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Abstract— The growing interest in the study of functional 

brain-heart interplay (BHI) has motivated the development of 

novel methodological frameworks for its quantification. While a 

combination of electroencephalography (EEG) and heartbeat-

derived series has been widely used, the role of EEG 

preprocessing on a BHI quantification is yet unknown. To this 

extent, here we investigate on four different EEG electrical 

referencing techniques associated with BHI quantifications over 

4-minute resting-state in 15 healthy subjects. BHI methods 

include the synthetic data generation model, heartbeat-evoked 

potentials, heartbeat-evoked oscillations, and maximal 

information coefficient (MIC). EEG signals were offline 

referenced under the Cz channel, common average, mastoids 

average, and Laplacian method, and statistical comparisons 

were performed to assess similarities between references and 

between BHI techniques. Results show a topographical 

agreement between BHI estimation methods depending on the 

specific EEG reference. Major differences between BHI methods 

occur with the Laplacian reference, while major differences 

between EEG references are with the MIC analysis. We 

conclude that the choice of EEG electrical reference may 

significantly affect a functional BHI quantification. 

 

I. INTRODUCTION 

The central nervous system continuously receives 
afferences from peripheral organs and systems through 
anatomical, functional, and biochemical pathways to maintain 
the homeostasis of bodily processes [1]. Particularly, brain 
structures including the somatosensory cortex, insula, anterior 
cingulate cortex, ventromedial prefrontal cortex, and 
amygdala may affect the heart electrical activity [1] and, 
likewise, autonomic and heartbeat dynamics may influence 
brain dynamics [2], [3]. Thereby, these interactions are 
commonly referred to functional brain-heart interplay (BHI), 
whose quantitative assessment may provide dynamic 
biomarkers involved in psychological and cognitive processes 
and associated pathological conditions [3]–[5].  

From a methodological viewpoint, previous studies 
quantified functional BHI through model-free and model-
based approaches, including heartbeat-evoked potentials 
(HEP) [6], heartbeat-evoked oscillations (HEO) [7], maximal 
information coefficient (MIC) [8], and synthetic data 
generation (SDG) models [9]. HEP corresponds to the neural 
responses evoked by each heartbeat and has been extensively 
investigated with electroencephalography (EEG) [6][10] with 
exemplary applications in cognition [3]. Additionally, HEP-
related estimates have been proposed using EEG oscillations 
in specific frequency bands with respect to a pre-heartbeat 
baseline, namely heartbeat-evoked oscillations (HEO) [7]. 
Furthermore, a time-varying functional linear and nonlinear 
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coupling between EEG and heart rate variability (HRV) series 
may be assessed through advanced correlation measurements 
such as the maximal information coefficient (MIC) [8][11]. 
Recently, a functional BHI estimation method based on 
synthetic data generation (SDG) models was proposed to 
quantify the BHI strength and directionality, i.e. from-heart-
to-brain and from-brain-to-heart [9]. Note that an SDG-based 
estimation may be performed between EEG- and HRV- 
derived power spectrum series integrated within different 
frequency bands [9]. To this end, while HRV-derived power 
series within the low frequency band (0.04-0.15 Hz) are 
employed as a marker of sympathovagal activity, HRV power 
series integrated within the high frequency band (0.15-0.40 
Hz) refer to the vagal activity [12].  

Despite the aforementioned evidence, the role of EEG 

preprocessing on a functional BHI quantification has not been 

investigated yet. To overcome this limitation, here we 

investigate functional BHI in healthy subjects during resting 

state sessions to quantify differences between four commonly 

used EEG electrical references, including the Cz electrode (or 

vertex reference), common average, mastoids average, and 

Laplacian method, as well as between SDG, HEP, HEO, and 

MIC methods.  

Notably, previous studies demonstrated that EEG electrical 

reference may significantly affect EEG-derived features, such 

as analyses on alpha oscillations and event-related potentials 

[13]–[15].  

II. MATERIALS AND METHODS 

A. Data acquisition 

A group of 15 young healthy adults (mean age: 26 years, 7 

females) were recruited for the recording of 128-channel high-

density EEG (Electrical Geodesics, Inc) and one-lead ECG 

during 4-minute resting state. Data were sampled at 500 Hz. 

All subjects signed an informed consent, and the experimental 

procedure was approved by the local ethical committee.  

B. EEG pre-processing 

Data were processed and analyzed using MATLAB 

R2017a and Fieldtrip Toolbox [16]. EEG series were bandpass 

filtered within the 0.5-45 Hz band using a Butterworth filter. 

A wavelet-enhanced independent component analysis was 

applied to remove large movement artefacts [17], as well as 

the cardiac field artefact [10]. According to the 10-10 system, 

a subset of 64 channels were selected for further analysis to 

exclude sources located over the face and neck [18]. EEG 

channels were marked as corrupted if their area under the 

curve exceeded 3 standard deviations of all channels mean, or 
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if the weighted-by-distance correlation with their neighbors 

was below R2 = 0.6. Corrupted channels were replaced using 

a weighted-by-distance interpolation of neighbors.  

EEG data were then re-referenced to the Cz electrode (CZ), 

common average (CA), mastoids average (MA), and 

Laplacian method (LM).  

EEG power spectral density (PSD) series integrated within 

the α-band (8-12 Hz) were computed through short time 

Fourier transform with 2s time windows and 1s overlap. 

B. ECG pre-processing 

ECG series were bandpass filtered within 0.5-45 Hz using 

a Butterworth approximation. An automatic R-peak detection 

algorithm based on template correlation was applied [19], and 

detections were visually inspected for further analyses. 

Series of high-frequency PSD (HRV-HF within 0.15-0.4 

Hz) were computed from HRV series using an adapted 

Wigner-Ville distribution [20]. 

C. Brain-Heart Interplay Assessment 

A functional BHI assessment was performed through the 

following methods: 

1) Synthetic Data Generation (SDG) model, which 

assesses the bidirectional functional coupling between EEG 

oscillations and HRV-derived series [9]. Here the interplay is 

computed from a heart-to-brain direction, considering power 

series in the HRV-HF and EEG-α bands.  

2) Heartbeat-evoked potential (HEP) refers to the neural 

response triggered by each heartbeat [6]. For each subject, 

HEP is computed by averaging EEG epochs within the 200-

400 ms interval following each R-peak, without a baseline 

correction. HEP absolute values were analyzed in order to 

allow comparisons with the other BHI estimation methods. 

3) Heartbeat-evoked oscillations (HEO) refers to the 

neural response triggered by each heartbeat within a specific 

EEG band [7]. Similar to HEP, HEO is computed by averaging 

EEG epochs within the 200-400 ms interval following each R-

peak. However, HEO accounts for a relative change with 

respect to a baseline value calculated in the -300 to -200 ms 

interval. Here, HEOs were investigated within the α-band. 

4) Maximal information coefficient (MIC) quantifies linear 

and nonlinear functional coupling between EEG- and HRV-

derived series [8][11]. In this study, the MIC was computed 

between PSD series derived from the EEG-α and HRV-HF 

bands. 

For each method and for each EEG reference, time-varying 

BHI dynamics was averaged over 4-minutes for further 

statistical comparisons. 

D. Statistical analysis 

Functional BHI estimates for all reference methods were 

z-scored within the 64-channels spatial maps for each subject. 

Statistical analysis included group-wise topographical 

Spearman correlation coefficient (R) on concatenated 

samples from all subjects and all EEG channels. The 

derivation of the coefficients’ p-values was performed 

through a t-Student distribution approximation. P-values 

significance level was corrected in accordance with the 

Bonferroni rule. Correlation analysis includes a total of 24 

pairwise comparisons between EEG references and between 

BHI estimates, hence the corrected significance threshold was 

set to α=0.05/24=0.0021, with an uncorrected statistical 

significance set to 0.05.  

 

III. RESULTS 

For a qualitative visual evaluation, Figure 1 shows group-

wise median values of z-scored functional BHI estimates 

from SDG, HEP, HEO, and MIC estimation methods and CZ, 

CA, MA, and LM references for EEG data. Spatial 

distribution of functional BHI estimates over different cortical 

regions varies between methods. SDG and HEP show a 

positive gradient from central to frontal scalp regions, 

whereas HEO and MIC seem to have an opposite behavior. 

Furthermore, while SDG and MIC major changes are over the 

central and temporal areas, HEP and HEO show changes 

between references over the parietal and occipital areas. HEP 

and HEO present similar topographies between references, 

whereas SDG and HEP expose similarities for CA and MA. 

On the other hand, while LM’s major differences seem to 

occur between methods, MIC seems to be associated with 

major differences between references. SDG shares 

similarities with MIC, particularly for the CA reference. 

 

Fig 1. Group-wise median values of z-scored functional BHI estimates from 

SDG, HEP, HEO, and MIC methods, and EEG references including Cz 
channel, Common Average, Mastoids electrodes, and Laplacian method. 

Data refers to 4-minute grand average from N = 15 subjects. AU: Arbitrary 

Units. 

Results from a quantitative non-parametric correlation 

analysis are reported in Tables I and II. Particularly, Table I 

shows correlation results between BHI methods for each EEG 

reference and confirm overall higher significant correlations 

between SDG and HEP for CZ and MA references, as well as 



  

between SDG and MIC for CZ, CA, MA and LM references. 

Method-wise, the LM reference shows lower correlation 

values and lowest number of significant correlations.  

TABLE I.  SPEARMAN CORRELATION STATISTICS BETWEEN BHI 

METHODS FOR EACH EEG REFERENCE METHOD. 

Spearman 

Correlation 

Analysis 
CZ CA MA LM 

SDG-HEP 
R = 0.1050 

p = 0.0011 

R = -0.0349 

p = 0.2805 

R = -0.2436 

p < 0.0001 

R = -0.0205 

p = 0.5256 

SDG-HEO 
R = 0.0268 

p = 0.4062 

R = -0.0252 

p = 0.4359 

R = 0.0187 

p = 0.5618 

R = 0.0153 

p = 0.6358 

SDG-MIC 
R = 0.2154 

p < 0.0001 

R = 0.1215 

p = 0.0001 

R = 0.2223 

p < 0.0001 

R = 0.2034 

p < 0.0001 

HEP-HEO 
R = 0.0242 

p = 0.4542 

R = 0.1020 

p = 0.0016 

R = 0.1004 

p = 0.0019 

R = 0.0503 

p = 0.1196 

HEP-MIC 
R = 0.1397 

p < 0.0001 

R = 0.0211 

p = 0.5145 

R = -0.0076 

p = 0.8142 

R = 0.0214 

p = 0.5079 

HEO-MIC 
R = 0.0637 

p = 0.0483 

R = 0.0148 

p = 0.6469 

R = 0.0508 

p = 0.1157 

R = 0.0685 

p = 0.0338 

 Bold indicates statistically significant correlation (corrected p < 0.0021) 

Table II reports on the correlation analysis between EEG 

references for each BHI estimation method. A higher 

agreement between references is with SDG, HEP, and HEO, 

and higher correlation values are with HEP for comparisons 

not involving the LM reference. The MIC method is the most 

affected by the choice of EEG reference, showing the lowest 

number of significant correlations. Comparisons involving 

BHI estimates with the LM references are generally lower in 

magnitude, while the comparisons involving estimates from 

CA are higher in magnitude. 

TABLE II.  SPEARMAN CORRELATION STATISTICS BETWEEN EEG 

REFERENCE METHOD FOR EACH BHI METHOD. 

Spearman 

Correlation 

Analysis 
SDG HEP HEO MIC 

CZ-CA 
R = 0.639 

p < 0.0001 

R = 0.999 

p < 0.0001 

R = 0.695 

p < 0.0001 

R = 0.165 

p < 0.0001 

CZ-MA 
R = -0.185   

p < 0.0001 

R = 0.999 

p < 0.0001 

R = 0.589 

p < 0.0001 

R = -0.015 

p = 0.6517 

CZ-LM 
R = 0.264 

p < 0.0001 

R = 0.456 

p < 0.0001 

R = 0.401 

p < 0.0001 

R = 0.118 

p = 0.0002 

CA- MA 
R = 0.455 

p < 0.0001 

R = 0.999 

p < 0.0001 

R = 0.719 

p < 0.0001 

R = 0.278 

p < 0.0001 

CA- LM 
R = 0.429 

p < 0.0001 

R = 0.459 

p < 0.0001 

R = 0.437 

p < 0.0001 

R = 0.088 

p = 0.0066 

MA -LM 
R = 0.341 

p < 0.0001 

R = 0.459 

p < 0.0001 

R = 0.428 

p < 0.0001 

R = 0.099 

p = 0.0021 

 Bold indicates statistically significant correlation (corrected p < 0.0021) 

 

IV. DISCUSSION 

We reported on the role of EEG electrical reference in the 

assessment of functional BHI in resting state conditions. To 

this end, we processed EEG and ECG data gathered from 15 

healthy participants to investigate similarities and differences 

between EEG references including CZ, CA, MA, and LM, 

and between BHI estimation methods including SDG, HEP, 

HEO, and MIC. 

Overall, our findings show that a topographical agreement 

between BHI estimation methods may depend on the specific 

EEG reference. While major differences between BHI 

methods arises with the LM reference, major differences 

between EEG references may be associated with a MIC 

analysis.   

More in detail, the significant non-parametric correlation 

values between SDG and MIC (see Table I) are in line with 

the occurrence of a linear and nonlinear functional interplay 

induced to the brain from heartbeat in the α-band (8-12 Hz), 

which is dominant in the resting state [21]. Nevertheless, 

while SDG shows significant correlations between EEG 

references, MIC seems to be mostly affected by the reference 

choice (see Table II). Note that in this preliminary study SDG 

was implemented to assess the directional interplay from the 

heart to the brain through specific power series in the HRV-

HF and EEG-α bands. We speculate that the parametric and 

physiologically plausible structure of the SDG model [9] 

mitigates possible differences between EEG references, while 

a MIC analysis directly operates on EEG-derived 

measurements [11]. Note also that the MIC is a non-

directional estimation method [8], therefore a further SDG 

analysis on the from-brain-to-heart direction is likely to 

provide additional information on the functional BHI at rest. 

Interestingly, HEP and HEO methods show significant 

correlations especially when using CA and MA references, 

suggesting that CZ and LM references may affect EEG 

activity in the -300 to -200 ms interval preceding the 

occurrence of a heartbeat.  

We remark that different cortical regions may be 

differently affected by the specific EEG reference option. 

Indeed, previous studies reported that the specific choice of 

EEG reference mostly affects EEG features gathered from 

frontal electrodes [13]. In our study, qualitative group-wise 

topographical changes between EEG reference methods seem 

to be major with MIC and minor with HEP and HEO, whereas 

SDG and HEP show quite consistent activation maps (see 

Figure 1).  

Previous studies challenged the use of a CZ reference 

(vertex reference) because it refers to a active cortical area 

[22][23]. On the other hand, the use of CA reference has been 

suggested because of the intrinsic independence with respect 

to specific scalp regions [24] and possible robustness with 

respect to changes in experimental conditions [25]. 

Nevertheless, the number of EEG electrodes used for the CA 

calculation might bias its estimation [25]. The MA reference 

may be associated with a reduced neural activity area with 

respect to other cephalic sites [22]. However, previous studies 

showed inconsistent performances for MA when compared to 

a CA reference [26]. Differently from other references, the 

LM accounts for changes in the current density across the 

scalp given the curvature of the brain electrical field [27], and 

thus the number of EEG electrodes may also affect its 

estimation [28]. In this study, the LM reference showed a 

significant influence on functional BHI estimation.  

As a final note, we remark that different BHI estimation 

methods may refer and quantify different physiological 

processes underlying concurrent cortical and heartbeat 

potentials, which therefore may not always depend on the 

choice of EEG reference. A thorough comparison between 

BHI estimation methods and between EEG references should 



  

also be performed in experimental conditions other than 

resting state, including e.g. emotional or cognitive stress. 

 

V. CONCLUSIONS 

We conclude that EEG preprocessing with respect to the 

electrical reference may significantly affect functional BHI 

quantification depending on the estimation method. Our 

findings confirm the crucial role of EEG preprocessing 

procedure, which was already highlighted in case of EEG 

features defined in the α-band and event-related potentials.  

Future research directions will be directed to a larger data 

sample, also gathered in experimental conditions other than 

the resting state and EEG and HRV oscillations in different 

frequency bands. 
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