
Complexity Analysis on Functional-Near Infrared Spectroscopy Time
Series: a Preliminary Study on Mental Arithmetic

Ameer Ghouse1, Mimma Nardelli1, Vincenzo Catrambone1, and Gaetano Valenza1, Senior Member, IEEE

Abstract— It is well known that physiological systems show
complex and nonlinear behaviours. In spite of that, functional
near-infrared spectroscopy (fNIRS) is usually analyzed in the
time and frequency domains with the assumption that metabolic
activity is generated from a linear system. To leverage the
full information provided by fNIRS signals, in this study
we investigate topological entropy in fNIRS series collected
from 10 healthy subjects during mental mental arithmetic
task. While sample entropy and fuzzy entropy were used to
estimate time series irregularity, distribution entropy was used
to estimate time series complexity. Our findings show that
entropy estimates may provide complementary characterization
of fNIRS dynamics with respect to reference time domain
measurements. This finding paves the way to further investigate
functional activation in fNIRS in different case studies using
nonlinear and complexity system theory.

I. INTRODUCTION

The promise of capturing metabolic activity related to
neural activity non-invasively and in ecologically valid set-
tings has been an interesting field of research with the
advent of functional near-infrared spectroscopy (fNIRS) [1].
Similarly to functional magnetic resonance imaging (fMRI),
fNIRS measures blood oxygen level dependent signal [2].
Standard methods of extracting features in fNIRS signals
assume an underlying linear physiological system producing
the hemodynamic response [3]. In spite of their wide use,
these analyses are limited in their scope to fully consider the
complexity and nonlinearity of physiological systems [4]–
[6].

Entropy analysis is commonly used to analyze physiolog-
ical time series’ irregularity and complexity. Sample entropy
(SampEn) [7] and fuzzy entropy (FuzzyEn) [8] are exam-
ples of algorithms that converge to the Kolmogorov-Sinai
metric to analyze regularity. SampEn is an amelioration of
the approximate entropy algorithm, where SampEn forgoes
comparing states to themself in the entropy calculation while
also being less dependent on data length. Fuzzy entropy
extends approximate and sample entropy by using a fuzzy
membership function to calculate class membership of a
state vector. Distribution entropy (DistEn) is yet another
extension that particularly analyzes the spatial complexity of
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the attractor while also reducing the use of fixed parameters
[9].

Though entropy analysis has been heavily researched for
studying electrophysiological signals [10], its application in
fNIRS is still nascent. Permutation entropy [11] was used
in several studies and was able to determine variations in
complexity reflected by mental stress, for example where it
succeeded in revealing greater complexity in fNIRS signals
for an attention deficit hyperactivity disorder population vs
a control population [12], [13]. Sample entropy was used to
discern an Alzheimer’s population from a control population
[14], [15]. Beyond fNIRS studies, entropy had been applied
on metabolic activity in fMRI, such as multiscale entropy for
the analysis of resting state fMRI [16], and analysis of reduc-
tion of complexity in brain dynamics due to age [17]. In spite
of the illustrated success of entropy in the aforementioned
studies, to our knowledge its use has not been particularly
highlighted in comparison to traditional analysis such as the
first-order moment changes between activity and baseline.
Aiming to understand if complementary associative areas are
observed in fNIRS-related entropy estimates, further research
is needed to fully characterize nonlinearities and complexity
in fNIRS series [18], [19].

To this extent, in this preliminary study we investigate
entropy features to quantify the irregularity and complexity
of fNIRS series. Particularly, we investigate the performance
of entropy analysis applied to fNIRS acquired during estab-
lished mental arithmetric tasks with well known neural and
metabolic correlates. We compared mental arithmetic with
baseline activity using publicly available data provided by
Shin et al. [20].

II. MATERIALS AND METHODS

A. Experiment Design

fNIRS signals used in this study were taken from a
publicly-available dateset, whose details are reported in [20].
Briefly, twenty-nine healthy subjects (aged 28.5 ± 3.7) were
involved in the experiment, split by 15 females and 14 males.
Figure 1 illustrates the block design of the experimental
protocol. In this preliminary study, data from 10 subjects
were considered for further analyses (5 female and 5 male
subjects). There were three trials of each of mental arithmetic
activity and baseline activity per subject. A total of 36 fNIRS
source detector pairs were acquired with a 10Hz sampling
rate by matching 16 detectors with 14 sources as illustrated
in figure 1.

The experimental protocol began with a 60s of resting
state, after which the subjects were presented an instruction



(an ”-” for baseline, an arithmetic operation for mental arith-
metic, or ”←” and ”→” for motor imagery) on the screen
telling them which task was to be performed. Afterwards,
the subject performed the task for 10s, with a subsequent
15s of resting state before the next task. After 20 repetitions
of these instructions and tasks, a 60s rest was performed.

Fig. 1. Top graphic displays the position of the NIRS sources and detectors,
source labels prepended by an ”S” and detector labels prepended by a ”D”.
The lines between source detectors illustrate their matching. The bottom
graphic illustrates the protocol block design for each trial.

B. fNIRS signals

The fNIRS setup comprised of 36 channels. The two
wavelengths used were 760nm and 850nm. The modified
Beer-Lambert law was used to convert optical density time
series collected from 760nm and 850nm to deoxyhemoglobin
(Hb) and oxyhemoglobin (HbO). Total hemoglobin was
derived from adding the two hemoglobin signals after the
preprocessing described in the next section.

C. Preprocessing

Figure 2 diagrams the preprocessing steps. For the mod-
ified Beer-Lambert law used to convert the optical density
signals to Hb and HbO, the first 60s were considered as
baseline, corresponding to a resting state. Then, a low-pass
Butterworth filter of order 6 with cutoff at 0.6 Hz was applied
to highlight the hemodynamic response, and a passband
Butterworth filter with cutoff frequencies at 0.8 Hz and
2Hz was used to include the pulsatile cardiac component
of the fNIRS signal [21]. The rationale behind including
the pulsatile component was to analyze the complexity that
may arise also from such a behavior. After the frequency
filters, a wavelet filtering approach was used to further reduce

noise in the oxy- and deoxyhemoglobin signals [22]. Briefly,
a discrete wavelet transform using a Daubechies 5 mother
wavelet decomposed the signal into 9 levels and subsequently
thresholded detail coefficients with low probability assuming
coefficients are zero mean normally distributed. Thereafter,
the signals were separated into epochs. Each channel at each
activity block was referenced to the mean of the previous 5s.
Total hemoglobin was thereafter derived from the addition of
both Hb and HbO. Having been preprocessed as described
here, the data was then further processed to extract features
of interest.

Fig. 2. Analysis pipeline used for each fNIRS signal in the dataset

D. Entropy Analysis

In order to apply Takens theorem to reconstruct the
attractor of each fNIRS signal, we first searched the optimal
values of time delay and embedding dimension referred to
each time series. The first zero of the autocorrelation was
used as the time delay, and false nearest neighbours approach
was applied to determine the optimal embedding dimension
[23].

After the attractor reconstruction, SampEn algorithm was
applied. We used the value of R = 0.2×σx, as the threshold
to determine which class a distance between two states
belonged to (neighbours or not), where σx is the standard
deviation of the fNIRS time series [24]. In the computation
of FuzzyEn, an exponential decay function was used as the
membership function to weigh the distances between the
phase space points, reusing the same parameter R as sample
entropy and a fuzzy power n = 2 to scale how fast the
exponential function decays [8]. Concerning DistEn, Scott’s
method was used to determine the bin size for the empirical
probability density function as represented by a histogram
[25]. From the histogram, shannon entropy can be calculated
to get the reported DistEn value.

Beer-Lambert law derives both a time series for HbO
and Hb. From adding these two time series, a third time
series, total hemoglobin (THb) can be computed. Thus,
an attractor can be reconstructed from each of these three
time series. Furthermore, an attractor can be reconstructed
jointly from Hb and HbO (“Concat”). All of these attractor
reconstructions have been explored to evaluate entropy as a
metric for assessing changes in brain activity.

E. Statistical Analysis

For each fNIRS channel, Friedman non-parametric sta-
tistical tests were performed in order to determine whether
repetitions of activities in each trial were significantly dif-
ferent. Afterwards, a Wilcoxon test was applied for each
channel using a median calculation over trials to compare
significant areas of activation between the two tasks (i.e.



baseline and mental arithmetic). A post-hoc analysis was
performed considering a Bonferroni correction for multiple
comparison over activities, with an alpha of 0.05 being
considered significant. Furthermore, a qualitative visual in-
spection was used to understand overlaps and complements
between various estimates association areas.

III. RESULTS

A. Statistical results on task repetitions

Concerning the results of Friedman statistical test in the
analysis of repetitions, it can be seen from Table I that
we may accept the null hypothesis that all repetitions have
the same effect for mean estimate, DistEn, and SampEn.
However, with FuzzyEn, in the case of total, concatenated
and HbO, we found that repetitions may be associated with
different random variables. FuzzyEn metrics are thus not
retained for further analysis between tasks.

TABLE I
RESULTS OF FRIEDMAN TEST CONCERNING STATISTICAL ANALYSIS ON

TASK REPETITIONS.

Metric Mental Arithmetic Baseline
HbO 0.1735 0.1147
Hb 0.0870 0.0841

Total Hb 0.0331 0.2449
SampEnHbO 0.0610 0.1414
SampEnHb 0.0891 0.2844
SampEnTotal 0.2013 0.2528
SampEnconcat 0.0408 0.1147
*FuzzyEnHbO 0.0934 0.0023
FuzzyEnHb 0.0145 0.0106

*FuzzyEnTotal 0.0708 0.0051
*FuzzyEnconcat 0.0219 0.0078
DistEnHbO 0.6658 0.1735
DistEnHb 0.1272 0.0115
DistEnTotal 0.0871 0.0874
DistEnconcat 0.0408 0.0408

The symbol * denotes when α = 0.01 we must reject the null hypothesis of
the Friedman test (i.e., there were significant variations between repetitions
with p < α).

B. Statistical analysis between baseline and mental arith-
metic task

We used Wilcoxon non-parametric statistical tests to dis-
cern mental arithmetic task from baseline, and Figure 3
shows the results from such a statistical analysis obtained
using the mean estimates, SampEn, and DistEn estimated
from HbO, Hb, THb, and Concat time series. It can be
noted that brain areas associated with significant p-values
are shown along with the increase/decrease of the specific
metrics.

When looking at significant regions of activity, DistEn
provides a greater region of activation than sample entropy,
while providing complementary regions to mean estimates.
For example, in HbO, DistEn highlights a region in the
posterior cortex for activity that is not included in the mean
estimates. Furthermore, the frontal cortex in Hb provides
frontal cortex activity in DistEn where mean estimates do
not. On the other hand, SampEn both in Hb and HbO fails
to attain areas of significance. Looking at THb and Concat,

Metric HbO Hb THb Concat

Mean

SampEn

DistEn

Mean

SampEn

DistEn

Fig. 3. Significant activations between mental arithmetic activity and base-
line activity are shown in the p-value plots using a green colormap, where
Y denotes significant areas with α = 0.05 and N denotes insignificant. In
the red to blue colormap arbitrary unit (A.U) differences between baseline
and mental arithmetic are mapped, with M red implying higher values for
mental arithmetic than baseline and B implying the reverse

SampEn provides complementary areas to DistEn and mean
estimates.

IV. DISCUSSION

In this study, we analyzed irregularity and complexity
features of brain activity dynamics for each possible config-
uration of the fNIRS signals: Hb, HbO, THb, Concat. The
fNIRS signals were taken from a publicly available dataset,
described in [20]. We considered ten subjects and compared
their metabolic brain activity during mental arithmetic tasks
and a baseline session. We applied three different entropy
algorithms, i.e., SampEn, DistEn, and FuzzyEn, alongside
the mean estimates of the four time series. From SampEn
and DistEn estimates as well as the traditional mean estimate
for activity, no significant differences were found among
repetitions of an activity. This allowed us to perform post-hoc
analysis to analyze whether mental arithmetic activity was
statistically different from baseline activity using a summary
statistic, i.e. the median, of all trials for the subject.

Concerning linear metrics, we were able to find areas
in the cortex that corresponded to what we expected from
previous fNIRS literature, particularly the prefrontal cor-
tex, parietal and temporal regions [26]. When we applied
Wilcoxon statistical tests to entropy estimates, it appeared
that DistEn was able to find areas that complement the
areas that mean estimates were able to uncover, while
SampEn was only able to do so when applied to THb
and Concat attractors. The complementary areas found from
the complexity estimates are interesting due to the increase
of information it provides, possibly uncovering significant
activity in experiment protocols which in the past could not
say anything conclusive, or perhaps even in cases of brain
machine interfaces where a richness in features can improve
performance.



DistEn may have been more capable of uncovering more
activation areas than SampEn from its ability to reveal com-
plexity alongside regularity of a signal in the phase space,
allowing the DistEn algorithm to better analyze feedback
loops; an analysis that SampEn can not perform without a
multiscale extension.

Finding complementary areas by entropy estimates is
of interest as mental arithmetic studies are designed such
that they can incite a large enough activation that show a
saturating superposition effect, an effect that is easily cap-
tured by looking at absolute values of blood oxygen levels.
Further research is still needed to understand and model the
underlying physiology driving these nonlinear and complex
effects to explain the results. At a speculative level, one
explanation can hinge on the cardiac components underlying
in the fNIRS signal. In fact, the pulsatile component of
the signal may have contributed to the fNIRS complexity
changes with respect to a baseline pulsatile activity, thus
the fNIRS complexity might be linked to a change of
vasoreactivity dynamics.

Previous evidence highlight that long-term stimuli follow a
more linear behavior than short-term stimuli [18]. From this
knowledge, one may expect that instead of looking at long
term stimulation activity as this study does, using short term
stimuli, entropy would be more capable than linear methods
at finding activities, i.e. unraveling activation areas unseen
by traditional methods.

V. CONCLUSIONS

From this preliminary study, we conclude that entropy es-
timates may provide information regarding activity in mental
arithmetic protocols different than metrics defined in the time
domain. Furthermore, DistEn proved to be more powerful
in uncovering activity than SampEn. Entropy was able to
not only demonstrate a subset of mean estimates, but also
complementary set of activation areas. Nonetheless, the un-
derlying physiology needs to be understood further in order
to explain precisely why these complementary areas arise.
Future studies can also investigate nonlinearities present
in protocols with short duration stimuli where nonlinear
responses is better understood.
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