Analysing and presenting data: practical hints

Giorgio MATTEI

giorgio.mattei@centropiaggio.unipi.it

Course: Fenomeni di trasporto biologico Date: 06 Oct 2014

Equal or different? more than two samples

Ø	AC	<u>کم</u>	
0	X	Z	10

ANalysis Of VAriance (ANOVA)

More than 2 groups: NO pairwise comparisons (t-test)

↑ groups → ↑ overall probability that at least one of them is significant (e.g. α =0.05 and n=20 → in average 1 group will be significantly different for the case, even if H₀ is true)

• ANOVA

- uses Fisher's distribution (F-distribution)
- the sources of variations on observed values of two or more groups can be decomposed and accurately measured
- the source of variation is called EXPERIMENTAL FACTOR (or TREATMENT) and can be multi-levelled
- each unit or observation of the experimental factor is called REPLICATION

one-way ANOVA: an example The problem

 Content of iron in air in 3 different zones (A, B, C) of a city (μg/N mc at 0 °C and 1013 mbar)

EXPERIMENTAL FACTOR						
Α	В	С				
2,71	1,75	2,22				
2,06	2,19	2,38				
2,84	2,09	2,56				
2,97	2,75	2,60				
2,55		2,72				
2,78						

MATLAB one-way ANOVA

p-value for H0(means of the
groups are equal)ANOVA table
values

Structure of statistics useful **for performing a multiple comparison of means** with the **MULTCOMPARE** function

[P,ANOVATAB,STATS] = anova1(X,GROUP,DISPLAYOPT)

Matrix with 1 group per column (requires equal-sized samples)

Character array: one row per column of X, containing the group names

Vector of data

Vector: one group name for each element of X

'on' (the default) to **display figures containing a standard one**way anova table and a boxplot, or 'off' to omit these displays

>> X=[2.71,2.06,2.84,2.97,2.55,2.78,1.75,2.19,2.09,2.75,2.22,2.38,2.56,2.6,2.72]';
>> GROUP=['A','A','A','A','A','B','B','B','B','C','C','C','C']';
>> [P,ANOVATAB,STATS] = anova1(X,GROUP)

P = 0.1204

```
STATS = gnames: {3x1 cell}
      n: [6 4 5]
   source: 'anova1'
    means: [2.6517 2.1950 2.4960]
     df: 12
      s: 0.3148
                  ANOVA Table
                     \mathbf{df}
                                       F
Source
            SS
                            MS
Groups
          0.50294
                      2
                          0.25147
                                     2.54
          1.1889
                          0.09908
Error
                     12
```

14

1.69184

Total

MATLAB one-way ANOVA: example

COMPARISON = multcompare(STATS)

two-way ANOVA: an example The problem

 Content of Pb in air in 5 different urban zones revealed every 6 hours during the day

	TREATMENTS (urban zone)					
BLOCKS (time)	1	2	3	4	5	
6 am	28	25	30	22	26	
12 am	34	32	37	31	30	
6 pm	22	21	24	20	19	
12 pm	36	31	40	33	29	

MATLAB two-way ANOVA

p-value for H0(means of the
groups are equal)ANOVA table
values

Structure of statistics useful **for performing a multiple comparison of means** with the **MULTCOMPARE** function

[P,ANOVATAB,STATS] = anova2(X,REPS,DISPLAYOPT)

Matrix of data (balanced ANOVA → equal number of repetitions)

REPS indicates the **number** of **observations per "cell"**

Columns: 1st factor Rows: 2nd factor A "cell" contains REPS number of rows

'on' (the default) to **display a standard two**way anova table, or 'off' to skip the display

MATLAB two-way ANOVA: example

>> X=[28 25 30 22 26; 34 32 37 31 30; 22 21 24 20 19; 36 31 40 33 29]; >> [P,ANOVATAB,STATS] = anova2(X)

P = 1.0e-03 * 0.2187 0.0001

	ANOVA Table					
	Source	SS	df	MS	F	Prob>F
STATS =						
source: 'anova2'	Columns	128.5	4	32.125	13.43	0.0002
sigmasg: 2.3917	Rows	525.8	3	175.267	73.28	0
colmeans: [30 27 2500 32 7500 26 5000 26]	Error	28.7	12	2.392		
coln: 4	Total	683	19			
rowmeans: [26.2000 32.8000 21.2000 33.800	00]					
rown: 5						
inter: 0						
nuclu NoN						

pval: NaN

df: 12

COMPARISON = multcompare(STATS, 'estimate', 'column' (default) or 'row')

Columns (i.e. urban zones)

Rows (i.e. times)

MATLAB anovan: N-way analysis of variance

MATLAB Practical exercises

Sex (M=0, F=1)	Weight (kg)	Height (m)	Age (y)	Cardiac rate (bpm)	Respiratory rate (bpm)	Wrist circumference (cm)
0	65	1.81	21	61	18	17
1	50	1.64	21	59	11	14
1	63	1.7	21	74	16	15
1	50	1.5	21	72	16	15
1	60	1.75	21	67	17	15
0	75	1.69	22	73	15	20
0	60	1.72	21	53	15	18
1	53	1.55	21	57	16	15
1	53	1.62	21	64	16	16
0	78	1.85	21	64	14	17
0	84	1.83	21	70	17	18
0	60	1.7	21	70	17	16

- Plot data distributions
- Calculate mean and standard deviation
- Plot each parameter versus the wrist circumference and perform a linear fit
- Compute the covariance matrix using cov(X), evaluate the correlation coefficients using corrcoef(X), plot variable correlations using corrplot (X) and determine the parameter most correlated with the wrist circumference
- For each parameter test the statistic significance between male and female