

Giovanni Vozzi

Research Center "E. Piaggio", Dipartimento di Ingegneria dell'Informazione University of Pisa

+

Tissue engineering

an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve biological tissue function or a whole organ

Regenerative medicine

the application of tissue science, tissue engineering, and related biological and engineering principles that restore the structure and function of damaged tissues and organs

Biofabrication

the generation of biologically functional products with structural organization from living cells, micro-tissues or hybrid tissue constructs, bioactive molecules or biomaterials either through top-down (Bioprinting) or bottom-up (Bioassembly) strategies and subsequent tissue maturation processes.

Living tissues

• Multiscale and multimaterial structure

blood vesses

In vitro model

- Requirements
 - Availability (storage)
 - easiness of use
 - cost

- Norms
 - "Three Rs": <u>Replacement</u>,
 Reduction and Refinement
 - Directive 2010/63/EU

- Opportunities given by biofabrication
 - high customization (printing patient's cells)
 - increase complexity
 - increase reproducibility

- Weakness
 - limited functions
 - not a single model but a family of models

Abd E. et al. Skin models for the testing of transdermal drugs Clin Pharmacol. 2016 Oct 19;8:163-176.

+ How we may mimic natural tissue?

+

What is a scaffold?

Polymeric structure topogically well-defined and modulating biochemical and mechanical signals typical of natural tissue, i.e. *a 3D structure which supports 3D tissue growth*

What are the features of an ideal scaffold?

- Biocompatible, cell adhesive, bioerodable and bioactive
- Mechanical properties similar to those of natural tissue
- Optimal meso, micro and nano pores
- Well-defined, or quantifiable topology at meso-micro- and nanoscales

Designer or Random?

Structure

Function

Retina

Liver

Bone

*Biochemical stimuli in scaffolds

- Synthetic biomaterials with ligands
- Natural biomaterials

Decellularized Tissue

Methods for generating MS stimuli in scaffolds

Additive = rapid prototyping

Additive

Subtractive

Designer Scaffold

Three main groups:

- laser systems
- nozzle based systems
- direct writing systems

Scaffolds

Scaffolds

Scaffold

Pressure Assisted Microsyringe (PAM)

Designer Scaffold

PAM system

Syringe design

Software

Software

Vozzi, Previti, De Rossi, Tissue Engineering, 8, 34, 2002. Vozzi, Flaim, Ahluwalia, Bhatia, Biomaterials, 24, 2533, 2003

Designer Scaffold Additive Subtractive

Scaffolds with PAM

Vozzi et al, JBMRA, 71A, 326, 2004. Mariani et al., Tissue Eng. 12, 547, 2006. Bianchi et. Al. JBMR 81, 462, 2007.