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Sensor and measurement

1.1 What is a sensor?

Humans have five senses: sight, hearing, touch, smell and taste, as illustrated
in Fig. 1.1. These senses are very important because humans act after receiving
information from the outside world.

Automatic doors open by checking for the presence of people using the
device that corresponds to the sense of sight. These devices are common
throughout the world. In fact, when we come across a nonautomatic door,
we often assume that it must be self-operating and wait for a while for it to
open, and then we become aware that it is nonautomatic. The infra-red light is
usually used in detecting a person at automatic doors. The history of the
automatic door is very old; in fact, it was used in Alexandria, the capital of
ancient Egypt, more than 2000 years ago. It was made in such a way that
it could open when fire was started at the altar in front of the door of the
temple.

The sensor plays the role of reproducing the five senses or surpassing them.
Figure 1.2 shows the correspondence between the biological system and the
artificial system in the process of reception and the following action. The
sensor is the device that mechanizes the ability of five organs, i.c., eye, ear,
skin, nose and tongue, in the senses of sight, hearing, touch, smell and taste,
respectively. With the development of computers, we often use the term sensor
in the global sense by combining the data-processing part with the receptor
part (i.e., the sensor in the narrow sense). In this case, the sensor plays roles of
recognition as well as reception. This is the direction in which development of
intelligent sensors is moving.

The actuator implies the mechanical part that moves the object by trans-
forming the output from the sensor to rotation and displacement.

In the above example of the automatic door in ancient Egypt, the air under
the altar is expanded by fire (sensor part): this causes water to flow into
another vessel through a tube. The resulting water pressure moves the rotating
apparalus of the door (actuator part).
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Figure 1.1. Five senses of humans,

Table 1.1 summarizes the correspondence between the sensor and the five
senses. “Odor sensor™ and “‘taste sensor” are entered in the lists of the
senses of smell and taste, respectively. This is based on the expectation that
these two kinds of sense can be realized at the reception level if good sensing
materials are developed successfully. As explained in Chapter 2, the primitive

Biological system

Sensing organs |—I-| Brain |—|-| Muscle I

Stimuli
from the

outside world

Artificial system

| Sensor ,—h- Computer ——hl Ar.lunmrl

W—.—J

Sensor in the wide sense

Figure 1.2. Correspondence between the biological system and the artificial system in the
process of reception and the lollowing action.
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Table 1.1, Five senses and sensors

Sensing
Five senses organ Object Sensor Principle
Sight Eye Light Optical sensor  Photovoltaic effect (photon
— clectric change®)
Hearing Ear Sound wave  Pressure sensor  Piezoelectric effect (sound
wave — electric change)
Touch Skin Pressure Pressure sensor  Piczoclectric effect
(pressure — electric
change)
Temperature  Temperature Secebeck effect (temperature
sensor — electric change)
Smell Nose Chemical Gas sensor Chemical reaction (gas
subslances adsorplion — electric
resistance change)
Odor sensor Adsorplion effect (mass
change — frequency change)
Taste Tongue  Chemical lon sensor Selective ion permeation

substances (ion — electric change)
Taste sensor Electrochemical effect
(interactions — electric
change)

“The term “clectric change” implies changes in electric resistance, clectric voltage or electric
current.

discriminations of quality of taste and chemical substances to produce smell
are made in gustatory and olfactory cells, respectively.

The sensor can surpass the ability of the five senses of humans in the
following two ways. The first is that living organisms including human beings
cannnot live in severe conditions; for example, humans cannot experience the
temperature in a blast furnace themselves. It is the sensor that can achieve
this, The second concerns the limited sensory range, depending on the species,
of living organisms. For example, humans cannnot recognize propane gas or
carbon dioxide and cannot hear the supersonic sound generated by a bat or
a dolphin. Humans can perceive these quantities by using a sensor that
surpasses their abilities.

In the history of sensor development, the sensors (in the narrow sense)
corresponding to the receptor parts of sight, hearing and touch have been
developed for many years. By comparison, the sensors for simulating the
senses of smell and taste have been proposed only recently. This difference
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Figure 1.1, Five senses of humans.

Table 1.1 summarizes the correspondence between the sensor and the five
senses. “Odor sensor” and “taste sensor”™ are entered in the lists of the
senses of smell and taste, respectively. This is based on the expectation that
these two kinds of sense can be realized at the reception level if good sensing
malterials are developed successfully. As explained in Chapter 2, the primitive

Riological system
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Sensor in the wide sense

Figure 1.2, Correspondence belween the biological sysiem and the artificial system in the
process of reception and the following uction.
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is a consequence of the mechanisms involved in these two kinds of sensor. In
the senses of sight, hearing and touch, only one physical quantity — light,
sound wave and pressure (or temperature), respectively - is received. Hence
the sensors have only 1o transform this physical quantity to another tractable
quantity such as an electric signal. On the contrary, many kinds of chemical
substance must be assessed at once for smell and taste to be transformed into
meaningful quantities to represent these senses.

As a resull, sensors for sight, hearing and touch use popular materials such
as semiconductors to receive the physical quantity. For smell and taste, how-
ever, it has been less clear what materials can be adequately used to receive the
many kinds of chemical substance. For example, when we eat something, we
express ils taste by using the terms “‘sweet”, “bitter” and “sour”. It is said that
there are about 1000 kinds of chemical substance in tea or coffee. We have no
idea of the mechanism by which information contained in these substances
is transformed into meaningful, simple expressions such as “sweel” and
“bitter”. However, it should be noted that the classification into these taste
expressions is made at the first stage of reception of chemical substances by
taste cells.

The sensors that play the roles of receptor in the senses of sight, hearing and
touch are called physical sensors, because physical quantities are received. The
sensors playing the role of receptor in the senses of smell and taste can be
classified as the so-called chemical sensors. Nevertheless, the approach used to
construct chemical sensors seems to have been almost the same as that in
physical sensors, because it is based on high selectivity and sensitivity. One
of the fruitful results is an enzyme sensor or an ion-selective electrode. They
are very powerful and uselul for detecting a specific chemical substance with
high selectivity and sensitivity.

However, taste or smell cannot be measured il we [abricate many
chemical sensors with high selectivity for different chemical substances
when there are more than 1000 in one kind of foodstuff. The original role
ol smell and taste was to detect and assess information within a large mass
of external information (enormous numbers of chemicals). The sense of
smell is powerful in detecting the smell of an enemy or prey in the dark
of a forest. The sense of taste is used to judge whether anything to be
taken into the mouth is beneficial or poisonous for the body. There are
too many kinds ofl chemical substance involved in producing laste and
smell, and hence it seems important to obtain useful information quickly
rather than to discriminale a single chemical species from others. This
tendency is evident in unicellular living organisms, which have no sense of
sight.
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= 1.1 What is a sensor? 5

The above argument may need one comment concerning the sense of smell.
Recent studies have revealed that there are numerous types of specific protein
for odor molecules, as detailed in Chapter 2. In addition, there is no basic
smell, whereas five basic taste qualities are known in the sense of taste. These
facts may imply a large difference between the senses of smell and taste: the
sense of smell has a specific property in real biological systems while the sense
of taste keeps a nonspecific property to some extent. For this reason, the
above argument concerning the fabrication of sensors may be good in the
technical meaning for odor sensors, while for taste sensors it holds also in the
biomimetic meaning.

As 4 summary, it can be said that the sensors that are used for smell and
taste must have a fabrication principle that differs from the physical sensors or
the conventional chemical sensors. Recently developed taste and odor sensors
have outputs well correlated with the human sensory evaluations, and the
taste sensor particularly has an intelligent ability to break down the informa-
tion included in chemical substances to the basic information of taste quality.
We are now standing at the beginning of a new age when sensors can be used
to reproduce all five senses.

We have huge numbers of sensors that can be considered in terms of three
factors: the materials selected for measuring the object, the purpose and use of
the sensor and the physical effect or chemical reaction used in achieving the
measurement (Fig. 1.3). For example, let us consider a situation where we
measure pressure or acceleration. For this purpose, it seems good to use a

Ohject = purpose
2

#= Material

Effect « chemical reaction

Figure 1.3, Various kinds of sensor with different effects and
materials according (o the object.
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Table 1.2. Various effects utilized in sensors

Classification Effect

Light Zeeman
Stark
Doppler
Raman
Brillouin
MNonlinear
Optical parametric
Sound wave Doppler
Acoustoelectric
Acoustomagnetic
\ ‘ Masking
‘ | Diffraclion
Semiconductor Tunnel
Zener
Electric field
Gun
Josephson
Magnetism Superconducting quantum
Barkhausen
Thermal Seebeck
Peltier
Thomson
Photovoltaic Photovoltaic
Photoconductive
Photoelectron emission
Photoelectromagnetic
Pockels
Kerr
Piezoelectricity Piezoelectric

From Ohmori (1994) with permission.

combination of the piezoelectric effect in Table 1.2 and the semiconductor
material in Table 1.3. However, other combinations may be possible. To
measure temperature, we can use the Seebeck effect, which transforms tem-
perature change into electromotive force, and a metal that shows this efTect as
the sensing material.

What are the materials and effects that are adequale to measure the senses
of taste or smell? 1t is nol too much to say that a novel material and effect have
been found in the development of sensor technology. IT we can visualize taste
and smell quantitatively, a new world will be opened.




semiconductor
e possible. To
ransforms tem-
ws this effect as

1sure the senses
and effect have
n visualize Laste

o R A et i A i e v W

~ 1.2 Fundamental units 7

Table 1.3. Materials used for sensors

Malerials Examples
Ceramics Sn0,, ZnO, TiOs, AlsO4, BaTiO;, Si0,
Semiconductor Si, Ge, GaAs, InSh, CdSe
Metal Cu, Fe, Ni, Pt
Polymer, enzyme” Polyvinyl chloride, poly(pyrrole), glucose oxidase,
valinomyein, crown ether
Living-organ material Microbe, lipid, collagen, protein, catfish barb, frog skin,

bacteriorhodopsin

“ There is not a strict division between polymer/enzymes and material from living organisms.

1.2 Fundamental units

We can find the sentence “Time travels in diverse paces with diverse persons”
in As You Like It written by Shakespeare. It implies a subjective [actor in the
concept of time, i.e., mental time. However, we can also have physical and
objective time. We are always troubled by the dilemma between mental and
objective time.

Measurement implies the ability to compare some obtained quantity with a
fundamental value (“measure™) deduced from some scale and to express it
using the quantitative value. Let us consider a situation where we measure
some quantity and get the value L, then the measured value becomes L/U il
the fundamental value is U. If the quantity is concerned with length with a
unit of m, we can say that the length of the object is L/U m.

While many units of length have been proposed so far, the most convenient
way may be to use the human body (Fig. 1.4). Protagoras in ancient Greece
said that “man is the measure of all things; of what is, that it is; of what is not,
that it is not”. While he meant the standard of the truth of all things by
“measure of all things”, we can apply this saying to our body. The lact that
humans have tried to develop a common unit based on their bodies can also be
found in a famous sentence in Rongo written by Koshi in ancient China;
Koshi says that we know one sun by stretching our fingers, one shaku by
our hand, and one hire by our elbow. One sun is 3.03cm, one shaku
30.3cm, and one hire 1.515m. The unit cubit has an old history from over
4000 years ago in Mesopotamia and Egypt, and one cubit corresponds to 45
to 70 cm depending on the race and period. One yard, which might originate
from double cubits, is equal to 3 feet (0.914 m). The same situation holds lor
the units inch, ell, fathom and so on.
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fathom, Klafter,
B e — R ——
rasse, iro

yard (= 3 fect)—s

a—shaku —

sun$ 1 inch,

Daumen,
pouce

<« el !"lec._._
cubit

L
foot, Fufl, pied

Figure 1.4, Scales based on the human body. The scales based on anatomy such
as Lhe length of elbow do not always have the same value, presumably because of
differences in race, period and tradition.

With time, the unit was determined using a phenomenon that occurred
repeatedly with an accurate period. The annual overflow of the Nile in ancient
Egypt occurred when Sirius rises in the sky in the same direction as sunrise,
and it promised a good harvest by carrying fertile soil from the upper stream.
The unit “one year™ (i.e., solar year) was determined from a period of the
revolution of the earth.

In 1889, 30 meter prototypes (Fig. 1.5) were produced. One of them was
assigned as an international meter prototype, the length of which at 0°C was
defined as 1 meter. The system unified on the base of this meter unit is the
internalional system of metric units (SI: Systéme International d’Unités). The
ST unit was accepted during a number ol meetings of the Conlérence Générale
des Poids el Mesures.”

The Sl system consists of seven base quantities (shown in Table 1.4), two
additional quantities and numerous derived quantities. The units of the length
and time have been improved and now they are defined within the framework
of quantum mechanics. However, mass is based on (he international kilogram
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Table 1.4. The seven base quantities of the S1 system

Base quantity

MName Symbol

Definition

Length

Mass

Time

Electric current

Thermodynamic
temperature

Amount of
substance

Luminous
intensity

meter m

kilogram kg

second 5
ampere A
kelvin K
maole mol
candela cd

Distance travelled by light in vacuum during a
time interval of 1/299 792 458 second

Weight of an international platinum-iridium
alloy prototype kept at the International
Bureau for Weights and Measures in
Sévres, France

Duration of 9 192631 770 periods of
clectromagnetic radiation, corresponding
to the transition hetween the two hyperfine
levels of the ground state of the cesium-133
atom

Current that produces a force of 2 x 1077
newton per meter of length between two
straight parallel conductors of infinite
length placed 1 meter apart in a vacuum

1/273.16 of the thermodynamic lemperature
of the triple point of water

Amount of a substance of a system containing
as many elementary entities as there are
atoms in 0.012 kilogram carbon-12

Intensity in a given direction of a source
emitting monochromatic radiation of a
frequency 540 x 10'% hertz with a radiant
intensity in that direction of 1/683 wall per
sleradian

Figure 1.5. The meler prolotype,
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prototype, which is made of 90% Pt and 10% Ir, from 1889. It is cylindrical
and is kept at the International Bureau for Weights and Measures (BIPM) in
Sévres, France,

Galileo found that the period of a simple pendulum is determined by the
length of the pendulum and does not depend on the weight. The period of a
I'm simple pendulum is about 2.01 s, and hence half a period is about 1s. It is
easy to visualize the relationship between 1 m and 1s.

The unit for the amount of substance, as atoms, molecules or ions, is the
mole. Because there is an unimaginably large number of molecules, we use a
“unit” called the Avogadro constant (originally termed Avogadro number),
which is 6.02 x 10%. The reference “prototype™ is the number of atoms in
0.012 kg carbon-12. How large this number is can be grasped by the following
hypothetical experiment. Let us fill a cup with water when we 20 to the sea.
Then we put the water back into the sea and let the giant in the Aladdin’s lamp
stir the sea with a large spoon. After a sufficient stir, we again fill the cup with
water from the sea. How many molecules that first filled the cup come back
into the cup? The result is very surprising; some molecules will come back to
the cup. As this example illustrates, the world we deal with is composed ol an
unimaginably large number of molecules.

Using a mol, we can define the unit for concentration in solution. A 1 M
aqueous solution is 1 mol of molecules dissolved in 11 (1000 em?) water. The
NaCl content of sea water is 0.5 M (500 mM). The threshold for detection of
chemical substances to produce taste and smell for ordinary individuals lies
between 1 x 107°M (1 M) and 0.1 M (100 mM). The decimal prefixes that
are used to describe these multiples and submultiples of a thousand are given
in Table 1.5.

Figure 1.6 shows large numbers using hieroglyphics: 10* implies the form of
bending a figure, 10° the form of some animal, a burbot, and 10° shows a
person surprised. The sign for 10" may be an indication of unknown because
the number is just too huge.

Figure 1.7 shows what we can see when the scale is increased. We human
beings can imagine such 4 microscopic object as a quark, which cannot be
observed by the naked eye, and further can think of such a huge object as the
universe.

Recently, environmental pollution has become a social problem, and pollu-
tion of the atmosphere and rivers and the destruction of the ozone layer must
be considered carefully from now on. We often hear the term ppm (parts per
million) in our daily life. The unit ppm implies a ratio. For example, il 1 pg
malterials are included in 1g water, it amounts to 1 ppm. More recently, we
hear ppb (parts per billion). The appearance of this small unit may not be
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Table 1.5. Decimal prefixes

Factor Prefix Abbreviation Factor Prefix Abbreviation
10" exa E 107! deci d
10" penta P 1072 centi c
10" lera T 10-? milli m
10? giga G 1678 micro It
10° mega M 107? nano n
10 kilo k 10-"? pico P
10? hecto h 10715 femto f
10" deca da [o—'8 atto a
10° 10* 10° 10° 10’

Figure 1.6. Hicroglyphics to express large numbers.

independent of the fact that humans produce chemical substances that are
harmful in quantities as low as 1077 (1 ppb).

1.3 Classification qf measurement methods

Measurement methods can be divided into the following categories depending
on the object and the properties of the measured quantity.

1.3.1 Direct and indirect measurements

Direct measurement implies a method to measure by directly comparing the
measured quantity with the scale, for example reading the divisions ol a scale
in the case of measuring length. On the contrary, indirect measurement needs
some calculation to get the result, for example to get velocity by the division
procedure using the distance and the necessary time, which must be measured
separately,

The accuracy of the indirect measurement is determined from the accuracy
of each measurement. Let x|, x,...,x, denote the quantity obtained by the
measurement and y denote the quantity to be obtained as a result, then y can

be expressed by:*
.!,:.f('\'|l‘\"2"""\.ll'.)! (I.I)
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Figure 1.7. From microscopic scale to macroscopic scale,

where /" implies some calculation procedure. The errors 60X, 0xa,...,0x, are

generaled in the measurements of vy, x,,.. ., x,, respectively. Tn this case, the
resulting error of v becomes
ar ay af
Oy =8y +==8x; + -+ = by, 1.2
il C)-\'I |+ a\_z i + av, " ( )

Each error éx; affects the total error éy by the weight ol df'/dx;.
Let us consider one example of obtaining the moment of inertia of the
cylinder with mass M, diameter o and length /. The moment of inertia yis

given by
'
! =M(T§+E)' .3
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From eq. (1.1) we get
dy  6M 8 Sl 6 &d

R o s —_ 1.
y oM +4+3d2//2 Tt 3TarEd {8
For the cylinder with / = 10cm and d = 1em, §y/y becomes
sy &M 6l 5d
— =27 005 (1.5)

This result means that the measurement of the diameter o scarcely affects the
moment of inertia.

As illustrated in this example, there are instances where we must make
careful measurements and others where we can make somewhat rough
measurements according to the particular factor in the indirect measurement.

1.3.2 Absolute and relative measurements

In absolute measurement, the measured quantity is an absolute value, as
found when measuring light velocity (¢ = Af) using the values of the wave-
length A and the frequency /. Here we can get the magnitude of velocity in
itself if’ the wavelength and frequency are measured accurately. The same
situation holds for the measurement of length.

By comparison, relative measurement implies that the method measures the
difference from the value at a reference point, which can be set arbitrarily. A
typical example is the measurement of electric potential at some point,
because it depends on the reference point of zero electric potential.

Whereas the value at a reference point should be constant during the mea-
surement, it changes in some cases. The difference method for cancelling the
changeable value at the reference point is effective in this instance (see an
example in Fig. 4.11).

1.3.3 Deflection and null methods

In the spring balance, we read the deflection of the sign attached to the spring,
which is expanded by the weight of an object, as shown in Fig. 1.8(a). In the
ammeter 1o measure electric current, we read the angle achieved by the rota-
tional force caused by the electric current that induces the electromagnetic
force in the magnet. These are deflection methods. Here we must obtain
beforehand a relationship between the deflection and the measured quantities,
i.e., a calibration line.

The null method is one whereby the unknown quantity is measured by
balancing it with a known reference quantity. The indication is zero when
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Figure 1.8. (a) The deflection method and (#) the null method.
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Figure 1.9. Wheatstone bridge.

the reference quantity is adjusted to the same value as the unknown quantity,
as shown in Fig. 1.8(h).

One of the null methods is the measurement ol electric resist
Wheatstone bridge, shown in Fig.

ance using the
1.9. The unknown resistance R, can be

expressed using the known resistances Ry, R;, Ry by

R, =%?i. (1.6)

(I T et
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When the above equation holds, the electric current does not flow between
points A and B because of zero electric potential difference.
In the null methods, a type of feedback procedure to adjust the known

quantity is necessary.

1.4 Multiple regression analysis

In multiple regression analysis, we consider deriving a linear equation to give
a relationship between several measured quantities. As one of the simplest
examples, Fig. 1.10 shows the change in electric resistance R(£) of some
material with increasing temperature 7(°C). Let us try to express the relation-
ship between R and T by the following linear equation:

R= by T i (1.7)

where by and by are the constants to be determined to give a best fit to all the
measured data. Since the number of pieces of data is generally greater than
two, there cannot exist two constants (b;, by) that will satisfy eq. (1.7) for all
the data. So, what we can do is to search for the method for determining 5,
and by in an approximate equation to reproduce all the data in the best way.

This subject can be extended to the case with more variables,

¥, X1, X2,...,X,. The expected value Y for the experimental value y can be
expressed by the following equation:
Y=b[.-\-'| +bg;‘i‘g+"'+ b,,x,,-l—bu. {18)

This equation is called a multiregression equation with the explanatory
variables x; (predictor variables) and one dependent variable Y.

The two constants b, and by in eq. (1.7) can be determined as follows. The
error of each measurement 7 is given by

:,'ER"—(b|Tf+bo) for i=],2,...,n, (1.9)

g [ :
ae )
8 15— -
a Fe ®
g L3
.E L

11—
H | | | | | | |

20 40 60 50 100

Temperature T (°C)

Figure 1.10. Change of electric resistance with temperature.
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where R; is the measurement value of the electric resistance and n is the total
number of measurements. From the method of least squares, the error is

| smallest when 3 z7 becomes a minimum with respect to by and b, (see Fig.
; 1.11).

By minimizing 37z} with respect to b, and b;, we get
7]
37,;2 2= Y IR = (BT + by)] =0,
E i i

4 (1.10)
b, £ 5 = Z:[R, = (&) T; + b)) T; = 0.

From this equation, we get

: ,,n=ZzR¢E: T} ~ RTYT
I f ny sz—(ZiT;)' (.11
b, =”ZIRJTf—E;‘eriT,"

ny 17 - )’

The above case comprises only one explanatory variable. In more general
cases with many predictor variables, the following set of equations holds
for each measurement:

Y| = b].\'” + b:.\'zl R hl"\-l’l + bo.
}’3 = [Jl.\'u 4 b}\'zz SRR & h’,.\'ﬂz |- b‘n,
(1.12)

Yo =byxy, + baxs, + - + bp'\-fm + bg.

rz}
i

I

Figure 1.11. Minimization of errors.
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Minimization of 3" =7 leads to

Z(J’i" ) =0, (1.13a)
> = Y)x; =0, (1.13b)
i

Equation (1.13a) implies that the average value j(= Y y;/n) of the measured
quantity is equal to the average of the expected value ¥ (= 3 ¥;/n). By multi-
plying b; in eq. (1.13b) and making a summation about j, we get

S = Y)Y =0, (1.14)

i

by taking into account eq. (1.13a). Using eq. (1.14) we get
Z(;—“ ZY, F)+Zy,-} (1.15)

This equation implies that the square sum (Sy) of the observed value from
which the average is subtracted is equal to the sum (Sg) of the square sum of
expected value, from which the average is subtracted, and that of error (Sg).

SE_ .Sk

5 = (1.16)

For the smaller Sg, the multiregression equation can explain the experimental
data.
The ratio Sg /St can be expressed by

=72, (1.17)

where 7 is the multicorrelation coefficient defined by
200 — PN Y = ‘
\/ Yl - LY = F)?

From the above equations, it can be concluded that if r is near 1, the multi-
regression equation can also explain the experimental data.

The multiregression analysis is used with the smallest number of predictor
variables. In general cases, 1 is larger than p in eq. (1.12). A peculiar situation
arises in the case of n=p-+ 1. The number of unknown coefficients
bg, by, ..., b, agrees with the number ol equations. So, b; can be solved exactly
except l'ur a special case where one equation coincides with another equation
because of the same data values that were obtained casually. This leads to
zero errors; that is, eq. (1.8) can express the observed data strictly. Thereflore,
it is expected that we can obtain a multiregression equation to explain the
observed data only if we increase the number of explanatory variables that

r=

(1.18)
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have no relationship with the phenomenon concerned. Then, i? increases
artificially by adding meaningless explanatory variables. This is very strange.
It is an unfavorable artifact brought about by the increasing degree of space
constructed from the explanatory variables, i.e, the degree of [reedom.
To prevent the meaningless increase in correlation coeflicient, the adjusted
1? is proposed as lollows:
Pe1ot2L gy, (1.19)

n—=pnp—1

As can be understood from the above equation, i can decrease if meaningless
explanatory variables are added to the multiregression model. Using #, we
can compare the correlation between cases with different numbers of expla-
natory variables.

In some cases, cross-terms consisting of x, and X; are necessary (o express
¥. The same procedure is possible by regarding the cross-lerm as a new
explanatory variable.

1.5 Principal component analysis

When we make measurements, we usually wish to express some components
quantitatively, In the case of direct measurement, the measured quantity is
the object itsell. In the case of indirect measurement, however, the object
(dependent variable) is expressed by a set of measured quantities (explanatory
variables). The method to achieve this was described in Section 1.4. In this
section, we treat the case where there is no dependent variable, which occurs
frequently. For example, let us assume that we have a detailed investigation in
a hospital. The investigation produces a number of measurements, total biljr-
ubin, GOT, GPT, ..., in the list of functional tests (the explanation of GOT,
GPT is unnecessary; we only need to know that they are important quantities
measured in assessing our health). When we want to know the hepatic func-
tion, we must search the equation by which the hepatic function is expressed
using the above measured quantities.

Let us consider an example, shown in Table 1.6, where scores of language
and mathematics of 16 students are listed. Using this result, it may be possible
to say whether student E is good at language or mathematics. It implies the
formulation 1o express the term “good at language™ (or “good at mathe-
maltics™) using the score of language Xy and the score of mathematics x,. In
this case, the decrease in information occurs always because the two variables
(scores ol language and mathemalics) are reduced to one variable (“good at
language™). Our intention is (o adoplt the method to obtain uselul information
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Table 1.6. Scores of language and mathematics of 16 students

Student

82
80

75 61 gg 86 65 63 87 75 67 80 83 87 72
67 74 76 76

78
71

Language

Mathematics

70

i
—11.5

82
—16.9

79
—13.7

9
—17.2

0.7

—6.1

15.0

6.4

28

—3.5

8.0

1.4

122

=20

1.5
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Figure 1.12. Scallering diagram of the scores of langnage and mathematics of |6 students.

without losing information.>® This method is called a principal component
analysis, which is often abbreviated as PCA.

The scores in Table 1.6 are rewritten in Fig. 1.12. By examining this figure,
it would appear that the students who are good at mathematics are bad at
language, while the students who are good at language are bad at mathe-
matics. Therefore, it may be natural to define the lower right direction as
the terin “good at language” by drawing a straight line, as shown in Fig.
112, It means the introduction of a new variable z;:

2] =Xy A aaXs, (].20)

where x; and x; are the values after the average was subtracted from (he
original values. Eq. (1.20) is nothing but rotation of axis.

We must do our best in determining @), and a,> without losing information.
It implies that the new axis is determined by the direction of the large spread

of data points. To keep the magnitude in the transformation in eq. (1.20), the
following condition is set:

ﬂf|+ﬁ'f3=l. ('2])

Figure 1.13 shows schematically a relationship among the original informa-
tion, the new information and loss of information. We get

(9]

oP; - 50

[&=]

—m__z
e

1=PQ'

(1.22)
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Figure 1.13. Concepl of principal component analysis to obtain meaningful information.

This equation implies that C)_(;)‘,2 can be maximized in order to minimize E,z
(loss of information). This is a problem in that we maximize OQ; by summing
up over 16 pieces of data under the condition of eq. (1.21).

For this purpose, the Lagrange’s method of undetermined multipliers is
powerful. We maximize the following equation including the undetermined
multiplier A:

N
glan, @) = > (ayxy + apay)t — Mady +afy — 1), (1.23)
iw]
where N is equal to 16 in the present example. By maximizing eq. (1.23) with
respect to @y and a;, we get
L Sié 4 spap — Aay =0,

da
1 (1.24)

dg
_ = £ - Adj; = U\
Baiis Si20) + S0 12

with
Ff = Z-\‘?n
i

52 = le'—xm' (]‘25)
i

2
5y = Z X7
i

The quantities obtained by dividing s, and s, by N are called a variance and
the quantity s,/N is called a covariance.
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For the non-zero values of ), and a5 in eq. (1.24),
S5 — A $1a

= 1.2
$12 S22 — A ¢ i1:20)

is a necessary and sulflicient condition. The eigenvalue is given by

J\I = {S“ + 533 -k \/m]fz’

(1.27)
A= [Su T -y (511 = $22)° +45%2]/2'
Since the relation
glay,ap) = A (1.28)

holds, the magnitude of eigenvalue A is equal to that of new information, The
axes z; and z; are determined by A; and A, respectively, because A; = A;. The
following expressions can be obtained for aq; and ay,, if we take a;; = O

ay = [s12]
e e
VO =P+ (1.29)
g TS

52

For the example in Table 1.6, we get ¢, = 0.88 and «;; = —0.48. The line z; in
Fig. 1.12 is drawn using eq. (1.20) with these values. The positive value of ay,
and negative value of @;; means z; increases for better at language and worse at
mathematics. It really expresses the students who are better at language than
at mathematics. The fact of |a);| > a,, implies that the axis z; is determined
more by the score of language than that of mathematics. This axis has the
largest information contained in x; and x;, and hence it is called a first
principal component (PC1). The axis z, determined from another eigenvalue
As is called a second principal component (PC2).

As shown in eq. (1.28), the magnitude of eigenvalue reflects information.
The ratio of the eigenvalue to the sum of all the eigenvalues is called a con-
tribution rate. In the present example, the contribution rates are 92.9% and
7.1% Tor PCI and PC2, respectively. Therefore, PC1 has almost all the
informalion.

Figure 1.12 implies that the student E is very good at language because his
PC1 value is high. On the contrary, the student G is very bad at language
because of the low score of PCI. In this way. we could extract information
regarding the term “good atl language™ from two scores ol language and
malhemalics.

The axis =, is given by

I3 = day N+t (1.30)
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where the vector (a3, ay;) belonging to the eivenvalue A, becomes (0.48, 0.88).
The fact that @3 = 0 and ay; > 0 means that z, reflects the students who are
relatively good at both language and mathematics. The student P takes the
largest value of z;. The value of PC2 can be regarded as a kind of total score of
examinations.

This can be understood clearly from the next example, shown in Table 1.7.
By using the same procedure as above, we get

073 0.68
A= (-0.68 0.73)' W2l
where
z = Ax (1.32)

with z = (z1,2,)" and x = (x;,x,)’, the superscript ¢ implying the transpose
vector. The contribution rates to PC1 and PC2 are 77.6% and 22.4%, respec-
tively. As can be understood from the expression of eq. (1.31), z; becomes the
sum of x; and x; with different weights.

This expression is similar to the simple sum of scores and sometimes is more
effective for evaluating the result of examinations. If all the students get the
same score, for example 80 for mathematics, the addition of the score in
mathematics to those for examinations of other subjects is meaningless. In
this case, the score in mathematics has no value in evaluating differences in the
ability of students (no ability difference or problems too bad). If the PCA is
made, one eigenvalue becomes zero because there is no dispersion of the score
in mathematics. As a result, PCI is determined by other examinations.

The PCA was made here using the variance and covariance. However, it is
not adequate to perform the analysis when there are variables with different
characteristics, for example weight (kg) for x; and height (m) for x, in asses-
sing obesity. Il the unit g is chosen for the weight, the dominant term becomes
the weight, and obesity can be determined by only the weight x, independent
of the height x5. In such a case, the method using the nondimensional quan-
tities is usually convenient: dividing x; by the root of variance of x;. It leads to
% = 1, and s; becomes the correlation coefficient ry;.

Two variables were reduced o one variable in the above example. Of
course, the same procedure can be applied to more general cases including
many variables. The ultimate goal of sensor technology is to mimic the human
senses and exceed them. For this aim, we sometimes get necessary information
by using several sensors of different types and properties. In this case, we must
relate all the information from these sensors to the intended quantities with-
out losing information. The PCA is very useful for this purpose. In some
cases, however, a relationship between input and output of the sensor
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becomes strongly nonlinear. A neural network algorithm can be used in those
cases, as will be found in Chapter 5 for odor sensors.
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Toward a sensor to reproduce
human senses

8.1 Discrimination of wine flavor using taste and odor
Sensors

Earlier chapters have reviewed a range of sensor types. Recently, there have
been striking developments in odor and taste sensors. As shown in Fig. 8.1, it
may not be impossible to discuss deliciousness of foods by combining the
sensors corresponding to the five senses. We can use an optical sensor for
the color, a thermometer for the temperature, a pressure sensor for the
texture, a tasle sensor lor the taste and an odor sensor for the odor.
Analysis of outputs from the above sensors, together with environmental
and personal information, may lead to quantification of deliciousness. The
following example describes a first step of this trial.

Wine has both taste and odor qualities resulting from different aromatic
molecules in the liquid and vapor phases. The average wine contains about
80-85% water and over 500 different substances, some of which are very
important to the wine flavor in spite of their low concentrations. The main
groups are acids, alcohols, esters, sugars and tannins. The difference in the
color of wine comes mainly from tannins (which are also responsible for the
flavor). The tannins are present in the solid part of the grapes, which are
fermented together with the liquid part when a red wine is made; for white
wines only the liquid from grapes is used. It is known that tannins are respon-
sible lor the astringency of a solution whereas some acids are responsible for
“freshness”™ and others for peculiar odor nuances.'

Among this huge number of molecules, those which can easily pass in a
vapor phase represent potential stimulus for the human olfaction when they
reach the bulb in the nasal cavity and interact with the odor receptors.
Molecules in the liquid phase are responsible for the perceived taste
when they interact with taste buds on the tongue. The overall perception of
a4 substance as lar as its chemical properties are concerned results from a
combination of odor and taste senses and also from the so-called trigeminal
sense (responsive to irritant chemical species). This perception is hereafter
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Figure 8.1. Measurement of deliciousness.

referred to as flavor. Wine, therefore, is a suitable candidate for testing the
performance of the sensory fusion of taste and odor sensors.” The odor-sensor
array used in this study is composed of four different novel conducting poly-
mers that have been recently developed.” The monomer (25 mg) is dissolved in
trichloroethylene (2 ml) and the oxidizing salt previously dissolved in acetoni-
trile is added in a dropwise manner. The polymerization process then occurs
and the resulting solution is sprayed onto an alumina substrate where four
interdigitated electrodes were previously evaporated. After evaporating the
solvent, the conducting polymer is connected with the four electrodes, as
shown in Fig. 8.2. Four different sensing elements were obtained by combin-
ing two different monomers and two oxidizing salts (see Table 8.1).

The electric resistance between the inner electrodes of these sensing ele-
ments ranged from 1 to 100 k€. The resistance measured at the inner electro-
des varied when volatile molecules were adsorbed at the surface of the
polymer film. The average sensitivity, expressed as the ratio of the resistance
change to the base resistance value, was almost always less than 2% for the
elements used in wine sensing. These sensors show broad and overlapped
sensilivities to many compounds such as alcohols, amines, hydrocarbons and
phenols. They also show a cross-sensitivity to water vapor (relative humidity;
RH) so that monitoring of RH was necessary during the experiments.

The taste-sensor array is composed of eight different polymer/lipid
membranes, as shown in Table 6.1 (p. 116). Aflter preparation, the electrodes
were immersed in a solution of a Japanese red wine for four weeks (the
wine used as a standard solution) before they were used for the experiments
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Table 8.1. Materials used for the conducting
polvimer forming process

Channel Monomer Oxidizer

1 IDPO2BT Fe(Cl04)s
2 3,3.DPTTT Fe(Cl0y),
k! 33-DPTTT Cu(ClO,)
4 ADPO2BT Cu(C10y)

3DPO2BT, 3,3-dipentoxy-2,2"-bitiophene;
3.3-DPTTT, 3.3'-dipentoxy-2.2": 5'.2"-
lertiophene,

With permission from Baldacei er al.”

Polarizing
current

Interdigitated
pold electrodes

Alumina s i
support Polymer film

Sensor's output

Figure 8.2, Layoul of a single odor-sensing element on alumina substrale,
(With permission from Baldacei et al.”)

(preconditioning method). The lour different wines used lor the experiments
are listed in Table 8.2,

The raw data were normalized by the following method. Let S;; be the set of
measurements laken with the multichannel odor sensor:

Su o Su Su Sy

Si= | A 1)




ubstrate.

¢ experiments

7 be the set of

8.1 Discrimination of wine flavor using taste and odor sensors 199

Table 8.2, Four different wines used in the experiments

Wine Brand name

Wine 1 (white) Est! Est! Est! di Montefiascone 1995, Ttaly

Wine 2 (red) (standard solution) Bon Marche’ Mercian, lapan

Wine 3 (white) Chablis 1994, France

Wine 4 (red) Rosso di Montalcino, Fattoria dei Barbi, 1994, Italy

where / is the channel number, s is the s-th measurement and N is the
number of measurements. Each element of the matrix represents the response
of a single element of the odor-sensor array expressed as the ratio of the
maximum resistance change, upon exposure to the vapors, to the base
resistance measured in presence of clean air flowing through the exposition
chamber. Let T, be the set of measurements taken with the multichannel taste
sensor:

Ty - e Ty
Ti=| " s (82)
Ty - - Ty

where 7, s and N have the same meanings as above. Each element of the matrix
represents the response of a single electrode of the taste sensor expressed as
the difference between the electric potential in the testing solution and the
electric potential in the standard solution.

The mean values of the responses for each channel are

R . S

Si=v Z' S (8.3a)
[or the odor sensor, and

— 1

Ty== ; i (8.3b)

for the taste sensor.
Computing the average of the square errors of the responses first among the
samples and then among the channels we obtain

I
A=am 33 (5 -5 (8.4a)
=1 x=
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for the odor sensor and

| el =
o = S_ZZ(TJ'J-_ T)) (8.4b)
fe=|  xem|

for the taste sensor.
Now the original sets of data can be normalized as follows:

Ei’.\' — EJ'

To

3, = (8.54)

for the odor sensor, and

P ek (8.5b)

0y

for the taste sensor. Combining the normalized sets of data we obtain the
data set:

i =[S T (8.6)
that is, a 12 x N dimensional data array.

From each measurement using the taste sensor, an eight-dimensional vector
representing eight membrane potentials was extracted. One cycle of measure-
ments consisted of four different acquisitions made by rotating the testing
samples in the following order: wine 1, wine 2, wine 3 and wine 4 (note here
that wine 2 was also used as the standard solution). PCA was made aller
normalizing. The distribution of dala in the principal component space is
shown in Fig. 8.3.

Wim}:‘IIZ y-%-{ g
- Wined ’_% -

-2r Wine3

-5 0 5

Figure 8.3, Results ol the PCA applied 1o the data set from the taste sensor. Wines land3
are white: wines 2 and 4 are red. (With permission from Baldacci er al?)



(8.4b)

(8.5a)

(8.5b)

a we obtain the

(8.6)

nensional vector
ycle of measure-
iting the testing
ine 4 (note here
was made alter
ponent space is

sor. Wines | and 3
wclet :‘ri.?)

201

Normalized amplitude

|
b

T

1

1 2 3 4 5 6 7 8
Channel

Figure 8.4. Eight-dimensional taste patterns of the testing wines.
(With permission from Baldacci er al.?)

We can observe that the data are clustered in four well-separated groups
representing the four different wines used. The PC1 accounts for the differences
between red and white wines, whereas the PC2 accounts for the differences
between wines of the same color. As mentioned above, the color of wine is
mainly from the content of tannins. The sensitivity of the taste sensor to tannins
was investigated in a previous work? to show that the array’s element,
DOP:TOMA 3:7, was the most sensitive for tannic acid. This agreed with
the present result because the element DOP: TOMA 3:7 is the larger contri-
butor to the PC1, which, in turn, accounts for the discrimination between red
and white wines,

Figure 8.4 shows the averaged taste patterns of the four wines. The taste
pattern can be seen as the fingerprint of a wine in the eight-dimensional space
represented by the taste sensor. Each wine is characterized by its own taste
paltlern.

From each measurement using the odor sensor, a four-dimensional data
vector representing the peak values of the electric resistance changes was
extracted. The PCA was computed after normalizing the data in the same
way as [or the taste sensor. The plotin Fig. 8.5 shows the distribution ofclusters
in the principal component space. Again, discrimination among difTerent wines
was achieved. At this stage no data were available concerning the sensilivily of
odor sensors to the main components of wines and therefore no quantitative
consideration can be put forward to account for these resulls. Nevertheless, in
this case the mutual distribution of clusters differs from that in Fig. 8.3 and this
can be considered as evidence that the information concerning the samples
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Figure 8.5. Results of the PCA applied to the data set from the odor sensor.,
(With permission from Baldacci e al?)

provided by the odor sensors accounts for different characteristics of the wines
themselves. In this case, the PCI is still responsible for the discrimination
between red and white wines and also for the differences between the two
white wines and the two red wines. The PC2 gives information about further
differences between the two red wines. Note here, in the PCA plot, how the
overall information about the set of samples is topologically distributed in a
different way compared with that from the taste SENnsor.

Figure 8.6 shows the averaged odor patterns for the four wines
tested. Again, the odor pallerns are the representation of the wines in

i
T

Normalized amplitude
=
]

I
b
T

Channel

Figure 8.6, Four-dimensional odor patlerns of the testing wines,
(With permission from Baldacei e al)
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the four-dimensional space of the odor-sensing elements. Each sample has
its own odor pattern, which differs slightly among samples belonging to the
same kind of wine because the responses of the odor sensor and the fluid-
dynamic conditions® were not highly reproducible, as in the case of the taste
gensor.

After either set of data was normalized, according to the method described,
a 12-dimensional data array was obtained for each measurement. The 12-
dimensional data array is composed of the four-dimensional data array of
the odor sensor and the eight-dimensional data array of the taste sensor.
Another PCA was performed on this new set of data and the results are
shown in Fig. 8.7.

The relative positioning of the clusters in the principal component plane
was similar to that for the odor sensor, and the relatively large distance
between clusters of the red (2 and 4) and white (1 and 3) wines were success-
fully achieved by the contribution of the taste sensor, as in Fig. 8.3. The
combination of the two sets of data has led to a new representation of the
samples in the 12-dimensional space, which we refer to as flavor pattern. A
flavor pattern simultaneously contains information from odor and taste sen-
sors concerning the sample measured.

The feasibility of a sensory fusion between taste and odor sensors has been
investigated with the aim of discriminating among substances with subtle
differences, such as the wines used here. The same method was applied to
detect the change in flavor alter opening wine, using five samples of the same

T T T T T T T T T

2l i
Wine 2

"~ Wine 1 ]

BT |

Wine 3

et

=2r Wine 4 5

Lo 1 1 | | L | | S (R

-5 0 5

PCl

Figure 8.7. Results of the PCA applied to the combination of the data set from the odor
sensor with the data set from the taste sensor, (With permission {rom
Baldacci er ch.J]
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wine opened for different times.? Discrimination of wines, having the same
denomination bul coming from different vineyards, was successfully made
using an array of metal oxide semiconductor gas sensors.® The sensor fusion
is very effeclive because the information provided by each array is to some
extent independent from the others; the arrays account for different charac-
teristics of the wines themselves since the relative positioning of clusters in the
principal component space differs from one wine to the next. Conventional
multiple sensor arrays have several sensing elements produced by similar
technology, e.g.. conducting polymer sensor, metal oxide sensor and lipid-
membrane sensor. These sensors show broad sensitivities to certain groups of
substances bul are not sensitive to other compounds. If different types of
sensor technology are simultaneously applied, provided that the data [rom
the different sources are independent, it is worthwhile to combine them to
obtain a broader viewpoint of the samples measured.

8.2 Perspective

A multichannel taste sensor, i.e., electronic tongue, utilizes lipid membranes
as the sensing part. This sensor can discriminate and quantify the taste of
chemical substances that is really felt by humans. A recent study’ shows that
measurement ol the electric potential of the membrane electrode in standard
KCI solution without rinsing the elecirode, onto which chemical substances
such as quinine and tannin were adsorbed by measuring the sample solution,
is very eflective for quantifying the taste. This measurement is called a CPA
measurement, because the change of electric potential caused by adsorption of
chemical substances is measured. The CPA measurement provides informa-
tion that is different from the usual measurement of electric potential of the
sample (i.e., the response electric potential) as described in Chapter 6. Briefly
speaking, the CPA measurement reflects the adsorbed amount of chemical
substances on the lipid/polymer membranes mainly from hydrophobic
interactions. Il we combine the CPA measurement with the usual measure-
ment, which detects the electric potential of the sample, we can obtain
more information of the overall taste comprising sally, sour, sweet, bitter,
umami laste and astringency components. The overall taste of green tea,
where amino acids and tannin are main taste substances, was quantified
using this method, and high correlations with the results of sensory tests were
found.®

One of the main features of the taste sensor utilizing lipid membranes is its
ability to quantily the taste of amino acids, as seen in Section 6.4. The taste
sensor can classily the taste of amino acids into tastes such as bitter, sweel,
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sour and umami taste. The mixed taste composed of bitterness and sweetness
shown by L-methionine and L-valine can be reproduced using the taste
sensor by a mixture of L-alanine, which tastes sweet, and L-tryptophan,
which tastes bitter. The bitter taste of amino acids is intimately related to
the hydrophobicity. The taste of dipeptides can also be discriminated by the
response pattern of the taste sensor, which is characteristic of each taste
quality. Figure 8.8 shows a taste map of five taste qualities elicited by typical
chemical substances, amino acids and dipeptides (K. Toko and T. Nagamori,
unpublished data).

The taste of seafoods such as abalone, sea-urchin, crab, scallop and short-
necked clam is determined by the content of amino acids.” For example,
the taste of sea-urchin can be expressed by L-glutamate, glycine, L-alanine,
L-valine and L-methionine at 103, 842, 261, 154 and 47mg/100g and an
adequate quantity of NaCl. The aqueous solution of this mixture was
measured using the taste sensor, and the result was compared with the
measurements for sea-urchin, which was crushed and homogenized with a
mixer, The correlation coefficient was 0.995 for one of the sea-urchins tested
(8. Takagi and K. Toko, unpublished data). There was a tendency for the
correlation to become higher for expensive sea-urchins; it is related to the
quantity of NaCl compared with that of amino acids. As the sea-urchin is
more expensive, the weight of amino acids playing a role in producing the
main taste becomes larger.

As mentioned in Chapter 2, the reception mechanism of gustatory systems
is as yet unclear. However, the taste sensor using lipid membranes can repro-
duce the taste experienced by humans in most cases exceptl [or sweetness
elicited by sugars, as detailed in the last two chapters. The response patterns
for five taste qualities differ, and hence these tastes are separated well on the
three-dimensional taste map (see Fig. 6.7, p. 122). The response patterns for
bitter amino acids such as L-tryptophan resemble that for quinine, which is a
typical bitter substance belonging to the alkaloids. The detected threshold is
almost the same in both the taste sensor and the gustatory system for each
taste quality. Suppression of bitlerness by sweet substances and phospholipids
can be reproduced well using the taste sensor. The tastes of many foodstufTs
such as beer, coffee, milk, mineral water, sake and tomatoes can be quantified
and the sensor outputs can agree with sensory tests by humans. How should
we interprel these facts?

It may be reasonable to consider that in real systems the lipid membrane
plays a role in the reception of bitter substances such as quinine and amino
acids, sour substances such as acetic acid and citric acid, and salty substances
such as NaCl, KCl and FeCl;. The response patterns are large for these taste



A sensor to reproduce human senses

1
h
(a) !
- i
1 Disodium
i succinale
1 IMP
k ey
: GMP
i
1
1
e :
1
E i
i
)
]
1]
| ] ==y e AR T —
B Citric ncid i
©  Aln-Glu i b4
e  Gly-Gh i L-Ala
@ SerGh i
O Gly-Asp E
®  [-Glu ! Gly
Ll
|
= | 0 1

PC1

()

PC3

Lﬂ'TI;P E @ L-Fhe
Quinine

A

‘lGM'P

IMP
Disodjum

en succinale
Pola
1 : MSG
= 0

rci

1

Figure 8.8. Taste map comprising typical chemical substances such as HCI. NaCl, quinine.
amino acids and dipeptides. (¢) PC 1-PC2, () PC1-PC3 planc.



I, NaCl, quinine,
ane.

8.2 Perspeciive 207

qualities and differ from one taste quality to another; similar patterns are
obtained for chemical substances producing the same taste. Within the
group of sweet substances, sugars can be hardly detected using the multi-
channel potentiometric taste sensor that uses lipid membranes; however,
amino acids (glycine, L-alanine) and artificial sweetners can be measured.
Interestingly, a different reception and transduction mechanism in gustatory
systems is proposed for these two species, as mentioned in Section 2.3,

The filth taste quality, umami tasie, can be detected using the taste
sensor. Three umami taste substances (MSG, IMP and GMP) with very
different chemical structures (MSG is an amino acid; IMP and GMP are
nucleotides) show almost the same response electric patlerns, as seen in
Fig. 6.6 (p. 121). There is a possibility thal umami lasle substances are
received at the lipid membrane part of biomembranes, because a similar
response pattern can be obtained for other umami substances such as mono-
sodium p-aspartate.'® Tt can be considered that umami taste is related to
chemical substances that have a common structure as neutral salts ol weak
acids with moderate hydrophobic properties.'’ The hydrophilic group and
hydrophobic chains of the lipid membrane interact with the chemical sub-
stances that have this structure. A well-known phenomenon that saltiness of
NaCl is decreased by coexistent umami laste substances can be reproduced
using the taste sensor.'> However, the reproduction of the synergistic effect
experienced by humans is not completely achieved by the taste sensor because
the increase in umami taste strength is weaker for the taste sensor than for
humans.

Kurihara suggested the importance of the hydrophobic part of lipid mem-
branes for the reception of bitter substances.'* The results of the taste sensor
studies using lipid membranes support this suggestion and furthermore sug-
gest that other taste qualities such as sourness and saltiness can also be
detected by the lipid membrane, which can use both its hydrophobic and its
hydrophilic parts in reception of chemical stimuli. Living organisms must
check the safety ol all chemical substances quickly before eating them and
it may well be that they use the lipid membrane as well as the proteins
embedded in it to achieve this.

Although lipid molecules have a more simple structure than most proteins,
they can self-organize into macroscopic multimolecular structures such as the
lipid bilayer and liposomes. Once such a structure is formed, it can lunction as
a barrier to ions, a supporting/modulating material for proteins, an electron-
transfer medium and as a recognition system at the cell surface.

The studies using the tasle sensor described in this book and the results
achieved may contribute to our understanding ol the reception mechanisms
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involved in the gustatory system and add new light to the role of lipid mem-
branes.
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