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NMPC: dynamics, constraints and cost function

Nonlinear models

Often nonlinear models are available in continuous time:
ẋ = f (x,u)

y = h(x,u)

For nonlinear MPC design, we need a discrete-time model:

x(k +1) = F (x(k),u(k))

y(k) = h(x(k),u(k))

Notice that: F (x(k),u(k)) = x(k)+∫ tk+1
tk

f (x,u)d t

For simplicity, we use the notation: x+ = f (x,u)

Constraints and cost function
State and input constraints: x(k) ∈X,u(k) ∈U
Stage cost and overall cost: VN (x,u) =∑N−1

j=0 `(x( j ),u( j ))+V f (x(N ))
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MPC: optimal control problem and assumptions

Main assumptions

`(·) and V f (·) are positive definite, and `(0,0) = 0, V f (0) = 0
f (·) is continuous and f (0,0) = 0

Control-invariant set X f ⊆X: For any x ∈X f , there exists
u ∈U such that: V f ( f (x,u))−V f (x) ≤−`(x,u)

Optimal control problem

Given the current state x, solve:

PN (x) : min
u

VN (x,u) s.t.

x+ = f (x,u)

x( j ) ∈X for all j = 0, . . . , N −1

u( j ) ∈U for all j = 0, . . . , N −1

x(N ) ∈X f
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NMPC: a note on computational aspects

General aspects

The OCP is a non-convex, nonlinear program:
Ï Computing f (x,u) requires ODE integration
Ï Finding global optimum is difficult
Ï Solution algorithms are time consuming

Efficient NMPC methods [Diehl et al., 2008]

Problem formulation aspects:
Ï Sequential: eliminate the state sequence and solve for u
Ï Simultaneous: solve for both state and input sequences

(multiple shooting, collocation methods, etc.)

NLP methods:
Ï Sequential Quadratic Programming: repeated linearization

of constraints and quadratic expansion of the cost function
Ï Interior Point Methods: direct solution of the (slightly

modified) nonlinear optimality KKT conditions
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NMPC: stability analysis

Lemma. Optimal cost decrease

Let κN (x) denote the first element of the optimal control sequence u0(x). For all
x ∈XN , there holds: V 0

N ( f (x,κN (x))−V 0
N (x) ≤−`(x,κN (x))

Proof

Consider the optimal input and state sequences
u0(x) = {u0(0; x), . . . ,u0(N −1; x)}, x0(x) = {x0(0), . . . , x0(N )}

At next time, given x+ = f (x,κN (x)), consider a candidate
sequence ũ := {u0(1; x), . . . ,u0(N −1; x),u(N )}

Choose u(N ) ∈U such that x(N +1) = f (x0(N ; x),u(N )) ∈X f

and V f (x(N +1))+`(x(N ),u(N )) ≤V f (x0(N ))

ũ is feasible and VN (x+, ũ) ≤V 0
N (x)−`(x,κN (x))

But not optimal for PN (x+). Thus:

V 0
N (x+) ≤VN (x+, ũ) ≤V 0

N (x)−`(x,κN (x))
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NMPC: examples of different terminal constraints/costs

The earliest stable formulations [Mayne and Michalska, 1990,
Michalska and Mayne, 1993]

Terminal constraint “set” is the origin
Ï (No) Terminal cost: V f (x) = 0
Ï Terminal set: X f = {0}

Dual-mode formulation:
Ï Preliminary operations ((A,B), linearized system matrices)

F Choose any K s.t. AK = A+BK is stable
F Set Q∗ =Q +K ′RK and solve P = A′

K PAK +2Q∗.
F Define X f = {x ∈Rn | x′P x ≤α is invariant for x+ = f (x,K x)

Ï Mode 1: if x ∉X f solve PN (x) with V f = 0
Ï Mode 2: if x ∈X f use u = K x

Quasi-infinite horizon [Chen and Allgower, 1998]

Terminal cost: V f (x) = x ′P x

Terminal set: X f = {x ∈Rn | x ′P x ≤α}, invariant for x+ = f (x,K x)
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NMPC: omitting the terminal constraint

Is a terminal constraint set necessary?

The addition of V f (·) does not affect materially the OCP

The addition of x(N ) ∈X f does

Is there an implicit way of enforcing the constraint?

Inflating the terminal penalty [Limon et al., 2006]

Basic idea: increase V f (·) enough to make x(N ) ∈X f

inherently satisfied

Modified cost function, given β> 1

V β

N (x,u) =
N−1∑
j=0

`(x( j ),u( j ))+βV f (x(N ))

Let XN = {x ∈Rn |V 0
N (x) ≤ V̄ } and X f = {x ∈Rn | x ′P x ≤α}.

Choose any β≥ V̄ /α
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Suboptimal nonlinear MPC

A neat suboptimal MPC framework [Scokaert et al., 1999]

Given current state x, previous control sequence
u− = {u−(0),u−(1), . . . ,u−(N −1)} and state sequence
x− = {x−(0), x−(1), . . . , x−(N )}

Build a warm-start: u0 = {u−(1), . . . ,u−(N −1),κ f (x−(N ))}

Perform some iterations to improve the warm start:
VN (x,u) ≤VN (x,u0)

Take home message

Stability holds for suboptimal MPC

It is always a good idea to warm start nonlinear MPC solvers
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Offset-free nonlinear MPC design

Augmented nonlinear system [Morari and Maeder, 2012]

As in the linear case, augment the nominal system with
integrating disturbances

x+ = faug (x,u,d)

d+ = d

y = haug (x,u,d)

Estimate both (x,d) given the measurement of y

Target problem and deviation variables

Given d̂ solve a target problem to obtain (xs ,us )

xs = faug (xs ,us , d̂), us ∈U, xs ∈X
Deviation variables, x̃ = x −xs , ũ = u −us , are regulated to
zero
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Inherent robustness of nonlinear MPC

A non-robust MPC design [Grimm et al., 2004]

System: x+ =
[

x1(1−u)
|x|u

]
= f (x,u)

Input constraints: U= [0,1]

MPC design: N = 2, X f = {0}, V f = 0

The origin is AS, but stability has no robustness

Sufficient conditions for robust nominal stability

Sufficiently long prediction horizon [Grimm et al., 2007]

Continuity of the feasibility region [Pannocchia et al., 2011]

UN (x) = {u ∈UN |φ(k; x,u) ∈X,k ∈ I0:N−1,φ(N ; x,u) ∈X f }

The above condition provides robustness also to suboptimal
nonlinear MPC [Pannocchia et al., 2011]
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Robust tube-based nonlinear MPC

Same framework as in linear robust MPC [Rawlings and Mayne, 2009]

Uncertain nonlinear system: x+ = f (x,u)+w , w ∈W
Nominal system: z+ = f (z, v)

Central path Z⊂X and V⊂U:

P̄N (z) : min
v

VN (z,v) s.t. z+ = f (z, v)

z( j ) ∈Z for all j = 0, . . . , N −1

v( j ) ∈V for all j = 0, . . . , N −1

z(N ) ∈Z f

leading to (an implicit) nominal control: κ̄N (z) = v0(z; x)

Ancillary controller (replace u = v +K (x − z))

PN (x, z) : min
v

VN (x, z,v) =
N−1∑
i=0

`(x(i )− z0(i ),u(i )− v0(i )) s.t.

x+ = f (x,u), u(i ) ∈U, x(N ) = z0(N )
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The full information estimation problem

Three sets of variables

System Decision Optimal
variable variable decision

state x χ x̂
process disturbance w ω ŵ
measurement output y η ŷ
measurement disturbance v ν v̂

Full information objective function

True system evolves as: x+ = f (x, w) y = h(x)+ v

Given measurements {y(0), y(1), . . . , y(T −1)}, cost function is:

VT (χ(0),ω) = `x (χ(0)− x̄0)+
T−1∑
i=0

`i (ω(i ),ν(i ))

s.t. χ+ = f (χ,ω), y = h(χ)+ν
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Stability of full information estimator

Optimal full information estimator

It is the solution of

min
χ(0),ω

VT (χ(0),ω)

We denote the solution as: x̂(0|T ), ŵ(i |T ) for i = 0, . . . ,T −1

Global asymptotic stability (GAS)

Definition: Consider the noise-free case, i.e. w(k) = 0, v(k) = 0
for all k ≥ 0, the estimate is nominally globally
asymptotically stable if there exists a K L

function β(·) such that for all (x0, x̄0) there holds

|x(k; x0)− x̂(k)| ≤β(|x0 − x̄0|,k) for all k ≥ 0

Result: The estimate obtained from the full information
estimator is GAS
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Robust stability of full information estimator

Robust global asymptotic stability (RGAS)

Consider the noisy case. The estimate is robustly GAS if for all
(x0, x̄0) and (w,v) convergent, there exist a K L function β(·) and
K functions γw (·) and γv (·) such that for all k ≥ 0:

|x(k; x0)− x̂(k)| ≤β(|x0 − x̄0|,k)+γw (‖w‖)+γv (‖v‖)

where ‖w‖ = supk≥0 |w(k)|, ‖v‖ = supk≥0 |v(k)|

One current limitation

Stability proofs for MHE assume that (w,v) are convergent,
i.e. |w(k)| ≤α(‖w‖,k)
Some recent work [Rawlings and Ji, 2012] conjectures that
robust GAS will hold for simply bounded disturbances
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Linear state estimation as an optimal control problem

Linear state estimation problem

True system: x+ = Ax +Gw

y =C x + v
Full information estimator solves

min
χ(0),w

VT (χ(0),w) = |χ(0)− x̄(0)|2P (0)−1 +
T−1∑
i=0

|ω(i )|2Q−1 +|ν(i )|2R−1

s.t. χ+ = Aχ+Gω, y =Cχ+ν

Using forward dynamic programming we can show that the
full-information estimator is equivalent to the time-varying
Kalman filter
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Moving horizon estimator: introduction

Moving Horizon Estimation: idea and motivation

i
i

“book” — 2008/5/11 — 19:54 — page 37 — #61 i
i

i
i

i
i

1.4 Introductory State Estimation 37

TT �N + 10

x(T)

Moving Horizon

Full Information

x(T �N + 1)

y(T)y(T �N + 1)

Figure 1.4: Schematic of the moving horizon estimation problem.

consider situations in which it is advantageous to use moving horizon
estimation.

1.4.4 Moving Horizon Estimation

When using nonlinear models or considering constraints on the esti-
mates we cannot calculate the conditional density recursively in closed
form as we did in Kalman filtering. Similarly, we cannot solve recur-
sively the least squares problem. If we use least squares we must opti-
mize all the states in the trajectory x(k) simultaneously to obtain the
state estimates. This optimization problem becomes computationally
intractable as k increases. Moving horizon estimation (MHE) removes
this difficulty by considering only the most recentN measurements and
finds only the most recent N values of the state trajectory as sketched
in Figure 1.4. The states to be estimated are xN(T) = {x(T � N +
1), . . . , x(T)} given measurements yN(T) = {y(T �N + 1), . . . , y(T)}.
The data have been broken into two sections with {y(T�N),yN(T)} =
y(T). We assume here that T � N � 1 to ignore the initial period in
which the estimation window fills with measurements and assume the
window is always full.

The simplest form of MHE is the following least squares problem

min
xN(T)

VT |T�N+1(xN(T)) (1.51)

At each new measurement, the size of the full information estimation
problem increases

In MHE, the optimal estimation problem has fixed length N

In this way, the solution time is bounded
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Moving horizon estimator: definitions

General definition

Given a prior weighting, positive definite, function ΓT−N (·)
The MHE objective function is

V̂T (χ(T −N ),ω) = ΓT−N (χ(T −N ))+
T−1∑

i=T−N
`i (ω(i ),ν(i ))

s.t. χ+ = Aχ+Gω, y =Cχ+ν

MHE solves a fixed and finite horizon problem:

min
χ(T−N ),ω

V̂T (χ(T −N ),ω)

For k ≤ N , MHE is defined as the same as full information
estimator

The arrival cost
The term ΓT−N (χ(T −N )) is called arrival cost

It takes into account the past terms
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MHE arrival cost

Zero prior weighting

One possible choice is ΓT−N (p) = 0

Robust GAS of MHE can be shown for this choice

However, a large N is required to obtain similar performance
as the full-information estimator

Exact arrival cost

An alternative choice would be to use the exact arrival cost of
the full-information estimator

ZT−N (p) = min
χ(0),ω

VT−N (χ(0),ω) s.t.

χ+ = f (χ,ω), y = h(χ)+ν, χ(T −N ) = p

With ΓT−N (·) = ZT−N (·), MHE is identical to the
full-information estimator
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Constrained estimation

Constrained full information estimator

The constrained full information estimator solves:

min
χ(0),w

VT (χ(0),w) = `x (χ(0)− x̄0)+
T−1∑
i=0

`i (ω(i ),ν(i ))

s.t. χ+ = f (χ,ω), y = h(χ)+ν
ω(i ) ∈W, ν(i ) ∈V, χ(i ) ∈X

Constrained MHE

The constrained MHE solves:

min
χ(T−N ),w

V̂T (χ(T −N ),w) = ΓT−N (χ(T −N ))+
T−1∑

i=T−N
`i (ω(i ),ν(i ))

s.t. χ+ = f (χ,ω), y = h(χ)+ν
ω(i ) ∈W, ν(i ) ∈V, χ(i ) ∈X
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