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Outline

@ Nominal stability analysis
@ Preliminaries on stability analysis and Lyapunov functions
@ Closed loop description
@ Stability results

Q Nominal (inherent) robustness
@ Perturbed closed-loop system
@ Robust stability and recursive feasibility

© Suboptimal MPC: stability and robustness

© Robust MPC design
@ Min-max
@ Tube-based robust MPC

© output feedback MPC
@ Stability analysis
o Offset-free MPC analysis and design
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Some preliminary definitions

Discrete-time system

o Consider general nonlinear discrete-time systems:

x" = flx,u
with f:R"” x R — R" continuous

o Let ¢(k; x,u) be the solution of x* = f(x, u) at time k for
initial state x(0) = x and control sequence u = {u(0), u(1), ...}

@ Given a state-feedback law u = x(x), obtain a closed-loop

xt = fx,x(x)) denote again the solution as ¢(k; x)

Equilibrium and positive invariance

@ A point x* is an equilibrium point of x* = f(x,x(x)) if
x(0) = x* implies that x(k) = ¢(k; x*) = x* forall k=0

@ Aset Ais positively invariant for x™ = f(x,x(x)) if x€ A
implies that x* = f(x,x(x)) € A
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Stability and asymptotic stability

Stability and attractivity of the origin

B(0)

@ Given a (closed-loop) system x* = f(x), with the
origin as equilibrium, i.e. f(0) =0

o The origin is locally stable if for every e > 0, there ﬁ
exists 6 > 0 such that | x| < 6 implies |} (k; x)| <€ \\

o The origin is globally attractive if
limg—o l¢p(k; x)| = O for any x € R”

\SPJ)

B5(0)

Global asymptotic stability and exponential stability

@ The origin is globally

> asymptotically stable (GAS) if it is locally stable and globally attractive
> exponentially stable (GES) if there exist ¢ > 0 and y € (0, 1) such that:

[p(k; x)| < clxlj/’C forall k=0
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Asymptotic stability for constrained systems

GAS for constrained system

o Let X be positively invariant for x™ = f(x)

o The origin is
> locally stable in X if for every € > 0 there exists § > 0 such that
for any x € X N 6B there holds |¢(k; x)| <e forall k=0
> attractive if for every x € X there holds lim._, o [ (k; x)| =0
> asymptotically stable in X if it is locally stable and attractive

@ Xis called region (or domain) of attraction for the origin

Comparison function

@ A function o : R>y — Rx¢ is of class % if it is continuous, ¢ (0) = 0
and strictly increasing (£ if unbounded)

@ Afunction f:R>9 x N — R is of class # .Z if for each € N,
B(-, 1) is a £ function, and for each s € R, lim;_, B(s, 1) =0

o GAS is equivalent to |¢p(k; x)| < B(|x|, k) forall k=0, B(-) e £ L
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Lyapunov functions and asymptotic stability

General definition

o Afunction V :R" — R is a Lyapunov function for x* = f(x)
if there exist %, functions a1, @y, a3 such that for all x € R":

a1 (|x)) = V(x) < ax(x])
V(f(x)-V(x) < —as(lx])

@ V decreases during the evolution of the system

Lyapunov functions and GAS

If V(-) is a Lyapunov function for x* = f(x), the origin is globally asymptotically
stable
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Lyapunov functions and stability for constrained systems

Asymptotic stability

Then, the origin is asymptotically stable in X if:
@ X is positively invariant for x* = f(x)

@ V() is a Lyapunov function for x* = f(x)

Exponential Lyapunov function and stability

The origin of x* = f(x) is exponentially stable in X if
@ Xis positively invariant for x* = f(x) : e

@ There exist V : R"” — R>( and positive constants a, a;, az, ds:

a|x|% = V(x) < az|x|*
V(f(x) - V() < —as|x|*
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Linear quadratic MPC formulation

Prototype MPC problem

@ Given current state x(0) = x, solve for the input sequence
u = {u(0;x), u(L;x),..., u(N - 1;x)}

Pn(x): muin Vn(x,u) s.t.

x* = Ax+Bu
x(j)eX  forallj=0,...,N-1
u(j)eu forall j=0,...,N—-1

X(N) € Xg %
@ Cost function: 4R

FOOD'S'ENB.
N-1

Vn(x,w = ) 0(x(j), u(j)+Vr(x(N),

j=0

l(x,u) =x'Qx+u'Ru

@ Terminal cost: Vy(x) = x'Px

G. Pannocchia
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Closed-loop system and basic path for stability

Closed-loop system

o Given the optimal solution sequence u’(x), function of
current state x, denote the implicit MPC control law

k(%) = u°(0; %)

o Closed-loop system: x™ = Ax + Bk y(x)
@ Notice that xy : &y — Uis not linear

Basic route to prove stability

o Show that Vz(\)/ (-) is a Lyapunov function for
x* = f(x) = Ax+xn(x)

o Show that the feasibility set, Z}, is positively invariant

@ (Control invariance of X ) For every x € Xy, there exists
uel: x* = Ax+BueXy Vi(x™) = Vi(x) < —0(x,u)
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Stability proof

Lemma. Optimal cost decrease

For all x € &, there holds: VZ(\),(Ax + Bk (x)) — VI(\),(x) <—l(x,xkN(x))

Proof

o Consider the optimal input and state sequences
u’(x) = {t°0; %), u° (15 %),..., ' (N - 1; x)}
x0(x) = {x°(0), x°(1),..., x°(\)}

o Atnext time, given x* = Ax + Bx y(x), consider a candidate
sequence ii:= {t°(1;x), ..., u (N - 1; %), u(N)}

@ Choose u(N) € U such that x(N + 1) = Ax°(N; x) + Bu(N) € Xf
and Vf(x(N+ 1))+ 4(x(N), u(N)) < Vf(xO(N))

e s feasible and Vi (x*, @) < V) (x) — £(x,k n(x))

o But not optimal for Py (x"). Thus:

Vo (x™) < Vy(x*, ) < Ve (x) - £(x, kn(x))
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Examples of linear MPC: the origin as terminal set

Simple idea

@ (No) Terminal cost: V¢ (x) =0
@ Terminal set: X ¢ = {0}

o The feasibility set Zy may be small because one needs to
reach the origin in N steps (with constrained input u € U)

o Closed-loop evolution of x™ = Ax + Bk y(x) and open-loop
trajectory {x°(0), x°(1),..., x°(N — 1),0} may be very different
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Examples of linear MPC: Rawlings and Muske [1993]

Open-loop stable systems

@ Terminal cost: Vi(x):= x'Px with P solution to the

Lyapunov equation:
&8} . .
P=APA+Q  notice that: P=) (A))'QA’
J=0

@ Terminal set X =X

Open-loop unstable systems

o Perform Schur decomposition: A = [Ss S] ["(‘)S ’;‘15:] [gi] 75 A;g;
@ Solve reduced Lyapunov equation: IT = A{ITA; + S, QS; \I-rm b
e Terminal cost: V;(x) = x' Px with P = S{IIS; j!...l_'“_g

o Terminal set: Xr = {x € X | S},x = 0} P ?
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Examples of linear MPC: Scokaert and Rawlings [1998]

Now considered the “standard” formulation

@ Terminal cost: Ve(x) = x' Px, from the Riccati equation:

P=Q+A'PA-A'PB(B'PB+R)"'B'PA
@ Terminal set: Xy ={x¢€ R”™ | Vi(x) < a} with a > 0 suitably
chosen such that

xeX KxeU with K=—(B'PB+R)"'B'PA

Comments

@ Closed-loop and open-loop trajectories coincide

o Itis an infinite-horizon optimal formulation

o Often the terminal constraint is not enforced, but verified
a-posteriori (increasing N if not satisfied)
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Types of uncertainties

... The bare truth

o The true controlled system does not satisfy x* = Ax + Bu

@ The true state x is not known exactly

Additive uncertainty

@ The true system is modeled as

x"=fx,w)+w  with f(x,u) = Ax+ Bu

@ The disturbance w is unknown but bounded, w e W
(W compact and convex)

Alternative LTV description (convex hull)

M
x(k+1) = A(k)x(k) + Blk)u(k)  with {A(k), BUk)} = ) p; (k) {A(i), B(i)}
i=1
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Closed-loop uncertain system under nominal MPC

Difference inclusion description

@ The true system can be modeled as a difference inclusion

xT e F(x,u)={f(x,u) + w| weW}
o If the state is not precisely known:

u=xpy(x+e) with e € E (compact and convex)
@ The closed-loop system evolves as:

xteHx) ={f(x,xy(x+e)+w|eck, weW}
with a generic solution denoted as ¢, (k; x)

Fundamental questions: if W and E are small sets

WHYBUYAWINRRD

o Is Py solvable at all times (recursive feasibility)?
@ Does the following robust stability condition hold?
|pew (k; )| < B(lx|, k) +e  withe>0 IF THETRIAL
NEVER|ENDS?.
Course on Model Predictive Control. Part III - Stability and robustness 15/ 36




Inherent robustness of linear MPC

Properties of Py for linear MPC [Grimm et al., 2004]

o The optimal cost function Vj(-) is continuous (in x)

o The optimal MPC law «k (-) is continuous (in x)

Robust asymptotic stability

o Grimm et al. [2004] showed that if:
> there exists a continuous Lyapunov function for the nominal
system x* = f(x,x N (x)), and
> Py is feasible at all times
o Then, for any € > 0 there exists 6 > 0 such that if {W, E} € 6B:
|pew(k; x)| < B(Ix], k) +€

In [Grimm et al., 2004] recursive feasibility was assumed

... Proved in [Pannocchia et al., 2011a,b]
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What is suboptimal MPC?

Why suboptimal MPC? ...A practical problem

@ Despite its convexity (only for linear MPC), solving Py (x) up
to optimality may be difficult if a short decision time is
allowed

o Stability theory assumed that P ;(x) is solved exactly

@ What is the impact of using a suboptimal solution to Py (x)?

A neat suboptimal MPC framework [Scokaert et al., 1999]

@ Given current state x, previous control sequence
u ={u (0),u (1),...,u (N—1)} and state sequence
x ={x(0),x (1),...,x" (N)}

@ Build a warm-start: ug = {u~ (1),...,u" (N — 1),k ¢(x™ (N))}

o Perform some iterations to improve the warm start:

Vn(x,u) < Vy(x,up)
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Stability under suboptimal MPC

An additional ingredient

o To prove GAS, an additional requirement is enforced

Vn(x,u) < Vr(x) ifxe rBe Xy »
o r >0 can be arbitrarily small: additional constraint will not matter

Sketch of stability proof.

Consider the extended state: z = (x,u)

The successor suboptimal input sequence u* is a function of
the x* and of the warm-start. Hence u* = g(x,u)

@ The extended state evolves as
+ Ax+B[I0
o] = [ gt ]u] orz" =h(2)
@ V() is a Lyapunov function for z* = h(z) 1 / WB“

Additional condition implies GAS in the non-extended state
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Inherent robustness of suboptimal MPC (1/2)

Comments on the suboptimal cost and control

@ The suboptimal control is not unique, i.e. k7 (x) is
set-valued map

@ The suboptimal cost function Vi (-) is not continuous in x

@ The proof of [Grimm et al., 2004] for inherent robustness
does not hold for suboptimal MPC

New results [Pannocchia et al., 2011a,b]

@ Suboptimal MPC is inherently robust
o Recursive feasibility can be established

o Optimal and suboptimal MPC have the same (qualitative)
stability properties
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Inherent robustness of suboptimal MPC (2/2)

Sketch of robust stability proof.

@ The perturbed extended system evolves as a difference
inclusion

z"=H(z):={(x",u") | x* = Ax+ Bu(0; x + e) + w,u" € G(z)}

o Show exponential stability in the extended state

@ Prove thatexist y € (0,1) and >0
Vn(z") < max{yVy(2), u}

A BEAUTIFUL
e Vn(-) is continuous in z and implies robust stability in the IND
extended state

o The additional condition implies robust stability in the
non-extended state
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Robust MPC design: an introduction (1/2)

An example [Rawlings and Mayne, 2009]

o (Nominal) system: x* = x + u, without constraints X =U =R 2 O
o MPC design: N =3, £(x,u) = x* + u?, Vy(x) = x* .

Open-loop control vs feedback policies

OL Given initial state x(0) = x, solve for u = [1(0), u(1), u(2)]":

u’() = [-0.615x -0.231x -0.077x]’ = P
FB Use dynamic programming to obtain a feedback policy: l k

p° = [-0.615x(0) —0.6x(1) —0.5x(2)]'

Evolution in the presence of uncertainties

@ Same nominal evolution is obtained
o Considering disturbances: x* = x + u + w, different trajectories are obtained
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Robust MPC design: an introduction (2/2)

Trajectories in three cases

o Three disturbance sequences:
> w’=10,0,0)
»wh={1,1, 1}
> w?={-1,-1, -1}

(a) Open loop. (b) Feedback.

o Feedback policies are clearly more effective against disturbances
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Min-max MPC

Conceptual framework

Prediction model x* = Ax + Bu + w with w € W (compact)

Robustly invariant terminal set X [Blanchini, 1999]

Open-loop min-max: u = [u(0) u(1) - u(N-1)]
min max Vy(x,u,w) s.t.
u w

=t =,

L
x(j+1) = Ax(j) + Bu(j) + w(j)
x(HeX, w()eW, u(j)eUforj=0,...,.N-1
X(N) e Xy
o Feedback min-max: g = [p(x(0) p(x(1) - p(x(N-1)]
rr}lin m‘sx Vn(x, p,w) s.t.

x(j+1) = Ax(j) + Bu(x(j)) + w(j)
x(NeX, w(leW, px()eUforj=0,...,N-1
X(N)EXf
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Tube-based MPC (1/3)

Set algebra

@ Some notation

> Set addition: A@e B={a+b|a€c A, be B}
> Set subtraction: A6 B={xeR"|{x}®Bc A}
» Set multiplication: let K e R"*"", KA={Ka|a€ A}

Outer-bounding tube

Uncertain linear system: x* = Ax+ Bu+ w, we W

Nominal system: z* = Az + Bv

Affine feedback policy: u = v+ K(x — z) ,
Error, e = x — z, evolves as: et = (A+ BK)e+ w = Age+ w '
If we set z(0) = x(0), i.e. e(0) =0, then /

i-1 .
e(i)eSk(i) =Y ALWESS
Jj=0
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Tube-based MPC (2/3)

Constraint tightening

o Constraints on the uncertain system: x(i) € X, u(i) e U

o Tightened constraints on the nominal system:
z(i)eZ=Xe S, v(i)eV=UeKS

A sketch of nominal and uncertain trajectories

X trajectory

Xo A

Z trajectory

X x2

SV

G. Pannocchia
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Tube-based MPC (3/3)
Nominal MPC problem with restricted constraints

Pn(2): minVy(z,v) st z"=Az+Bv
z(j)ez  foralj=0,...,N-1 5 T:.'Ii'r":h'."n'g"_:c'
v(j)ev  forallj=0,...,N—1 - s
2(N) € Zy

Tube-based MPC

Initialization Attime k =0, set z(0) = x(0)

Step 1 Given current augmented state (x, z), solve Px(2z) and obtain
nominal control v = Ky (2)

Step 2 Apply control: u = v+ K(x — z)

Step 3 Compute nominal successor state: z* = Az + Bv and measure
successor state x*

Step 4 Replace (x,z) — (x*,z"), go to Step 1
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Output feedback MPC: main definitions

True system and state estimator

o Uncertain LTI system

xt=Ax+Bu+w

y=Cx+v
@ Bounded disturbances: we W, v eV
@ Simple Luenberger observer:

" =Ax+Bu+L(y—-9)  withy=C%
o Estimation error e:= x — X evolves as

et =(A-LO)e+w with :=w—-LveW:=We (-LV)

4

Output feedback MPC
@ Solve Py (%) and apply x n (%)
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Nominal stability of output feedback MPC

Deterministic case

o In the ideal situation: W = {0} and V = {0}: e* = (A—LC)e
o The origin of e* = (A— LC)e is exponentially stable

o Estimator state evolves as: 7 = A+ Bu+ LCe

Main result [Scokaert et al., 1997]

o Let ¢(k; x, e) be the solution at time k of x* = Ax + Bx () " {|
o The following asymptotic stability condition holds: L S AR

lo(k; x,e)| < Bl (x, e)l, k) forall ke N

sEiHbdgbE

for any initial state x € € c Xy and estimate error e€ &

28/36
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Offset-free MPC based on disturbance model

Some reminders

o The augmented system (x e R",u e R,y e R, d e R"d)
x* = Ax+Bu+B,d
dt=d
y=Cx+Cyd
@ Observability requirements
(A, C) observable rank [ Al d] =n+ny

Tracked variables, target calculator and dynamic optimization

o Controlled variables: r = Hy, with r € RP" and p, < min{p, m}

o Target calculator chooses targets (x;, ug) such that:
Xs = Axs+Bugs+ Byd, F=H(Cxs+Cyd)

o Dynamic optimization regulates deviation variables:
X=x—x5—0, U=u—us—0
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Zero offset [Muske and Badgwell, 2002, Pannocchia and
Rawlings, 2003, Maeder et al., 2009]

Theorem statement

e Let ny = p, assume that:

» MPC feasible at all times, unconstrained for k > k
> Closed loop reaches steady values: (Uco, Yoo), (X0, doo)s (Xs, Us)

o Then, there is zero offsetin 7: 700 = Hyoo =T

Sketch of proof

° Stab111ty of the observer 1mp11es that L; € RP*P? is full rank:
d = d + Lj(Yoo — Cxoo — Cddoo) = Yoo = Cxoo + Cdd

o Target satisfies: 7 = H(Cx; + Cddoo)

@ Since constraints are inactive (at steady state), fioo, = KXoo
Hence: Xoo = (A+ BK)Xoo = Xoo = Xoo — X5 = 0 = Xoo = X;

o Combining all steps: H(CX + Cydso) = Hyoo=Too =T

Course on Model Predictive Control. Part III - Stability and robustness 30/36



Equivalence of disturbance models and observer design

A debate: what is the best choice for (B, Cy)?

@ There were evidences that B; =0, C; = I was a bad choice
[Lundstrém et al., 1995, Muske and Badgwell, 2002,
Pannocchia, 2003, Pannocchia and Rawlings, 2003, Maeder
etal., 2009, Bageshwar and Borrelli, 2009]

v

A change of perspective

o Rajamani et al. [2004, 2009] argued that two augmented
systems with same (A, B, C) and different (B, C;) are two
non-minimal realizations of the same system

o A transformation matrix 7' makes them equivalent
a=[5"%], Bi=[§), Gi=1cca), L= 1]
Ay =[4P2]=TA T, By=[§]=TB), C;=[CCal=
CiT™ L,=TL

@ Choose any (B, C;) and determine (Ly, L;) from data
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S, interpretation of disturbance models

Joo interpretation [Pannocchia and Bemporad, 2007]

o System & subject to a disturbance w € R"*P

x" = Ax+Bu+By,w By =1, 0]
y=Cx+ +Dyw D, =[01p]
o Design a dynamic observer Z:
&Y= A&+ Bre withe=y-7 s, e
v=Crl+Dje
@ Estimator in closed loop:
it = A%+Bu+B,v By, =[1,0]
g=Cx+ +Dw  Dy=[0h] y y
o Equivalent to the augmented system and observer:

Ap=1p, Ba=AByCy, C4=D,CL
Ly=AB,D(I+D,D;)7}, Lg= Bi(I+D,Dp)!

@ An /£, observer £ such that the DC-gain w — s=e
iszeroissuch that A; =1
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Alternative methods for offset-free MPC design (1/2)

Delta input form

@ Assume for simplicity r = y. Define d u(k) = u(k) —u(k—1),
i.e. u(k) = u(k—1) +6u(k), and the augmented system

T
x(k+1)| _[A B x(k) B 1
[ uk) |~ [0 Im || u(k-1) +[F]oulk :
k z|
yk =1col | G2y i
@ Observer to estimate x,(k) = uf,g’f)l)

@ Solve the dynamic optimization penalizing (y — 7) and 6 u
o Apply u(k) = u(k—1) +6u°(k)

Observations

@ The system is observable only if p = m

o Does not require a target calculator

o True input u(k — 1) and its estimate #Z(k — 1) may be different

G. Pannocchia
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Alternative methods for offset-free MPC design (2/2)

Velocity form

o Ox(k)=x(k)—x(k—-1),0u(k)=ulk)—uk-1),z=y—-7

@ Augmented system:

(55" = [ 0] [52]+ [ &) 6w )
y_FZ[OI][ﬁzx]
@ Observer to estimate x, = [%}] ‘

o Solve the dynamic optimization penalizing z and 6 u
e Apply u(k) = u(k—1) +6u°(k)

Observations
o The system is stabilizable only if p < m
o Does not require a target calculator
@ May show windup issues if the setpoint 7 is not reachable

v
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