts with generalized forces

Figure 7. Finger Contacts with Side and Vertex

This cighth degree polynomial has multiple real roots close to the sensor locations. It is interest-
ing to note that if the scnsor depth and the spacing are equal (x=b), one of the false roots will
always be at y=0. Constraints on the possible forces, such as magnitude ranges and angle limits,
allow some of these solutions to be rejected. For example, a reasonable constraint is that all forces
are directed into the surface (compressive). Tension will not occur at the contact without an
adhesive bond. If there are still possible roots left, a fourth scnsor measurement will be necessary
to get a unique solution.

Figure 6 shows an example with false roots that can be discarded. Two can be rejected because
the point force would have to be in tension, and one other because the force is too close to hor-
izontal and would slip.

4.0 Distinguish a Vertex from a Side

In this section, we will try to differentiatc between the strains beneath the skin due to the vertex
and the side contacts. Figurc 7 shows the assumptions used for these contacts. Assume the side is
perpendicular Lo the finger and is moving perpendicularly into the skin. Foi the vertex, assume its
center line is perpendicular to the edge of the finger and is moving perpendicularly into the skin.
These can be viewed as contacts with a normal force but no moment (Figure 7a).

10
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Figure 8. Two Extreme Vertex Cases

Figure 7b shows normal contacts with a tangential force. The most general case of a moment.
and a traction force is shown in Figure 7c. Restricting the analysis to the 2 dimensional case with
plane strain, we will attempt to characterize the strains that would be measured for normal contacts
without a tangential force.

For this analysis, we will ignore traction from friction while indenting normally into the elastic
medium. With friction present, the elastic medium would adhere to the object and cause surface
shear stresses as it tried to flow away from the indentation. The normal stresses are not affected
very much by this traction cffect [Engel and Conway, 1971].

What does a vertex feel like? Consider the vertexes touching the finger as in Figure 8. The first
casc appears to be the right side of a rectangular indenter. If we could consider the finger and the
contacting side cxtending far away from the right side, then the left side of the indenter would have
no effect on the right side. The surface stress for a rectangular indenter on an elastic half plane is

given by [Conway, Vogel, Farnham and So, 1966]:

P

7 Ja*—y* for|y | <a
ox(x =0) = |, otherwise (14)

where P is the force per unit length, and « is the half width of the contact.

The second case is equivalent to a wedge of 90 degrees being pressed into an elastic half plane.
This stress is given by [Gladwell 1980: Robinson and Thompson 1974] as:

T
Reol3 oS T forly Ka

ox(x =0) = 0 otherwise (15)

where K is a function of Poisson’s ratio and the modulus of clasticity, and @ is the vertex angle.

11
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I*lgurc 9 Stresses and Strains for Vertexes

Figure 9 shows the stresses and strains for these vertex contacts. A vertex looks very much like a
line load especially for small indentations and small vertex angles. If the line load and vertex have
approximately the same strain profiles, the method of section 3.0 could be used to find the angle of
force at this contact.

Now consider the contact of a stiff flat side and a -.irculér elastic finger as in Figure 10a. This
two dimensional problem is difficult to analyze analytically, so we will apply Samt-Veuants Princi-
ple, as explained by Timoshenko [1951]:

This principle states that if the forces acting on a small portion of the surfuce of an elastic body are
replaced by another statically equivalent system of forces acting on the same portion of the surface,
this redistribution of loading produces substantial changes in the stresses locally but has a negligible
effect on the stresses at distances which are large in comparison with the linear dimensions of the sur-
Jface on which the forces are changed.

If the arca of contact is small compared to the finger radius, we can approximate the area near
the contact as an infinite elastic half plane. This approximation will be most accurate near the
outer surface of the finger in the quadrant where the contact is. It is also necessary to reformulate

_the contact stresses for the cylindrical finger to match the half plane approximation,

In the solid mechanics literature, the common problem is the rigid cylinder indenting an elastic
layer, the punch problem, rather than an clastic cylinder contacting a rigid plane. Bentall and
Johnson [1968] have done an analysis where the clasticity of the cylinder and layer are equal.
Hahn and ILecvinson [1974] have analyzed the stresses for the contact of a rigid cylinder and a
cylinder covered with an clastic layer. That analysis is probably most relevant to the rigid finger
with an elastic covering contacting a rigid surface, but as in much of the contact h[cratule the form
of the solutions (infinite series) is inconvenient to work with.

For a rigid cylinder indenting an elastic half plane, as in Figure 10b, the stress on the surface is
given by Conway [1966] as:

ox(y) = 7 a’—y? (16)

where ¢ is the half width of the contact region and P is the force per unit length on the cylinder.
The stress and strain for this contact are shown in Figure 11.

12
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Figure 11. Stresses and Strains for Cylindrical Indentor

The half width of the contact from [Bentall and Johnson, 1968] is:

1
e 2[4RP(1~v2)]2 (17)

mk

where R is the radius of the cylinder.

For equilibrium in the contact region, the stresses should be equal and of cpposite sign on the
cylinder and the surface. Mow for an elastic cylindrical finger contacting a side, there should be no
infinite stresses such as occur at sharp edges of indentations, Also, the stress will have a peak value
in the center of the contact, and approach zero at the edges. Using this justification, we will assume
that the stress on the finger can be approximated by eq. (16) for small indentations.




Fearing & Tlollerbach Tactile Mechanics

Contact Stress

Y
a; a,
Elastic
Half
Plane
A —
(Fy Fi= @ FyCA Fy
-é
Fe

Figure 12. Tangential Stress Proportional to Normal Stress

The stresses due to contacting a side and a vertex are distinguishably different. For the side,
there is a smooth, continuous stress function. For the vertex, there is a discontinuity in the stress at
the tip of the wedge. (Actually, thc medium deforms around that discontinuity, spreading the stress
over a finite area). It should be casy to distinguish the two just by looking at the width of the strain
pattern. For the same elasticity and pressure, the wedge has greater indentation depth with a
smaller contact arca than the side contact. If the vertex angle is less than 90 degrees, there will be
a significant difference between the two contact widths. Arguably, this task would be simpler if the
indentation profile were available,

5.0 Determining the Side-Finger Contact Force

For a finger touching the side, we will assume that the contact is of the form shown in
Figure 7b, with both normal and tangential components, but no moment. The tangential com-
ponents will be modeled as all being in the same direction with a force that is directly proportional
to the magnitude of the normal force [Smith and Liu, 1953]. Figure 12 shows this assumption for a
general pressure pattern. (The tangential force must be less than N, the friction force).

A very complicated expression for the stress below the surface for an elliptical stress distribu-
tion on the boundary was found by Smith and Liu [1953]. We do not need the complete stress
expression, but want to determine the angle of force at the contact. For grasping applications, the
angle of force a is useful for predicting slip.

To find the strain underneath for the stress for the cylindrical indentor from eq. (16), we
integrate along the surface where

1
+a,.)|2 -
—2—[’2a2_—(y—L—a—2) fora; <y <a,
wa 2
Ply) = 0 otherwise . (18)

where a, and a, are the edges of the contact, and ¢ = a,—a;. Applying the supecrposition

14
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N, Relative Strain at Depth
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Figure 13. Strain for Cylinder Contact with Tangential Loads

principle to the strain due to a line contact ¢q. (8):

® _3|xcosa — y,,siual[xz—yuzlf’(y - %)
= : d 19
ex(x.y) __Lo Yo lir? Yo (19)
Substituting the integration limits for P (y) gives:
1
X CoSa — Y, Sina ] a+a; 2|2
= = x - - ——= g 20
Ex(xd’) 2 2’.‘ yfal (x2+y¢,2)‘ Yo [ Yo — 2 Yo ( )

where 72 = x>+,

Figure 13 shows the strain for the cylindrical indentor with various tangential loads applied.
Note that the slope of the strain underncath the center of the contact increases with increasing
tangential force. The slope of e.(x.y) at y = (a,+a3)/2 can be found by cvaluating the derivative
of eq. (20), using the first fundamental theorem of integral calculus to get:

de.'( = 3\/3!) lxz_(ﬁ)z

-2
sina (21)

2+(")2
dy ~  2u’aE Y

When the contact length is large compared to the sensor dcbth, this simplifies to

15
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Surface Stress  Elastic Medium Discrete Strain Measurements
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Figure 14. DiSérete Strain Measurements

de, - 6v/ 3 Psina
dy m2a’E

(22)

So for a given contact, a can be easily recovered if the pressure can be estimated.

The more complicated contact with  generalized forces of Figure 7c'can be treated as the super-
position of stresses due to forces plus the stresses due to the moment load. The elasticity literature
deals with moments applied to punches indenting an elastic medium [Alblas and Kuipers, 1970;
Galin 1961]. In those cases, the pressure distribution due to the moment load is an odd function
symmetric about the origin, with half the surface in tension and the other half in compressxon. S0
the moment can significantly affect the internal strains.

6.0 Sensor Density Requirements

In section 3, a method to determine the location, direction, and magnitude of a line contact was
outlined that required at ieast three strain sensors. A more general question is, how many strain
sensors are needed to identify a general stress pattern on the surface? This problem is considered
in the context of the spatial frequencies of the applied stress. The spatial frequency of the stress
pattern is just the variations in pressure per unit length, not time dependent variations. We shall
assume that the pressure pattern is approximately bandlimited, that is, most of the stress spectrum is
concentrated at low frequencies. This is the case for contact stresses in the form of (15) and (16).

Figure 14 shows a linear system representation of this discrete measurement process, where the
senscrs are of negligible width. The sampling theorem says that any bandlimited signal can be
recovered from its discrete samples if the samples are taken at a sufficiently high frequency, the
Nyquist rate. (For example see [Oppenheim and Schafer, 1975]). Here the sampling frequency is -
the minimum strain sensor spacing needed to avoid aliasing when recovering the continuous strain
measurements from the discrete samples. If there are not enough sensors, the strain due to the high
frequency components will appear as noisc when the continuous strain is recovered from the sam-
ples by low pass filtering.
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.6 T d(27sd)

Figure 15. Spatial Frequency Response of Elastic Médium

Since the strain at a point beneath the surface is a linear function of the two stress components
o, and o, for plane strain, the total strain at a point in the elastic medium can be found by the
superposition of the strains underneath due to each stress component on the surface. It should be
possible to treat the normal and tangential stresses separately, and determine the highest frequencies
of interest for each. If the force on the boundary has no tangential components, the pressure distri-
bution P(y) will be a scalar at each point. The superposition integral is:

00
Ex(d,)b)z f _‘liE»L)h(yo—'J’)d.V (23)
-0

where P(y) is the pressure distribution on the surface and h(y) is the strain at depth d due to a
unit normal pressure point at the origin. From equation (8):

_ =3d(d@-y?
") = @y | 2

The spectrum of the “impulse response™ 4(y) can be found from simple properties of Fourier
transforms:

d ~d|2
a(d*+y?) s
dz =% —d2ms fi 50
n@+yr e diw TS
dy? —d2wns 1
@+, > wde T S fors >0
w .

17




[Fearing & Hollerbach Tactile Mechanics
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Figure 16. Effect of Ridges on Strain Amplitude
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M —y) , _3pde-dizml = p(s) (25)

2 (d? + y?)P?

The incompressible medium in plane strain has no response to a zero spatial frequency, that is,
a constant pressure over an infinite extent, because there is no space for the medium to escape into.

The frequency response of the elastic medium as shown in Figure 15 is not strictly bandlimited,
but it does have very steep skirts. We shall assume that the overall frequency response P(s)H(s)
has a high frequency response like H(s), where P(s) is the pressure spectrum.

We can choose a sampling frequency by deciding how much aliasing is permissible. This
requires an enginecring judgement based on the estimated accuracy of the strain sensors. It seems
that any aliasing that was less than one part in 1000 of full scale would be negligible because most
sensors would not have a dynamic range much better than that. Also, non-linearities and tempera-
ture instabilitics get to be of at least the same order of magnitude.

The following rough estimate can be used for sampling requirements. We want the value at the
tail to be down a factor of 1000 from the maximum which occurs at 27sd = 1. So:

fi_ + = 10°, or f = 102 (26)

The samples should be at twice f so 2msd > 204, or sd > 3.2. Here 5 is the number of samples
per unit length. ]
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For a sensor depth of 1.0, a sensor density of 3.2 sensors per unit distance would allow recovery
of the continuous strain response duc to a normally dirccted surface stress distribution with aliasing
errors down at least a factor of 1000 from the desired signal. This sampling rate is probably too
conservative. The types of features touched may have rounded edges, and start out with a more
band limited signal, so a lower sensor density could be adequate. The effective sensor density can
be increased by multiple measurements as a finger is moved along a surface, so the ultimate fre-
quency response is limited by the number of samples per second, and the sensor accuracy.

6.1 Using Finger Ridges to Enhance Sensitivity

The infinite elastic medium has a peak response when the wavelength equals the strain sensor
depth times 2#. There seems to be an interesting possibility of maximizing the strain sensors’ out-
puts by locating them at the maxima and minima of strain, and predetermining the frequency and
phase of the pressure. This could be done in principle by inserting a thin and flexible sinusoidal -
grating between the finger and the object touched, which could superimpose a sinusoidal stress on
the regular stress. A simple method of adding the sinusoid of the desired frequency is to use a
ridged finger.

In Figure 16 we compare the strain amplitude between the unridged and ridged fingers, where -
the ridges are of the optimal wavelength. In both cases the sensors are at the same depth. In the
unridged case the total contact stress is about 1.5 times the ridged case. Even neglecting the
difference in total contact stress, the ridges can enhance the amplitude by a factor of 2. The sensors
should be located beneath and between ridges to detect the maximum amplitude peaks. This tech-
nique is similar to the electrical chopper that allows a DC level to pass through an AC coupled cir-
cuit.

It is curious to note that in the human finger, there is a mechanoreceptor located directly:
beneath every papillary ridge [Lederman, 1978]. Phillips and Johnson [1981] gave the depth of this
strain measuring mechanoreceptor in the macaque monkey as about 500 pm. This is about the
same depth as in the human finger [Quilliam 1978]. The optimum ridge spacing for this depth is
about 3 mm, much larger than the papillary ridge spacing on the authors’ fingers. However, it is
interesting to speculate that fingerprints may still have some role in enhancing strain measurements.

7.0 Discussion

What effect does the skin compliance have on tactile sensing abilities? A stiffer skin will
develop greater contact stresses for the same indentation, but the subsurface deformations (the
measured strain) will be the same [Phillips and Johnson, 1981]. The smaller contact area and defor-
mation with a less compliant material helps to make the approximations we have used more valid.
Greater stiffness in the skin may also serve to protect the sensors because a stiffer skin has more
resistance to puncture.

A very compliant skin on a sensor may have saturation effects sooner than a harder skin. Fig-
ure 17 shows three fingers applied to a surface with the same normal force, but with different cov-
cring softness. For the very stiff skin, the contact is not large enough to determine the size of the
particle. For the very soft skin, the stress due to the small particle may become proportionally less
significant than the stress due to contact with the surface around the particle. One way to choose a
skin compliance for good sensing characteristics would be to decide on a typical finger force range
and the smallest contact area of interest, and use this information to determine the necessary
modulus of elasticity. -

An arca for further research is the spatial bandwidth that is required for feature recoghition,
The two-point discrimination test [Valbo and Johanson 1978], seems to be the classic test for tactile
sensor tesolution. This test would secem to require a very high bandwidth because of the two
impulse functions, but it may turn out that only the low frequencies are important. While we are
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Figure 17, Contacts for Different Skin Compliances

not interested in resolving between two point indenters, this problem may be uscful for sclting a
smaller upper bound on the density of sensors.

In psychophysical experiments, subjects are instructed that there will either be one or two points
indenting their skin. It appears that the sensors should be able to distinguish between these two
- cases for two-point distances significantly smaller than the individual receptive ficlds of each sensor.
Here, the resolution is not limited by the density of the sensors, but by the measurement accuracy
of the sensors.

It is uscful to consider cach strain sensor as having a response function that overlaps its neigh-
bor. A point force on the surface will cause an output for cach sensor that is proportional to the
height of the response function underneath that point. IFor two point forces on the surface, the out-
puts will be the linear superposition of the responses of cach point force. - We can measure the out-
put in cach sensor channel, and detennine if it is consistent with just a single point force. How-
cver, there might be different combinations of point forces that can give the same output. A very
loose analogy can be made to the color matching problem [Richards, 1979], where several different
stimulation combinations can give a white sensation.

In Figure 18 there are locations where two point forces can be applied that will give a response
in the two sensors equivalent to a single point force. In Figure 19, a third sensor has been added to
allow discrimination between all the two point and one point cases, limited by the measurement
accuracy. It will be difficult to distinguish points that give responses far down on the “tails” of the
channel.

It is probably reasonable not to spread the sensors too far apart. A guess is that the practical
maximum scparation would be less than twice the depth of the sensors. (Note that for the two-
point discrimination task, the modulus of elasticity has no cffect on the width of the strain response,
so it will have no cffect on the resolution). More work should be done on choosing the depth and
sensor spacing to optimize discrimination.

It seems that some recognition tasks would be easier using a sensor that responded to deforma-
tion. That would make distinguishing a vertex and a side easy work. However, other tasks, such as
sensing imminent slip, appear casicr with the strain sensor approach. Sensors that combine surface
-~ shear sensors, depth strain sensois, and surface deflection sensing would simplify the problem con-

siderably.
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Figure 18. Two Strain Response Sensors
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Figure 19. Three Strain Response Sensors

8.0 Conclusion

In this paper, we used a simple linear elastic model to predict strains beneath a compliant skin
for a finger touching a knife edge (line load), a corner, and a flat surface. Appropriate approxima-
tions were made to get simple expressions for the contact stresses for a cylindrical finger contacting
a side. In gencral, three strain measurements were shown to be necessary for determining the loca-
tion, magnitude, and direction of force for a line contact, but degenerate cases with multiple solu-
tions arc possible. The angle of force was shown to be related to the slope of the strain curve for a
contact with a side. Further work needs to be done in recovering the angle of force from contacts
with other curvatures,

The clastic medium was examined as a signal processing clement, which led to the interesting
possibility of maximizing strain scnsor output by adding a grating to the sensor surface with a
i period equal to the sensor depth times 2a.
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We have not atternpted to determine stresses and strains for the generalized three dimensional
contact. At least five strain measurements are required to determine the magnitude, two angles, and
y,z location of a point force on an clastic half-space. These equations are quite complicated [Mind-
lin, 1936]. It may be possible to find this information by combining two orthogonal planar solu-
tions, but this was not attempted here.

The discussion here seems to indicate that four sensors, with fairly high dynamic range, may be
adequate for the planar case for finding force magnitudes and directions, and for distinguishing
between two contact types (vertex and side). With a thick skin, one can get a lot from a few sen-
sors. This number of sensors will probably not suffice for determining curvature and more compli-
cated force resolving problems,
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