Cuore

Materiale grafico di supporto alla lezione

Estratto da: "Bioelectromagnetism" cap. 6,15,19

Cenni su anatomia e fisiologia

- Situato nel torace, dietro lo sterno e davanti ai polmoni
- Circondato dal pericardio
- Dimensioni di un pugno chiuso, peso250-300g
- Parte superiore: grandi vasi (vena cava superiore inferiore, arteria e vena polmonare, aorta)

Cenni su anatomia e fisiologia

fig.2: Anatomia del cuore e vasi ad esso associati

Cenni su anatomia e fisiologia

Fig.3: Orientazione delle fibre del muscolo cardiaco

Propagazione

Table 6.1. Electric events in the heart

Location in the heart	Event	Time [ms]	ECG- terminology	Conduction velocity [m/s]	Intrinsic frequency [1/min]
SA node atrium, Right Left AV node	impulse generated 0 0.05 t depolarization *) 5 P 0.8-1.0 depolarization 85 P 0.8-1.0 arrival of impulse 50 P-Q 0.02-0.0 departure of impulse 125 interval	0.05 0.8-1.0 0.8-1.0 0.02-0.05	70-80		
bundle of His bundle branches Purkinje fibers endocardium Septum Left ventricle epicardium	activated activated activated depolarization depolarization	130 145 150 175 190	QRS	1.0-1.5 1.0-1.5 3.0-3.5 0.3 (axial) - 0.8 (transverse)	20-40
Left ventricle Right ventricle epicardium Left ventricle Right ventricle endocardium Left ventricle	depolarization depolarization repolarization repolarization	225 250 400 -) T	0.5	J

*) Atrial repolarization occurs during the ventricular depolarization; therefore, it is not normally seen in the electrocardiogram.

Fig. 6.7. Electrophysiology of the heart. The different waveforms for each of the specialized cells found in the heart are shown. The latency shown approximates that normally found in the healthy heart.

Attivazione elettrica del cuore

Attivazione elettrica del cuore

Genesi elettrocardiogramma

Confronto con neurone

Genesi elettrocardiogramma

• Modelliamo il sistema come un conduttore lineare

Genesi elettrocardiogramma

ATRIAL DEPOLARIZATION 80 ms SEP TAL DEPOLARIZATION 220 ms

S

Forma d'onda ECG

Evento	Durata (sec)	Ampiezza (mV)	Significato
ONDA P	0.07-0.12	0.2-0.4	Depolarizzazione atri
COMPLESSO QRS	0.06-0.10	1-2	Depolarizzazione ventricoli
ONDA T	0.18-0.20	0.4-0.5	Ripolarizzazione ventricoli
INTERVALLO P-R	0.12-0.20		Tempo di conduzione atrio- ventricolare
INTERVALLO Q-T	0.40-0.42		Tempo depolarizzaione e ripolarizzazione ventricoli
INTERVALLO S-T	0.30-0.34		Tempo dalla fine della depolarizzazione all'inizio della ripolarizzazione ventricoli
INTERVALLO R-R	0.8-0.9		Durata ciclo cardiaco

Diagnosi ECG

Ritmi sopraventricolari (generati agli atri o al nodo AV) - ritmi sinusali

(generati nodo SA - <u>complessi normali</u>)

NORMAL SINUS RHYTHM

Impulses originate at S-A node at normal rate

All complexes normal, evenly spaced. Rate 60 - 100/min.

SINUS BRADYCARDIA

Impulses originate at S-A node at slow rate

All complexes normal, evenly spaced. Rate < 60/min.

Come identificarli con una procedura automatica?

SINUS TACHYCARDIA

Impulses originate at S-A node at rapid rate

All complexes normal, evenly spaced. Rate >100/min.

SINUS ARRHYTHMIA

Impulses originate at S-A node at varying rate

Ritmi sopraventricolari ritmi non-sinusali

(non generati nel nodo SA - se vicini ad AV direzione opposta e segno onda P opposto - in generale <u>onde P</u> -<u>complessi QRS normali</u> anche se non spaziati regolarmente)

Variation in P-wave contour, P-R and P-P interval and therefore in R-R intervals

ATRIAL FLUTTER Impulses travel in circular course in atria impulsi atriali 200-300/min1:2 o 1:3 attivano nodo AV, non si discrimina P da T

Rapid flutter waves, ventricular response irregular

ATRIAL FIBRILLATION

Impulses have chaotic, random pathways in atria

Baseline irregular, ventricular response irregular

JUNCTIONAL RHYTHM

Impulses originate at AV node with retrograde and antegrade direction

P-wave is often inverted, may be under or after QRS complex Heart rate is slow origine nel nodo AV -> frequenza attivazione più bassa (onda P può sovrapporsi a QRS)

Aritmie ventricolari

L'attivazione non si origina dal nodo AV e non si propaga nei ventricoli in modo normale (in generale <u>complessi QRS</u> di <u>forma anomala</u>)

Se l'attivazione procede ai ventricoli dal sistema di conduzione: pareti interne attivate simultaneamente e il fronte procede radialmente verso le pareti esterne (QRS di durata breve)

Se il sistema di conduzione è danneggiato o l'attivazione inizia lontano dal nodo AV: più tempo necessario al fronte di attivazione per attraversare tutta la massa ventricolare (QRS di durata lunga).

Normale attivazione ventricolare: durata QRS < 0.1 sec

PREMATURE VENTRICULAR CONTRACTION

A single impulse originates at right ventricle

Time interval between normal R peaks is a multiple of R-R interval

Unico complesso di forma anomala, non è correlato con onda P, ha durata lunga se si genera nel muscolo ventricolare

VENTRICULAR TACHYCARDIA

Impulses originate at ventricular pacemaker

Wide ventricular complexes. Rate > 120/min spesso conseguenza di ischemia e infarto miocardico (l'attivazione circolare, torna indietro -> attivazione ventricolare a alta frequenza 100-200 battiti/min). Può portare alla fibrillazione ventricolare

VENTRICULAR FIBRILLATION

Chaotic ventricular depolarization

Rapid, wide irregular ventricular complexes

Causata da multipli cicli di attivazione retrograda dovuti al muscolo cardiaco danneggiato

Contrazione irregolare con non sufficiente pompaggio di sangue Conseguenze mortali

Disordini alla sequenza di attivazione (blocchi AV - blocchi fascio HIS dx o sx)

A-V BLOCK, FIRST DEGREE Atrioventricular conduction lengthened

P-wave precedes each QRS-complex but interval is > 0.2 s

A-V BLOCK, SECOND DEGREE

Sudden dropped QRS-complex

Intermittently skipped ventricular beat

A-V BLOCK, THIRD DEGREE

Impulses originate at AV-node and proceed to ventricles Atrial and ventricular activities are not synchronous

P-P interval normal and constant, QRS complexes normal, rate constant, 20 – 55 /min

RIGHT BUNDLE-BRANCH BLOCK

QRS duration greater than 0.12 s Wide S wave in leads I, V5, and V6

vettore P finale diretto verso RV (larga onda S in VI)

doppia onda R in V1

durata QRS > 0.12sec

durata QRS > 0.12sec

Incremento spessore pareti o dimensioni di atri e/o ventricoli (sovraccarico)

RIGHT VENTRICULAR HYPERTROPHY

Large R wave in leads V1 and V2, Wide S wave in leads V1 and V2, wide R wave in V5 and V6

stenosi valvola polmonare ipertensione polmonare insufficienza v. tricuspide

onda R>=0.7mV

LEFT VENTRICULAR HYPERTROPHY

Large S wave in leads V1 and V2, large R wave in V5 and V6

valvola mitrale valvola aortica ipertensione sistemica

ischemia e infarto

Arteria coronaria occlusa: carenza di ossigeno nel muscolo cardiaco (<u>ischemia</u>). L'ischemia causa una modifica dei potenziali di riposo e della ripolarizzazione (onda T).

Se in una certa area non arriva più ossigeno il tessuto muore (<u>infarto</u>). Infarto: zona inerte elettricamente che perde l'eccitabilità.

Si può dimostrare che la perdita del dipolo "uscente" è assimilabile a un dipolo che punta all'interno (possibilità di identificare l'infarto dal tracciato ECG)

Utilizzo di database

- Il database Physionet contiene tracciati ECG registrati sotto le più disparate condizioni: <u>http://</u> <u>www.physionet.org/physiobank/database/#ecg</u>
 - ECG con aritmie: http://www.physionet.org/ physiobank/database/mitdb/