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NMPC: dynamics, constraints and cost function

Nonlinear models

o Often nonlinear models are available in continuous time:
x=f(xuw
y=nh(xu)

o For nonlinear MPC design, we need a discrete-time model:
x(k+1) = F(x(k), u(k))
y(k) = h(x(k), u(k))
o Notice that: F(x(k), u(k)) = x(k) + [, f(x,u)dt
o For simplicity, we use the notation: x* = f(x, u)

Constraints and cost function

o State and input constraints: x(k) € X, u(k) e U
o Stage cost and overall cost: Vi (x,u) = Z;V:_Ol L(x(j),u(j)) + Ve(x(N))
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MPC: optimal control problem and assumptions

Main assumptions
@ /(-) and V¢(-) are positive definite, and £(0,0) =0, V£(0) =0
f() is continuous and f(0,0) =0

o Control-invariant set X S X: Forany x € Xy, there exists
u € Usuch that: Ve (f(x,u) - Vr(x) < —€(x, u)

Optimal control problem
Given the current state x, solve:

Py(x): ml}n Vn(x,u) s.t.

x" = flx,u)
x(j)eX  foralj=0,...,N-1
u(j)eu forall j=0,...,N—-1
X(N) e Xy
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NMPC: a note on computational aspects

General aspects

@ The OCP is a non-convex, nonlinear program:
> Computing f(x, u) requires ODE integration
> Finding global optimum is difficult
> Solution algorithms are time consuming

Efficient NMPC methods [Diehl et al., 2008]

@ Problem formulation aspects:
> Sequential: eliminate the state sequence and solve for u
» Simultaneous: solve for both state and input sequences
(multiple shooting, collocation methods, etc.)
o NLP methods:
» Sequential Quadratic Programming: repeated linearization
of constraints and quadratic expansion of the cost function
> Interior Point Methods: direct solution of the (slightly
modified) nonlinear optimality KKT conditions
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NMPC: stability analysis

Lemma. Optimal cost decrease

Let x y(x) denote the first element of the optimal control sequence u®(x). For all
x € Z, there holds: V) (f(x,xn(x)) — V3 (x) < —0(x,k y(x))

Proof

@ Consider the optimal input and state sequences
u’(x) = {u°(0;x),..., u’ (N - 1; 0}, x°(x) = {x°(0),..., x° (N}

@ At next time, given x* = f(x,x y(x)), consider a candidate
sequence ii:= {t°(1;x), ..., u (N - 1; %), u(N)}

@ Choose u(N) € Usuch that x(N +1) = f(x*(N; x), u(N)) € Xy
and Vf(x(N+ 1)+ (x(N), u(N)) < Vf(xO(N))

e s feasible and Vi (x*, @) < V) (x) — £(x,k n(x))
o But not optimal for Py (x"). Thus:

Vo (x™) < Vy(x*, i) < Ve (x) - £(x, kn(x))
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NMPC: examples of different terminal constraints/costs

The earliest stable formulations [Mayne and Michalska, 1990,
Michalska and Mayne, 1993]

o Terminal constraint “set” is the origin
» (No) Terminal cost: Vf (x)=0
> Terminal set: X ¢ = {0}

@ Dual-mode formulation:

> Preliminary operations ((A4, B), linearized system matrices)
* Choose any K s.t. Ax = A+ BK is stable
* SetQ* =Q+K'RK and solve P = A} PAg +2Q*.
* Define X = {x € R" | x'Px < a is invariant for x* = f(x, Kx)
> Mode 1:if x ¢ X solve P (x) with Vp =0
> Mode 2: if x € X use u=Kx

v

Quasi-infinite horizon [Chen and Allgower, 1998]

o Terminal cost: Vy(x) = x'Px

o Terminal set: Xy = {x € R" | x'Px < a}, invariant for x* = f(x, Kx)
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NMPC: omitting the terminal constraint

Is a terminal constraint set necessary?

@ The addition of V¢(-) does not affect materially the OCP
@ The addition of x(IN) € X f does

o Is there an implicit way of enforcing the constraint?

Inflating the terminal penalty [Limon et al., 2006]

@ Basic idea: increase V() enough to make x(N) € X f
inherently satisfied

@ Modified cost function, given § > 1
N-1
Vle(x,u) =) 0(x(), u()) + PVp(x(N))
j=0
o LetZy={xeR"|Vy(x)< V}and Xy ={xeR" | x'Px<a}.
Chooseany = V/a

Course on Model Predictive Control. Part IV - Nonlinear MPC and MHE 8/22



Suboptimal nonlinear MPC

A neat suboptimal MPC framework [Scokaert et al., 1999]

o Given current state x, previous control sequence
u” ={u (0),u"(1),...,u” (IN—1)} and state sequence
x~ ={x"(0),x”(1),...,x~ (\N)}

@ Build a warm-start: up = {u~(1),...,u” (N— 1),k ¢(x™ (N)}

BusiNEss-PLav
‘\

o Perform some iterations to improve the warm start:
Vn(x,u) < Viv(x,u0)

Take home message

o Stability holds for suboptimal MPC
o Itis always a good idea to warm start nonlinear MPC solvers
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Offset-free nonlinear MPC design

Augmented nonlinear system [Morari and Maeder, 2012]

@ Asin the linear case, augment the nominal system with
integrating disturbances

xt = faug(x,u,d)
d*=d
Y = haug(x,u,d)
o Estimate both (x, d) given the measurement of y

Target problem and deviation variables

@ Given d solve a target problem to obtain (x;, us)
Xs = faug(xs, us,d), usel, xseX
o Deviation variables, X = x — x;, il = u — us, are regulated to X
Zero
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Inherent robustness of nonlinear MPC

A non-robust MPC design [Grimm et al., 2004]

. _ (l_ ) _ 11011110
o System: x* = [ ] = f(x, ) e
o Input constraints: U = [0, 1] 10001010
o MPC design: N =2, Xy =1{0}, Vy =0 E’E;?{.m
@ The origin is AS, but stability has no robustness siaiaint
Sufficient conditions for robust nominal stability
o Sufficiently long prediction horizon [Grimm et al., 2007]

o Continuity of the feasibility region [Pannocchia et al., 2011] EAT%
Uy = e U | ¢k x,w) € X, keloy 1, o xweXy  JillHS

@ The above condition provides robustness also to suboptimal
nonlinear MPC [Pannocchia et al., 2011] &

== (L
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Robust tube-based nonlinear MPC

Same framework as in linear robust MPC [Rawlings and Mayne, 2009]

o Uncertain nonlinear system: x = f(x,u) + w, w € W
o Nominal system: z* = f(z,v)
@ Central path Zc X and V c U:

Py (z): mvin Vn(z,v) st z'=f(zv)
z(j)eZ forall j=0,...,N—-1 ’
v(j)eV forall j=0,...,N—-1
2N eZs
leading to (an implicit) nominal control: % y(2) = 1°(z; x) / |
o Ancillary controller (replace u = v + K(x — z))
N-1
Pn(x,2): minVy(x,2,v) = ). £(x(i) = 2°(0), u(@) - v°(@) st
i=0

xt=fxu), u@eU, x(N)=z"(N)
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The full information estimation problem

Three sets of variables

System  Decision Optimal
variable variable decision

state x
process disturbance w
measurement output y
measurement disturbance v

<3 e=
S D %

Full information objective function

o True system evolves as: x™ = f(x, w) y=hx)+v

o Given measurements {y(0), y(1),..., (T — 1)}, cost function is:

T-1
Vi (1(0),®) = £:(x(0) — %) + Y £i(@(D), v(i) kiR
i=0

st.y = fr,0), y=hx)+v

Course on Model Predictive Control. Part IV - Nonlinear MPC and MHE 13/22



Stability of full information estimator

Optimal full information estimator

o Itis the solution of

min Vr(y(0),w)
x10),w

X co

@ We denote the solution as: x(0|T), w(i|T) fori=0,...,T—1

Global asymptotic stability (GAS)

Definition: Consider the noise-free case, i.e. w(k) =0,v(k) =0
for all k = 0, the estimate is nominally globally
asymptotically stable if there exists a £ £
function f(-) such that for all (xp, Xp) there holds

|x(k; x0) — X (k)| < B(Ix0 — Xol, k) forall k=0

Result: The estimate obtained from the full information
estimator is GAS

+2inches

Rl
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Robust stability of full information estimator

Robust global asymptotic stability (RGAS)

Consider the noisy case. The estimate is robustly GAS if for all
(x0, Xp) and (w, V) convergent, there exist a & % function B(-) and | Wi
A functions v, (-) and y,(:) such that for all k = 0:

|x(k; x0) — X (k)| < B(1x0 — Xol, k) +y w (IWI) + v, (IIvIl)
where [W[| = supgsq W), IVIl = supgsg v (k)|

One current limitation

AT i Al

o Stability proofs for MHE assume that (w, V) are convergent,

he lw(k)| < allwl, k)
@ Some recent work [Rawlings and Ji, 2012] conjectures that
robust GAS will hold for simply bounded disturbances
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Linear state estimation as an optimal control problem

Linear state estimation problem
@ True system: ¥t = Ax+ Gw

y=Cx+v
@ Full information estimator solves

T-1
min Vr(£(0),w) = [£(0) = KO} + ;0 @13y + V@I

sty =Ay+Gow, y=Cy+v

o Using forward dynamic programming we can show that the
full-information estimator is equivalent to the time-varying
Kalman filter
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Moving horizon estimator: introduction

Moving Horizon Estimation: idea and motivation

‘ Y(T-N+1) ¥(T)

f-a w
= N
% e .

Xx(T-N+1) x(T)
I |
Moving Horizon ‘

Full Information
|
T

|
|
f
0 T-N+1 T

@ At each new measurement, the size of the full information estimation
problem increases

o In MHE, the optimal estimation problem has fixed length N
o In this way, the solution time is bounded

Course on Model Predictive Control. Part IV - Nonlinear MPC and MHE 17/22



Moving horizon estimator: definitions

General definition

o Given a prior weighting, positive definite, function I'r_n(-)

o The MHE objective function is
T-1

V(T =N,0) =Ty T -ND+ 3 £, v(0) —
=T
st.y " =Ay+Gow, y=Cy+v o .
o MHE solves a fixed and finite horizon problem: \:
(i Vr(x(T-N), )
o For k < N, MHE is defined as the same as full information

estimator

W

The arrival cost

@ Theterm I'r_n(y (T — N)) is called arrival cost

o It takes into account the past terms
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MHE arrival cost

Zero prior weighting

@ One possible choice is I't_n(p) =0
@ Robust GAS of MHE can be shown for this choice

o However, a large IV is required to obtain similar performance
as the full-information estimator =

Exact arrival cost

@ An alternative choice would be to use the exact arrival cost of
the full-information estimator

Zr-n(p) = min Vr_n(x(0),w) s.t.
x0),0
X =fw), y=hm+v, x(T-N)=p

o WithI'r_n() = Z7_n(-), MHE is identical to the
full-information estimator
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Constrained estimation

Constrained full information estimator

@ The constrained full information estimator solves:

T-1
;(%%?A,VT(X(O);W) =lx(x(0) - Xo) + igofi(w(l),vu)) \‘/f\‘/
sty =fQrw), y=h@+v -

w(i)eW, v(i) eV, y(@)eX

Constrained MHE

@ The constrained MHE solves:

T—

—

in Vr(y(T-N),w)=T7_y{(T- i), v(i
(B VrOT =MW =Trn (T =N+ 3, £iwid), v \“"{‘“/
st.x"=f(,w), y=h@)+v p@f

w(i) eW, v(@) eV, x(@)eX
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