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Optimization problem in standard form

minimize  fo(z)
subject to  fi(x) <

e © € R" is the optimization variable
e fo: R" — R is the objective or cost function
e /;:R" =R, i=1,...,m, are the inequality constraint functions

e h; : R" — R are the equality constraint functions
optimal value:
p* =inf{fo(z) | fi(x) <0, i=1,...,m, hi(x) =0, i1 =1,...,p}

e p* = ¢ if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below
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Optimal and locally optimal points

x is feasible if € dom f; and it satisfies the constraints
a feasible x is optimal if fy(x) = p*; X,pt is the set of optimal points

x is locally optimal if there is an R > 0 such that = is optimal for

minimize (over z) fo(2)

subject to fi(z) <0, i=1,....,m, hi(z)=0, i=1,...

Iz =zl < R

examples (with n =1, m = p = 0)

o fo(r)=1/x, dom fy =R, : p* =0, no optimal point

e fo(r)=—logx, dom fy =R,,: p* = —

e fo(r)==xlogx, dom fy =Ry : p*=—1/e, x = 1/e is optimal
e fo(x) =a°—3x, p* = —o0, local optimum at z =1
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Implicit constraints

the standard form optimization problem has an implicit constraint
m p
xeD= ﬂdomfi N ﬂdomhi,

e we call D the domain of the problem
e the constraints f;(x) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Zle log(b; — alx)

is an unconstrained problem with implicit constraints a!z < b;
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Feasibility problem

find T
subject to  fi(z) <0, i=1,...,m
hz(x) — 07 1 =1, 5D

can be considered a special case of the general problem with fo(x) = 0:

minimize 0

e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo Iif constraints are infeasible
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Convex optimization problem

standard form convex optimization problem
minimize  fy(x)

subject to fz(az) i=1,....,m
a; aj—bz, 1=1,...,p

e fo, f1, ..., fm are convex; equality constraints are affine

e problem is quasiconvex if fy is quasiconvex (and f1, ..., fm convex)

often written as

minimize  fo(x)
subject to fz( ) <0, i=1,....m
Ax =0

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(x) = 27 + 23
subject to  fi(z) = x1/(1+23) <0
e fy is convex; feasible set {(x1,x2) | x1 = —x2 < 0} is convex

e not a convex problem (according to our definition): f7 is not convex, hq
is not affine

e equivalent (but not identical) to the convex problem
minimize 2% + 23

subjectto x1 <0
xr1 + Io9 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose x is locally optimal and y is optimal with fo(y) < fo(x)

x locally optimal means there is an R > 0 such that

z feasible, |z—z|o <R = fo(2) > fo(x)

consider z = 0y + (1 — 0)x with 8 = R/(2|ly — x||2)

o |[y—x|2>R, s00<6<1/2
e 2 is a convex combination of two feasible points, hence also feasible

o [z —z|2 = R/2 and

fo(z) < 0fo(z) + (1 —0)foly) < folz)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f

x Is optimal if and only if it is feasible and

Vfolx) ' (y —x) >0 for all feasible y

if nonzero, V fo(x) defines a supporting hyperplane to feasible set X at z
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e unconstrained problem: x is optimal if and only if

xr € dom fy, Vfolx)=0

e equality constrained problem
minimize fo(x) subjectto Ax =10
x is optimal if and only if there exists a v such that

r € dom fo, Ax = b, Vio(x)+Atv =0

¢ minimization over nonnegative orthant
minimize fo(x) subjectto x>0

x is optimal if and only if

Vfo(z); >0 z;=0

—
v €domfo,  zz0, {vfo(:v)z:o i > 0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

e eliminating equality constraints
minimize  fy(x)
subject to fz( )<0, i=1,....,m
Ax =10
Is equivalent to

minimize (over z) fo(Fz + xg)
subject to filFz4+x9) <0, i=1,...,m

where F' and z( are such that

Ar=b <= x = Fz+ xy for some z
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e introducing equality constraints

minimize  fo(Aoz + bo)
subject to  f;(A;x+b;) <0, i=1,...

Is equivalent to

minimize (over z, v;)  fo(yo)

subject to fily;) <0, i=1,...,m

yz:AZI—I—bZ, izO,l,...,m

e introducing slack variables for linear inequalities

minimize  fo(z)
subject to alx <b;, i=1,...,m

Is equivalent to

minimize (over z, s) fo(x)

subject to alr+s;=0b; i=1,...
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e epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to folx) =t <0
fz( , 1=1,...,m

) -
730

@l/\

Ax

e mMinimizing over some variables

minimize  fo(x1, 72)
subject to  fi(xz1) <0, i=1,...,m

Is equivalent to

minimize  fo(z1)
subject to  fi(x1) <0, 1=1,...,m

where fo(z1) = infy, fo(z1, z2)

Convex optimization problems 4-13



Linear program (LP)

minimize ¢z 4+d
subject to Gax <X h
Ax =D
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron
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Examples

diet problem: choose quantities z1, .. ., x, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient ¢

e healthy diet requires nutrient 7 in quantity at least b;

to find cheapest healthy diet,

minimize cl'z

subjectto Axr >b, x>0

piecewise-linear minimization
minimize max;—1 . n(al T + b;)
equivalent to an LP

minimize t
subject to alx+b; <t, i=1,...,m
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Quadratic program (QP)

minimize  (1/2)z' Pz +q¢lz +r
subject to Gz X h
Ax =10

e P c S, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron
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Examples

least-squares
minimize ||Ax — b||3

e analytical solution 2* = ATh (AT is pseudo-inverse)

e can add linear constraints, e.g., | 2z X u

linear program with random cost

minimize ¢élx +yxlYr = Ecl'z + yvar(clz)
subjectto Gax < h, Ax =D

e c is random vector with mean ¢ and covariance X

T T

e hence, ¢Lx is random variable with mean &% 2 and variance 21 Xz

e v > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize  (1/2)z! Pox + ¢z + 79
subject to  (1/2)x'Pox+qlz+r; <0, i=1,...,m
Ax =10

e P, € S”'; objective and constraints are convex quadratic

o if P,..., P, €S _, feasible region is intersection of m ellipsoids and
an affine set
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Optimal and Pareto optimal points

set of achievable objective values

O = {fo(z) | x feasible}

e feasible z is optimal if fy(x) is the minimum value of O

o feasible x is Pareto optimal if fy(x) is a minimal value of O

fo(xP?)

fo(z™)

x* is optimal 2P is Pareto optimal
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5. Duality

Lagrange dual problem

weak and strong duality

geometric interpretation

optimality conditions

perturbation and sensitivity analysis
examples

generalized inequalities
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Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  f;(z) <

variable z € R", domain D, optimal value p*

Lagrangian: L : R” x R™ x R”P - R, with dom L =D x R™ x R?,

Lz, \,v) —|—Z)\ fi(x -|—sz'hi($)
i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(z) <0

e 1; is Lagrange multiplier associated with h;(z) = 0

Duality
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Lagrange dual function

Lagrange dual function: ¢ : R x RP — R,

g\, v) = inf L(z,\,v)

x€D
= Inf (fo(x) + ) Nifile)+ ) Vihi(flf)>
i=1 i=1

g is concave, can be —oo for some A, v

*

lower bound property: if A > 0, then g(\,v) <p

proof: if T is feasible and A > 0, then

fol#) = L(E,\,v) > inf L(z, \,v) = g(\,»)
xre

minimizing over all feasible = gives p* > g(\,v)

Duality

5-3



Least-norm solution of linear equations

minimize zlx

subject to Ax =1b
dual function
e Lagrangianis L(z,v) = 212z + v1(Az — b)

e to minimize L over x, set gradient equal to zero:

Vol(z,v) =22+ A'v=0 =— z=—(1/2)A"v

e plug in in L to obtain g:
1
g(v) = L((-1/2)ATv,v) = —ZI/TAATV — bl
a concave function of v

lower bound property: p* > —(1/4)vT AATY — blv for all v
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Standard form LP

minimize ¢!z

subjectto Ar=b, x>0
dual function
e Lagrangian is
Lz, \v) = cao+vi(Az—-b) - o
= b+ (c+ATv—N'x
e [ is affine in z, hence

by ATy —AN+c¢=0
— 00 otherwise

g\, v) =1inf L(z,\,v) = {
g is linear on affine domain {(\,v) | AYv — XA+ ¢ = 0}, hence concave

lower bound property: p* > —blv if ATv4+¢>0
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Equality constrained norm minimization
minimize |||
subject to Ax =1b

dual function

vlv  ||ATY]. <1

_ T T N _
9(v) —12f(\\x|\ v Az +biv) { —o0  otherwise

where ||v||. = sup,,j<; " v is dual norm of || - |

proof: follows from inf,(||z|| — y'z) = 0 if ||y||« < 1, —oc otherwise
o if ||lyll« <1, then ||z|| — y'2z > 0 for all 2, with equality if z =0

o if [|y|l. > 1, choose = = tu where [Ju]] < 1, uly = ||y||. > 1:
|zl =y = t(llu] = [[yll.) = —c0 ast — o0

lower bound property: p* > bl if |ATv]], <1

Duality
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Two-way partitioning

minimize I Wzx
subjectto z?=1, i=1,...,n

e a nonconvex problem; feasible set contains 2" discrete points

e interpretation: partition {1,...,n} in two sets; W;, is cost of assigning
i, j to the same set; —W,; is cost of assigning to different sets

dual function

g(v) = inf(z? Wz + Z vi(z? — 1)) = infa? (W + diag(v))z — 1'v

x

B ~11Tv W +diag(v) = 0
- —00 otherwise

lower bound property: p* > —11v if W + diag(v) = 0
example: v = —Apin(W)1 gives bound p* > nAnin(W)
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Lagrange dual and conjugate function

minimize  fo(x)
subjectto Ax <b, Czx=d

dual function

g(\, V) inf (fo(z)+ (A" X+ C"v) 'z —b"N—d"v)

rxedom fj

= —fi(=ATN=CTv)—bvI'X—d'v

e recall definition of conjugate f*(y) = SUp,cqom s (' = — f())

e simplifies derivation of dual if conjugate of f is known

example: entropy maximization

n

mn
= E x;log x;, edi™
i=1

1=1
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The dual problem

Lagrange dual problem

maximize g(\,v)
subjectto A >0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (A\,) € dom g

e often simplified by making implicit constraint (A, ) € dom g explicit

example: standard form LP and its dual (page 5-5)

minimize clx maximize —blv
subject to Az =0b subject to ATv 4+ ¢ >0
x>0
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Weak and strong duality
weak duality: d* < p*
e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —17v
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 57
strong duality: d* = p*
e does not hold in general

e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem
minimize

fo(z)
subject to  fi(x) <0, i=1,...,m
Ax =0

if it is strictly feasible, 7.e.,

dzr € int D : filz) <0, i=1,...,m, Ax =D

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened: e.g., can replace int D with relint D (interior

relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

e there exist many other types of constraint qualifications
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Inequality form LP

primal problem

minimize clzx

subject to Ax <b

dual function

g(\) = inf ((c + AT )T g — bT)\) —

x

TN ATA+¢=0
— 00 otherwise

dual problem
maximize —b1 )\
subjectto ATA4+c¢=0, A>0

e from Slater’'s condition: p* = d* it Ax < b for some ¥

e in fact, p* = d* except when primal and dual are infeasible

Duality
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Quadratic program

primal problem (assume P € S” )
minimize 2! Px
subject to Az <b

dual function

g(A) = inf (azTPa; + )\T(Ax _ b)) —

X

—%ATAP”ATA — b\

dual problem
maximize —(1/HNTAP7TATN — b1\
subject to A >0

e from Slater’s condition: p* = d* if Ax < b for some ¥

e in fact, p* = d* always

5-13
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A nonconvex problem with strong duality

minimize z% Ax + 201
subject to z'z <1

A % 0, hence nonconvex
dual function: g(\) = inf, (21 (A + M)z + 2012 — \)
e unbounded below if A+ A /2 0orif A+ Al =0and b¢g R(A+ A\)

e minimized by x = —(A + M\ )Th otherwise: g(\) = —bT (A + \I)Tb — X

dual problem and equivalent SDP:

maximize —bT (A + \I)Th — ) maximize —t— A
subjectto A+ X =0 : A+ b
be R(A+ ) subject to [ T ] =0

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

for simplicity, consider problem with one constraint fi(x) <0

interpretation of dual function:

o) = inf (t+Xu).  where G={(i(2).fol@) | € D)

e \u+t=g(\)is (non-vertical) supporting hyperplane to G
e hyperplane intersects t-axis at t = g(\)
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epigraph variation: same interpretation if G is replaced with

A= {(u,t) | fi(x) <wu, fo(xr) <t for some x € D}
t

A

w4+t = g()\)\p
g(N)

strong duality

e holds if there is a non-vertical supporting hyperplane to A at (0, p*)

e for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

~

e Slater’s condition: if there exist (u,t) € A with @ < 0, then supporting
hyperplanes at (0, p*) must be non-vertical
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Complementary slackness

*

assume strong duality holds, x* is primal optimal, (A*, v*) is dual optimal

inf (fo<x> RHORDS v:hi<:c>>

< fol@) D) N filat) + > vihi(a?)
1=1 1=1
< fo(z")

fo(z") = g(A*,v7)

hence, the two inequalities hold with equality
e x* minimizes L(xz, \*,v*)

o \'fi(x*) =0fori=1,...,m (known as complementary slackness):

N> 0= fi(z*) =0,  filz") <0= \ =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. primal constraints: f;(z) <0,i=1,...,m, hi(x) =0,1=1,...,p
2. dual constraints: A = 0
3. complementary slackness: \;fi(z) =0,1=1,...,m

4. gradient of Lagrangian with respect to x vanishes:

V fo(z +§:AVﬂ +§:%Vh

from page 5-17: if strong duality holds and x, A, v are optimal, then they
must satisfy the KK'T conditions
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KKT conditions for convex problem

~

if x, A, U satisfy KKT for a convex problem, then they are optimal:

e from complementary slackness: fo(2) = L(Z, A, )

~

hence, fo() = g(A, )

if Slater’s condition is satisfied:

x is optimal if and only if there exist A, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fy(x) = 0 for unconstrained problem
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example: water-filling (assume «; > 0)

minimize  — Z?:1 log(z; + ;)
subjectto >0, 1lz=1

x Is optimal iff x > O, 172 = 1, and there exist A € R", v € R such that

1

A O, )\zxz — O,
T; + Qy

+ XN =V

o ifv<l/a;: \j=0and z; =1/v — o
o ifv>1/a;: \y=v—1/a; and z; =0

e determine v from 172z =>"" max{0,1/v —a;} =1

interpretation

e n patches; level of patch 7 is at height o; Lo
14
|

e flood area with unit amount of water

e resulting level is 1/v*
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Perturbation and sensitivity analysis
(unperturbed) optimization problem and its dual
minimize  fo(x) maximize g(\,v)

subject to  fi(x) <0, ¢=1,....,m subject to A >0
hi(x) =0, i=1,...,p

perturbed problem and its dual

min. fo(x) max. g(\,v)—ulX—ovlv
st.  filx) <wy, i=1,....m st. A>0
hi(x) =vi, 1=1,...,p

e x is primal variable; u, v are parameters
e p*(u,v) is optimal value as a function of u, v

e we are interested in information about p*(u,v) that we can obtain from
the solution of the unperturbed problem and its dual
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global sensitivity result

assume strong duality holds for unperturbed problem, and that \*, v* are
dual optimal for unperturbed problem

apply weak duality to perturbed problem:

Ple) = g ) —ufA = Ty
= p*(0,0) —u' N —o'V*

sensitivity interpretation

e if \* large: p* increases greatly if we tighten constraint ¢ (u; < 0)
e if \¥ small: p* does not decrease much if we loosen constraint i (u; > 0)

o if v large and positive: p* increases greatly if we take v; < 0;
if v large and negative: p* increases greatly if we take v; > 0

e if v small and positive: p* does not decrease much if we take v; > 0;
if v small and negative: p* does not decrease much if we take v; < 0
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local sensitivity: if (in addition) p*(u, v) is differentiable at (0,0), then

o w00 9(0.0)

¢ 8uz ¢ c%z-

proof (for A¥): from global sensitivity result,

ap*(oa O) p*<t€i7 O) o p*(oa O) >

= i — ¥
Ou; t{% t - !
ou; t 0 t

hence, equality

p*(u) for a problem with one (inequality)
constraint:

p* (u)

p*(0) — Nu
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Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice-versa

e transform objective or constraint functions

e.g., replace fo(x) by ¢(fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize  fo(Ax + b)

e dual function is constant: g = inf, L(xz) = inf, fo(Ax + b) = p*

e we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize  fo(y) maximize blv — fE(v)
subject to Ax +b—y =0 subject to A'v =0

dual function follows from
g(v) = inf(fo(y) —v'y+v' Az +0'v)
T,y

_ {—fé"(y)+bTV Aty =0

—00 otherwise

Duality
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norm approximation problem: minimize ||Ax — b

minimize  ||y||
subjectto y=Ax —b

can look up conjugate of || - ||, or derive dual directly

g(v) = f(|lyll+ vy — v Az +b7v)
x7y

[ Vot (] +0Ty) ATy =0
o —00 otherwise

B vlv Altv =0, |v|,<1
—0o0 otherwise

(see page 5—4)

dual of norm approximation problem

maximize blv
subject to ATv =0, |v].<1

Duality
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Implicit constraints

LP with box constraints: primal and dual problem

minimize c¢l'x maximize —blv — 1T ;1 — 17\,
subject to Ax =0b subjectto c+ ATV 4+ X =Xy =0
-1=<z=x1 A =0, A2=0

reformulation with box constraints made implicit

e —1<2=<1
00 otherwise

minimize  fo(z) = {
subject to Az =1b
dual function
glv) = _1i<n£<1(cT:z: + v (Az — b))
= —blv—||ATv + |

dual problem: maximize —b'v — ||ATv + ¢||;

Duality
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