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Estimator preliminaries

Basic model, inputs and outputs

Basic model:

x+ = Ax +Bu +w

y =C x + v

Inputs k: measured output y(k) and predicted state x̂−(k)
Outputs k: updated state estimate x̂(k)

State estimator for basic model
Choose any L such that (A− ALC ) is strictly Hurwitz
Filtering: x̂(k) = x̂−(k)+L(y(k)−C x̂−(k))

Key observation

The estimator is the only feedback module in an MPC. Any discrepancy
between true plant and model should be corrected there
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Augmented system: definition

Issue and solution approach

An MPC based on the previous estimator does not
compensate for plant/model mismatch and persistent
disturbances

As in [Davison and Smith, 1971, Kwakernaak and Sivan, 1972,
Smith and Davison, 1972, Francis and Wonham, 1976], one
should model and estimate the disturbance to be rejected

For offset-free control, an integrating disturbance is added

Augmented system [Muske and Badgwell, 2002, Pannocchia and
Rawlings, 2003], with d ∈Rnd

[
x
d

]+
=

[
A Bd

0 I

][
x
d

]
+

[
B
0

]
u +

[
w

wd

]
y = [

C Cd
][

x
d

]
+ v

G. Pannocchia Course on Model Predictive Control. Part II – Linear MPC theory 5 / 47



Augmented system: observability

Observability of the augmented system

Assume that (A,C ) is observable

Question: is

([
A Bd

0 I

]
,
[
C Cd

])
observable?

Answer: yes, if and only if (from the Hautus test)

rank

[
A− I Bd

C Cd

]
= n +nd

Observation: the previous can be satisfied if and only if

nd ≤ p
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Augmented system: controllability

Controllability of the augmented system

Assume that (A,B) is controllable

Question: is

([
A Bd

0 I

]
,

[
B
0

])
controllable?

Answer: No

Observation: the disturbance is not going to be controlled.
Its effect is taken into account in Steady-State Optimization
and Dynamic Optimization modules
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Augmented estimator

General design

Set nd = p (see [Pannocchia and Rawlings, 2003, Maeder et al.,
2009] for issues on choosing nd < p)

Choose (Bd ,Cd ) such that the augmented system is observable

Choose L =
[

Lx

Ld

]
such that

([
A Bd

0 I

]
−

[
A Bd

0 I

][
Lx

Ld

][
C Cd

])
is strictly Hurwitz

Augmented estimator:[
x̂(k)
d̂(k)

]
=

[
x̂−(k)
d̂−(k)

]
+

[
Lx

Ld

](
y(k)− [

C Cd
][

x̂−(k)
d̂−(k)

])
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The typical industrial design

Typical industrial design for stable systems (A strictly Hurwitz)

Bd = 0, Cd = I , Lx = 0, Ld = I

Output disturbance model

Any error y(k)−C x̂−(k) is assumed to be caused by a step
(constant) disturbance acting on the output. In fact, the
filtered disturbance estimate is:

d̂(k) = d̂−(k)+ (y(k)−C x̂−(k)− d̂−(k)) = y(k)−C x̂−(k)

It is a deadbeat Kalman filter

Q = 0, Qd = I , R → 0

It is simple and does the job [Rawlings et al., 1994]
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Comments on the industrial design

Rotation factor for integrating systems

}α

k k +1 k +2 k +3k −1 k +4

(current time)

yk

(uncorrected)

(rotated)

translated)
(rotated and

x̂k|k−1

Limitations of the output disturbance model

The overall performance is often sluggish [Lundström et al., 1995, Muske and
Badgwell, 2002, Pannocchia and Rawlings, 2003, Pannocchia, 2003]

A suitable estimator design can improve the closed-loop performance
[Pannocchia, 2003, Pannocchia and Bemporad, 2007, Rajamani et al., 2009]

Often, a deadbeat input disturbance model works better

Bd = B , Cd = 0, Q = 0, Qd = I , R → 0
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Steady-state optimization module
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Steady-state optimization module: introduction

A trivial case

Square system (m = p) without constraints and with
setpoints on all CVs

Solve the linear system

xs = Axs +Bus +Bd d̂

rs =C xs +Cd d̂

Obtain [
xs

us

]
=

[
I − A −B

C 0

]−1 [
Bd d̂

rsp −Cd d̂

]

Observation
The steady-state target (xs , us ) may change at each decision time because of the
disturbance estimate d̂
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Objectives of the steady-state optimization module

Boundary conditions

In most cases the number of CVs is different from the
number of MVs: p 6= m

CVs and MVs have constraints to meet

ymin ≤ y(k) ≤ ymax, umin ≤ u(k) ≤ umax

Only a small subset of CVs have fixed setpoints: H y(k) → rsp

Objectives

Given the current disturbance estimate, d̂

Compute the equilibrium (xs ,us , ys ):
xs = Axs +Bus +Bd d̂ , ys =C xs +Cd d̂ such that:

Ï constraints on MVs and CVs are satisfied:
ymin ≤ ys ≤ ymax, umin ≤ us ≤ umax

Ï the subset of CVs tracks the setpoint: H ys = rs
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Examples of steady-state optimization feasible regions

Stable system with 2 MVs and 2 CVs (with bounds)

ys =C (I − A)−1Bus + (C (I − A)−1Bd +Cd )d̂ =Gus +Gd d̂

u(2)
s

u(1)
s u(1)

maxu(1)
min

u(2)
min

u(2)
max

y (1)
max

y (2)
max

y (1)
min

y (2)
min
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Examples of steady-state optimization feasible regions

Stable system with 2 MVs and 2 CVs (one setpoint)

ys =C (I − A)−1Bus + (C (I − A)−1Bd +Cd )d̂ =Gus +Gd d̂

y (2)
min = y (2)

max

u(1)
s u(1)

maxu(1)
min

u(2)
min

u(2)
max

y (1)
max

y (1)
min

u(2)
s
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Examples of steady-state optimization feasible regions

Stable system with 2 MVs and 2 CVs (two setpoints)

ys =C (I − A)−1Bus + (C (I − A)−1Bd +Cd )d̂ =Gus +Gd d̂

y (1)
min = y (1)

max

u(1)
s u(1)

maxu(1)
min

u(2)
min

u(2)
max

u(2)
s

y (2)
min = y (2)

max

G. Pannocchia Course on Model Predictive Control. Part II – Linear MPC theory 16 / 47



Examples of steady-state optimization feasible regions

Stable system with 2 MVs and 3 CVs (two setpoints)

ys =C (I − A)−1Bus + (C (I − A)−1Bd +Cd )d̂ =Gus +Gd d̂

y (3)
max

u(1)
s u(1)

maxu(1)
min

u(2)
min

u(2)
max

u(2)
s

y (2)
min = y (2)

max

y (1)
min = y (1)

max

y (3)
min
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Hard and soft constraints

Hard constraints

In the two optimization modules, constraints on MVs are
regarded as hard, i.e., cannot be violated

This choice comes from the possibility of satisfying them
exactly

Soft constraints

In the two optimization modules, constraints on CVs are
regarded as soft, i.e., can be violated when necessary

The amount of violation is penalized in the objective function

This choice comes from the impossibility of satisfying them
exactly
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Steady-state optimization module: linear formulation

General formulation (LP)

min
us ,xs ,εs ,εs

q ′εs +q ′εs + r ′us s.t.

xs = Axs +Bus +Bd d̂

umin ≤ us ≤ umax

ymin −εs ≤C xs +Cd d̂ ≤ ymax +εs

εs ≥ 0

εs ≥ 0

Extensions
Setpoints on some CVs can be specified with either an equality constraint or
by setting identical value for minimum and maximum value

Often CVs are grouped by ranks
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LP steady-state optimization module: tuning

Cost function
r ∈Rm is the MV cost vector: a positive (negative) entry in r implies that the
corresponding MV should be minimized (maximized)

q ∈Rp and q ∈Rp are the weights of upper and lower bound CV violations.
Sometimes they are defined in terms of equal concern error:
q i = 1

SSECEU
i

, q
i
= 1

SSECEL
i

, i = 1, . . . , p

Constraints
Bounds umax, umin, ymax, ymin can be modified by the operators (within
ranges defined by the MPC designer)

Sometimes in order to avoid large target changes from time k −1 to time k a
rate constraint is added

−∆umax ≤ us (k)−us (k −1) ≤∆umax
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LP steady-state optimization module: numerical solution

Standard LP form

min
z

c ′z s.t.

E z ≤ e, F z = f

with

z =
[ xs

us
εs
εs

]
, E =

 0 I 0 0
0 −I 0 0
C 0 −I 0
−C 0 0 −I

0 0 −I 0
0 0 0 −I

 , e =


umax−umin

ymax−Cd d̂

−(ymin−Cd d̂)
0
0

 , F = [ I−A −B 0 0 ] , f = Bd d̂

Solution algorithms [Nocedal and Wright, 2006]

Solution methods based on simplex or interior point algorithms
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Steady-state optimization module: quadratic formulation

QP formulation

The LP formulation is quite intuitive but its outcome may be
too “jumpy”

Sometimes a QP formulation may be preferred

min
us ,xs ,εs ,εs

‖εs‖2
Q s

+‖εs‖2
Q

s
+‖us −usp‖2

Rs
s.t.

xs = Axs +Bus +Bd d̂

umin ≤ us ≤ umax

ymin −εs ≤C xs +Cd d̂ ≤ ymax +εs

where usp is the desired MV setpoint and ‖x‖2
Q = x ′Qx

Tuning is slightly more complicated, but the outcome is
usually “smoother”
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Dynamic optimization module

MPC

ProcessDynamic

Steady-state

u(k)

Optimization
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Dynamic optimization module: introduction

Agenda

Make a finite-horizon prediction of future CVs evolution
based on a sequence of MVs

Find the optimal MVs sequence, minimizing a cost function
that comprises:

Ï deviation of CVs (and MVs) from their targets
Ï rate of change of MVs

respecting constraints on:
Ï MVs (always)
Ï CVs (possibly)
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Dynamic optimization module: graphical interpretation

Prediction horizon

y

u

FuturePast

Control horizon
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Dynamic optimization module: formulation

Cost function: Q, either R or S, Q, Q, P positive definite matrices

VN (x̂,u,εεε,εεε) =
N−1∑
j=0

[
‖ŷ( j )− ys‖2

Q +‖u( j )−us‖2
R +‖u( j )−u( j −1)‖2

S+

‖ε( j )‖2
Q
+‖ε( j )‖2

Q

]
+‖x(N )−xs‖2

P s.t.

x+ = Ax +Bu +Bd d̂ x(0) = x̂

ŷ =C x +Cd d̂ ys =C xs +Cd d̂

Control problem

min
u,εεε,εεε

VN (x̂,u,εεε,εεε) s.t.

umin ≤ u( j ) ≤ umax

−∆umax ≤ u( j )−u( j −1) ≤∆umax

ymin −ε( j ) ≤ ŷ( j ) ≤ ymax +ε( j )
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Dynamic optimization module: formulation

Main tuning parameters

Q: diagonal matrix of weights for CVs deviation from target:

qi i =
(

1

DEC E M
i

)2

R: diagonal matrix of weights for MVs deviation from target
S: diagonal matrix of weights for MVs rate of change, often called
move suppression factors
Q, Q: diagonal matrices of weights for CVs violation of
constraints

q i i =
(

1

DEC EU
i

)2

, q
i i
=

(
1

DEC E L
i

)2

umax, umin, ymax, ymin, ∆umax: constraint vectors
N : prediction horizon
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Dynamic optimization module: rewriting

Deviation variables

Use the target (xs ,us ):
x̃( j ) = x( j )−xs , ũ( j ) = u( j )−us ,

Recall that:
xs = Axs +Bus +Bd d̂ , ys =C xs +Cd d̂

Cost function becomes:

VN (x̂, ũ,εεε,εεε) =
N−1∑
j=0

[
‖x̃( j )‖2

C ′QC +‖ũ( j )‖2
R +‖ũ( j )− ũ( j −1)‖2

S+

‖ε( j )‖2
Q
+‖ε( j )‖2

Q

]
+‖x̃(N )‖2

P s.t.

x̃+ = Ax̃ +Bũ x̃(0) = x̂ −xs
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Dynamic optimization module: constrained LQR

Compact problem formulation

min
ũ,εεε,εεε

VN (x̂, ũ,εεε,εεε) s.t.

umin −us ≤ ũ( j ) ≤ umax −us

−∆umax ≤ ũ( j )− ũ( j −1) ≤∆umax

ymin − ys −ε( j ) ≤C x̃( j ) ≤ ymax − ys +ε( j )

Constrained LQR formulation
With suitable definitions (shown next), we obtain a constrained LQR formulation:

min
ua

VN (xa ,ua) =
N−1∑
j=0

[
‖xa( j )‖2

Qa
+‖ua( j )‖2

Ra
+2xa( j )Maua( j )

]
+‖xa(N )‖2

Pa

s.t. x+
a = Aa xa +Baua , Daua +Ea xa ≤ ea
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Dynamic optimization module: constrained LQR (cont.’d)

Augmented state and input

xa( j ) =
[

x̃( j )
ũ( j−1)

]
, ua( j ) =

[ ũ( j )
ε( j )
ε( j )

]

The state is augmented to write terms u( j )−u( j −1) (in the
objective function and/or in the constraints)

The input is augmented to write the soft output constraints

Matrices and vectors

Aa = [
A 0
0 0

]
Ba = [

B 0 0
I 0 0

]
Qa =

[
C ′QC 0

0 S

]
Ra =

[R+S 0 0
0 Q 0
0 0 Q

]
Ma = [

0 0 0
−S 0 0

]

Da =
 I 0 0

−I 0 0
I 0 0
−I 0 0
0 −I 0
0 0 −I

 Ea =
 0 0

0 0
0 −I
0 I
C 0
−C 0

 ea =


umax−us
us−umin
∆umax
∆umax

ymax−ys
ys−ymin


G. Pannocchia Course on Model Predictive Control. Part II – Linear MPC theory 30 / 47



Dynamic optimization module: QP solution

From constrained LQR to a QP problem

xa =


xa (0)
xa (1)
xa (2)

...
xa ()

 Aa =


I

Aa

A2
a

...
AN

a

 Ba =



0 ··· ··· 0

Ba

. . .
...

Aa Ba Ba

. . .
...

. . . 0
AN−1

a Ba ··· Aa Ba Ba

=⇒ xa = Aa xa(0)+Ba ua

Qa =


Qa

Qa

. . .
Qa

Pa

 Ra =
Ra

Ra

. . .
Ra

 Ma =


Ma

Ma

. . .
Ma

0 ··· 0



Da =
Da

Da

. . .
Da

 Ea =


Ea 0

Ea

...
. . .

Ea 0

 ea =
 ea

ea

...
ea
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Dynamic optimization module: QP solution (cont.’d)

QP problem

min
ua

1

2
u′

a Ha ua +u′
a qa s.t.

Fa ua ≤ ea −Ga xa(0)

where

Ha = B′
a Qa Ba +Ra +B′

a Ma +M′
a Ba qa = (B′

a Qa +M′
a)Aa xa(0)

Fa = Da +Ea Ba Ga = Ea Aa

Observations
Both the linear penalty and constraint RHS vary linearly with the current
augmented state xa(0), while all other terms are fixed

QP solvers are based on Active-Set Methods or Interior Point Methods
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Feedback controllers synthesis from open-loop
controllers: the receding horizon principle

A quote from [Lee and Markus, 1967]

One technique for obtaining a feedback controller synthesis from
knowledge of open-loop controllers is to measure the current control
process state and then compute very rapidly for the open-loop control
function.
The first portion of this function is then used during a short time interval,
after which a new measurement of the process state is made and a new
open-loop control function is computed for this new measurement.
The procedure is then repeated.
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Optimal control sequence and closed-loop
implementation

The optimal control sequence

The optimal control sequence u0
a is in the form

u0
a =

ũ0(0), ũ0(1), . . . , ũ0(N −1)︸ ︷︷ ︸
ũ0

,ε(0),ε(1), . . . ,ε(N −1)︸ ︷︷ ︸
εεε

,ε(0),ε(1), . . . ,ε(N −1)︸ ︷︷ ︸
εεε


The variables εεε and εεε are present only when soft output constraints are used

Closed-loop implementation

Only the first element of the optimal control sequence is
injected into the plant: u(k) = ũ0(0)+us (k)
The successor state is predicted using the estimator model

x̂−(k +1) = Ax̂(k)+Bu(k)+Bd d̂(k)

d̂−(k +1) = d̂(k)
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Linear MPC: summary

Overall algorithm

1 Given predicted state and disturbance (x̂−(k), d̂−(k)) and output
measurement y(k), compute filtered estimate:
x̂(k) = x̂−(k)+Lx

(
y(k)−C x̂−(k)−Cd d̂−(k)

)
,

d̂(k) = d−(k)+Ld
(
y(k)−C x̂−(k)−Cd d̂−(k)

)
2 Solve Steady-State Optimization problem and compute targets

(xs (k),us (k))

3 Define deviation variables: x̃(0) = x̂(k)−us (k),

ũ(−1) = u(k −1)−us (k), and initial regulator state xa(0) =
[

x̃(0)
ũ(−1)

]
.

Solve Dynamic Optimization problem to obtain ũ0

4 Inject control action u(k) = ũ0(0)+us (k). Predict successor state
x̂−(k +1) = Ax̂(k)+Bu(k)+Bd d̂(k) and disturbance
d̂−(k +1) = d̂(k). Set k ← k +1 and go to 1
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General formulation of an optimization problem

The three ingredients

x ∈Rn , vector of variables

f :Rn →R, objective function

c :Rn →Rm , vector function of constraints that the variables
must satisfy. m is the number of restrictions applied

The optimization problem

min
x∈Rn

f (x) subject to

{
ci (x) = 0 ∀i ∈ E

ci (x) ≥ 0 ∀i ∈I

E , I : sets of indices of equality and inequality constraints, respectively
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Constrained optimization: example 1

Solve

min x1 +x2 s. t. x2
1 +x2

2 −2 = 0

Standard notation, feasibility region and solution

In standard notation: f (x) = x1 +x2, I =;, E = {1},
c1(x) = x2

1 +x2
2 −2

Feasibility region: circle of radius
p

2, only the border

Solution: x∗ = [−1,−1]T

f (x)

x1

x2

Observation

∇ f (x∗) =
[

1
1

]
, ∇c1(x∗) =

[−2
−2

]
=⇒∇ f (x∗) =−1

2
∇c1(x∗)
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Constrained optimization: example 2

Solve

min x1 +x2 s. t. 2−x2
1 −x2

2 ≥ 0

Standard notation, feasibility region and solution

In standard notation: f (x) = x1 +x2, I = {1}, E =;,
c1(x) = 2− (x2

1 +x2
2)

Feasibility region: circle of radius
p

2, including the
interior

Solution: x∗ = [−1,−1]T

x1

x2

f (x)

Observation

∇ f (x∗) =
[

1
1

]
, ∇c1(x∗) =

[
2
2

]
=⇒∇ f (x∗) = 1

2
∇c1(x∗)
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Constrained optimality conditions (KKT)

Lagrangian function

L (x,λ) = f (x)− ∑
i∈E∪I

λi ci (x)

Karush-Kuhn-Tucker optimality conditions

If x∗ is a local solution to the standard problem, there exists a
vector λ∗ ∈Rm such that the following conditions hold:

∇xL (x∗,λ∗) = 0

ci (x∗) = 0 for all i ∈ E

ci (x∗) ≥ 0 for all i ∈I

λ∗
i ≥ 0 for all i ∈I

λ∗
i ci (x∗) = 0 for all i ∈ E ∪I

The components of λ∗ are called Lagrange multipliers
Notice that a multiplier is zero when the corresponding
constraint is inactive
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Linear programs (LP) problems

LP in standard form

min
x

cT x subject to Ax = b, x ≥ 0

where: c ∈Rn , x ∈Rn , A ∈Rm×n , b ∈Rm and rank(A) = m

Optimality conditions

Lagrangian function: L (x,π, s) = cT x −πT (Ax −b)− sT x

If x∗ is solution of the linear program, then:

ATπ∗+ s∗ = c

Ax∗ = b

x∗ ≥ 0

s∗ ≥ 0

x∗
i s∗i = 0, i = 1,2, . . .n
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LP: the simplex method

The “base points”

A point x ∈Rn is a base point if

Ax = b and x ≥ 0

At most m components of x are nonzero

The columns of A corresponding to the nonzero elements are
linearly independent

Fundamental aspects of the simplex method

Base points are vertices of the feasibility region

The solution is a base point

The simplex method iterates from a base point xk to another one xk+1, and
stops when all components of sk are nonnegative

When a component of sk is negative, a new base point xk+1 in which the
corresponding element of xk is nonzero is selected
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Quadratic Programming (QP)

Standard form

min
x

1

2
xT Gx +xT d

subject to:

aT
i x = bi , i ∈ E

aT
i x ≥ bi , i ∈I

where G ∈Rn×n is symmetric (positive definite), d ∈Rn , b ∈Rn , and
ai ∈Rn , for all i ∈ E ∪I

The active set

A (x∗) = {
i ∈ E ∪I : aT

i x∗ = bi
}
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Quadratic Programming (QP) problems (2/2)

Lagrangian function

L (x,λ) = 1

2
xT Gx +xT − ∑

i∈E∪I

λi (aT
i x −bi )

Optimality conditions (KKT)

Gx∗+d − ∑
i∈A (x∗)

λ∗
i ai = 0

aT
i x∗ = bi , for all i ∈A (x∗)

aT
i x∗ > bi , for all i ∈I \A (x∗)

λ∗
i ≥ 0, for all i ∈I ∩A (x∗)
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Active set methods for convex QP problems

Fundamental steps

1 Given a feasible xk , we evaluate its active set and build the
matrix A whose row are {aT

i }, i ∈A (xk )

2 Solve the KKT linear system[
G AT

A 0

][−pk

λk

]
=

[
d +Gxk

Axk −b

]
3 If ‖pk‖ ≤ ρ, check if λ∗

i ≥ 0 for all i ∈A (xk ). If so, stop.

4 If a multiplier λ∗
i < 0 for some i ∈A (xk ), remove the i−th

constraint from the active set.

5 If ‖pk‖ > ρ, define xk+1 = xk +αk pk , where αk is the largest
scalar in (0,1] such that no inequality constraint is violated.
When a blocking constraint is found, it is included in the new
active set A (xk+1)
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Nonlinear programming (NLP) problems via SQP
algorithms

Nonlinear programming (NLP) problems

min
x

f (x) s.t.

ci (x) = 0 i ∈ E

ci (x) ≥ 0 i ∈I

“Sequential Quadratic Programming” (SQP) approach

min
pk

1

2
pT

k Wk pk +∇ f (xk )T pk s.t.

∇ci (xk )T pk + ci (xk ) = 0 i ∈ E

∇ci (xk )T pk + ci (xk ) ≥ 0 i ∈I
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