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Outline

@ Estimator module design for offset-free tracking

© Steady-state optimization module design

© Dynamic optimization module design

@ Closed-loop implementation and receding horizon principle

© Quick overview of numerical optimization
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Estimator preliminaries

Basic model, inputs and outputs

Basic model:

xt=Ax+Bu+w
y=Cx+v

o Inputs k: measured output y(k) and predicted state X~ (k)
@ Outputs k: updated state estimate x(k)

State estimator for basic model

@ Choose any L such that (A— ALC) is strictly Hurwitz
o Filtering: X(k) = 27 (k) + L(y(k) — Cx™ (k))

Key observation

The estimator is the only feedback module in an MPC. Any discrepancy
between true plant and model should be corrected there
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Augmented system: definition

Issue and solution approach

@ An MPC based on the previous estimator does not
compensate for plant/model mismatch and persistent
disturbances

@ Asin [Davison and Smith, 1971, Kwakernaak and Sivan, 1972,
Smith and Davison, 1972, Francis and Wonham, 1976], one
should model and estimate the disturbance to be rejected

o For offset-free control, an integrating disturbance is added

Augmented system [Muske and Badgwell, 2002, Pannocchia and

Rawlings, 2003], with d € R"

X +_ A Bg||x 4 B ut| ¥
d 0 I]||d 0 wgq
X

yZ[C Cd] d +v
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Augmented system: observability

Observability of the augmented system

@ Assume that (A4, C) is observable

A By
0o I

@ Question: is ([ ,[C Cd]) observable?

@ Answer: yes, if and only if (from the Hautus test)

A-1 By

rank c C,

=n+ng

o Observation: the previous can be satisfied if and only if

ng=p
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Augmented system: controllability

Controllability of the augmented system

@ Assume that (A, B) is controllable

@ Question: is ([A Ba ,[lg

0 I
@ Observation: the disturbance is not going to be controlled.

Its effect is taken into account in Steady-State Optimization a/
and Dynamic Optimization modules ; e

) controllable?

@ Answer: No
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Augmented estimator

General design

@ Set n; = p (see [Pannocchia and Rawlings, 2003, Maeder et al.,
2009] for issues on choosing n; < p)

o Choose (Bg, Cy) such that the augmented system is observable

@ Choose L = [Lx such that
Lq
A By 3 A Bgl||Ly
([0 I [0 I Ld][c Cd])

is strictly Hurwitz

@ Augmented estimator:

#(k) 0], [Ls
d(k) d- | " |Lg

(y(k)— [C C4]

(k)
d-(k) )
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The typical industrial design

Typical industrial design for stable systems (A strictly Hurwitz)
By=0, Cq=1, Ly=0, Ly=1I

Output disturbance model

@ Any error y(k) — Cx™ (k) is assumed to be caused by a step
(constant) disturbance acting on the output. In fact, the
filtered disturbance estimate is:

d(k) = d (k) + (y(k) = Cx~ (k) —d~ (k) = y(k) — C&™ (k)

o Itis a deadbeat Kalman filter

Q=0, Qs=1, R—0

o Itis simple and does the job [Rawlings et al., 1994]
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Comments on the industrial design

Rotation factor for integrating systems

Limitations of the output disturbance model

o The overall performance is often sluggish [Lundstrom et al., 1995, Muske and
Badgwell, 2002, Pannocchia and Rawlings, 2003, Pannocchia, 2003]

o A suitable estimator design can improve the closed-loop performance
[Pannocchia, 2003, Pannocchia and Bemporad, 2007, Rajamani et al., 2009]

o Often, a deadbeat input disturbance model works better
B;=B, C;=0, Q=0, Qs=I, R—0
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Steady-state optimization module
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Steady-state optimization module: introduction

A trivial case

@ Square system (m = p) without constraints and with
setpoints on all CVs

@ Solve the linear system e
CALL SOMETHING

Xs = Axs+ Bug+ Bdcf

rs=Cxs+ Cdcf
o Obtain ) .
xs| _[I-A B[ Bad
us|] | C o rop—Cad
Observation

The steady-state target (x5, u;) may change at each decision time because of the
disturbance estimate d
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Objectives of the steady-state optimization module

Boundary conditions

@ In most cases the number of CVs is different from the
number of MVs: p # m

@ CVs and MVs have constraints to meet

Ymin < Y(K) < Ymax Umin < U(k) < Umax

@ Only a small subset of CVs have fixed setpoints: Hy (k) — rsp

@ Given the current disturbance estimate, d

o Compute the equilibrium (x;, us, ys):

Xs = Axs+ Bug+ Bdcf, ¥s=Cxs+ Cdcf such that: Yﬁs ’|l:?
> constraints on MVs and CVs are satisfied:
Ymin < ¥s < Ymax, Umin < Us < Umax |1

> the subset of CVs tracks the setpoint: Hys = rg
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Examples of steady-state optimization feasible regions

Stable system with 2 MVs and 2 CVs (with bounds)

ys=C(I - A) ' Bug+(CUI—-A) " By +Ca)d = Gus + Gyd

0]
.Vmax
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Examples of steady-state optimization feasible regions

Stable system with 2 MVs and 2 CVs (one setpoint)

ys=C(I - A) ' Bug+(CUI—-A) " By +Ca)d = Gus + Gyd
y
max
A
l ’ l
u | _____
P 3
1, i
A :
’ I I
@ | o
: ‘ :
@ : 1
umin [~ A~ ~"~~>"=======7= A r==---
1 2 1
I 7’ I
: ) :
| ymin |
I I
M M o
umin Us Umax
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Examples of steady-state optimization feasible regions

Stable system with 2 MVs and 2 CVs (two setpoints)

ys=C(I - A) ' Bug+(CUI—-A) " By +Ca)d = Gus + Gyd
A
i i
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Examples of steady-state optimization feasible regions

Stable system with 2 MVs and 3 CVs (two setpoints)

ys=C(I - A) ' Bug+(CUI—-A) " By +Ca)d = Gus + Gyd
A
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Hard and soft constraints

Hard constraints

o In the two optimization modules, constraints on MVs are
regarded as hard, i.e., cannot be violated

o This choice comes from the possibility of satisfying them
exactly

v

Soft constraints

o In the two optimization modules, constraints on CVs are
regarded as soft, i.e., can be violated when necessary

o The amount of violation is penalized in the objective function

o This choice comes from the impossibility of satisfying them
exactly
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Steady-state optimization module: linear formulation

General formulation (LP)

min ge+q'e,+r'ug st
umxs,zs,fs -
Xs = Axs+ Bus+ Bgd

Umin = Us = Umax

Ymin — €, < Cxs + Cyd < Ymax + €5

€s=0

€,=0

Extensions

o Setpoints on some CVs can be specified with either an equality constraint or
by setting identical value for minimum and maximum value

e Often CVs are grouped by ranks
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LP steady-state optimization module: tuning

Cost function

o reR™is the MV cost vector: a positive (negative) entry in r implies that the
corresponding MV should be minimized (maximized)

@ g €RP and g € R” are the weights of upper and lower bound CV violations.
Sometimes they are defined in terms of equal concern error:

G 1 oo 1
9: = wecey’ ;= sspcgrr LT LeoP

4

@ Bounds Umax, Umin, Ymax» Ymin ¢an be modified by the operators (within
ranges defined by the MPC designer)

@ Sometimes in order to avoid large target changes from time k — 1 to time k a
rate constraint is added

—Aumax < Us(k) — us(k—1) < Aumax
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LP steady-state optimization module: numerical solution

Standard LP form

with
Umax
0 I 00 s
oug: e Cad ;
— | =5 — = — 'max — Ld — —
z=|& | E=|c0o 0 2il-e= —Goan=Cad) ,F=[1-A-Boo], f=Bad
[ 0 0-10 ™
00 0 -1

Solution algorithms [Nocedal and Wright, 2006]

Solution methods based on simplex or interior point algorithms
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Steady-state optimization module: quadratic formulation

QP formulation

o The LP formulation is quite intuitive but its outcome may be
too “jumpy”

o Sometimes a QP formulation may be preferred
: =2 2 2
min [lesll5 +lle g +lus—uspply, st
Us,Xs,E5,E ¢ Qs =&
Xs = Axs+ Bug+ deA

Umin = Us = Umax

Ymin =€, < Cxs + Cyd < Ymax + €5

where uy), is the desired MV setpoint and ||x||é =x'Qx

o Tuning is slightly more complicated, but the outcome is
usually “smoother”
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Dynamic optimization module

\

xs(k), us(k)

Dynamic
Optimization

&(k), d (k)

G. Pannocchia

Steady-state

y(k)

Optimization

Tunianarameters

Course on Model Predictive Control. Part Il - Linear MPC theory

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

23 /47



Dynamic optimization module: introduction

Agenda

@ Make a finite-horizon prediction of future CVs evolution
based on a sequence of MVs

o Find the optimal MVs sequence, minimizing a cost function
that comprises:
> deviation of CVs (and MVs) from their targets

e
> rate of change of MVs

respecting constraints on:
> MVs (always)
> CVs (possibly)

G. Pannocchia

Course on Model Predictive Control. Part Il - Linear MPC theory

24147



Dynamic optimization module: graphical interpretation

_________________________________________________________

Past Future
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Dynamic optimization module: formulation

Cost function: Q, either Ror S, Q, Q, P positive definite matrices
N-1

Vvt uge) = Y [17G) = yolly + () - gl + () - u( - DIZ+
j=0

IEGIG+ e j)IIzg] +lx(N) - x5 sit.

xt=Ax+Bu+Bgd  x(0)=2%

§=Cx+Cad  ys=Cuxs+Cad

Control problem

in Vy(%,u,€, olls
SRy [&]::4% =]

-

Umin < U(J) < Umax
—AUumax < u(j) —u(j — 1) < Aumax E
Ymin —€(J) = P(j) < Ymax +€()) .
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Dynamic optimization module: formulation

Main tuning parameters

@ Q: diagonal matrix of weights for CVs deviation from target:

2

1
9= (DECElM

R: diagonal matrix of weights for MVs deviation from target

S: diagonal matrix of weights for MVs rate of change, often called
move suppression factors

Q, Q: diagonal matrices of weights for CVs violation of
constraints

)

2

q;i= q

2
1 [ 1
DECEV| '  —ii |\ DECE!

Umax> Umin, Ymax> Ymin» AlUmax: constraint vectors
N: prediction horizon
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Dynamic optimization module: rewriting

Deviation variables

o Use the target (x;s, us):
X(j)=x(j)—xs, u(j)=u(j)—us
@ Recall that:
xs:Axs+Bus+Bdci, ys=st+Cdcf

@ Cost function becomes:

N-1
V(%066 =) [ufc(j) IErgc + 1 EDIR +12G) - @(j - DIg+
j=0

IEDIG+NEDIG | +IZMIF st

¥t=Ax+Ba  x(0)=%— xs
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Dynamic optimization module: constrained LQR

Compact problem formulation

min Vy (X, 1,€,€) s.t.
€€ -

Umin — Us = ﬂ(]) < Umax — Us
—Aumax < U(j) — 4(j — 1) < Atdmax
Ymin — Vs — €(j) < CX(j) < Ymax — Vs +€(j)

Constrained LQR formulation

With suitable definitions (shown next), we obtain a constrained LQR formulation:

N-1
min Vi (o, ta) = Y, |1%a(DIg, + Iua(DIR, +2xa(HMatia(j) | +1Xa(N) I3,
a ]=0
s.t. x} = AgXxa+ Balg, Dyug+Egx, < eg
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Dynamic optimization module: constrained LQR (cont.'d)

Augmented state and input

- i(j)
x()) 5 E 5
aiien | u()=[e(1)]
i(j 1)] al] ()

xa(j) =

o The state is augmented to write terms u(j) — u(j — 1) (in the
objective function and/or in the constraints)

o The input is augmented to write the soft output constraints

Matrices and vectors

R+S0 0
0 QO
0 0Q

Umax—Us

Us—Umin
Almax
Almax

Ymax—Ys

Ys—Ymin

Aa=[40] Ba=[700] Qa=

C'QC 0 _
0 s] Ra=

Ma=[100

0
0

1
0
0

Course on Model Predictive Control. Part II - Linear MPC theory 30 /47



Dynamic optimization module: QP solution

From constrained LQR to a QP problem

0 oo o 0
x4(0) 1
Xa() “ Ba
Xa(2) .
S = ”_ A, = .“ Ba=| A, B, = X, =Asx4(0) +Bau,
x40 | AN : -0
AN-1B, - AqBa Ba
Qa M,
R a
Qa @ Rq M,
Q= R, = .. M, = .
Qa : M,
P, Ra 0 - 0
E, 0
Dy “ eq
Dg E 2 €a
D, = . E;,= “ €,=1 -
‘D . e
B Eq 0 “
o

G. Pannocchia
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Dynamic optimization module: QP solution (cont.d)

QP problem

o1
min-u,Hu, +u,q, s.t
u; 2

Foug,<e;—Ggax,(0)
where

H,=BQ,B,+R,+B, M, +M,B, q,=B,Q,+M,)A,x,(0)
F,=D,+E,B, G,=E,A,

Observations

@ Both the linear penalty and constraint RHS vary linearly with the current
augmented state x,(0), while all other terms are fixed

@ QP solvers are based on Active-Set Methods or Interior Point Methods
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Feedback controllers synthesis from open-loop
controllers: the receding horizon principle

A quote from [Lee and Markus, 1967]

One technique for obtaining a feedback controller synthesis from
knowledge of open-loop controllers is to measure the current control
process state and then compute very rapidly for the open-loop control
function.

The first portion of this function is then used during a short time interval,
after which a new measurement of the process state is made and a new
open-loop control function is computed for this new measurement.

The procedure is then repeated.
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Optimal control sequence and closed-loop
implementation

The optimal control sequence

o The optimal control sequence u?, is in the form

ug =1 2°0),8°M), ..., & (N =1),€(0),€Q), .., €N = 1),€(0),€(1), ..., €(N = 1)

iy € €

o The variables € and € are present only when soft output constraints are used

Closed-loop implementation

@ Only the first element of the optimal control sequence is
injected into the plant: u(k) = i°(0) + u,(k)
o The successor state is predicted using the estimator model

£ (k+1) = A%(k) + Bu(k) + Byd(k)

d (k+1) =d(k)
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Linear MPC: summary

Overall algorithm

@ Given predicted state and disturbance (£~ (k), d- (k)) and output
measurement y(k), compute filtered estimate:
%(k) = 27 (k) + Ly (y(k) - Cx~ (k) - Cad ™~ (K)),
d(k) =d= (k) + La (y(k) — Cx~ (k) - Cad (k)
@ Solve Steady-State Optimization problem and compute targets
(x5(k), us(k))
© Define deviation variables: X(0) = X(k) — us(k),
%(—1) = u(k — 1) — us(k), and initial regulator state x,(0) = [
0

%(0)
ac-1 |
Solve Dynamic Optimization problem to obtain @
@ Inject control action u(k) = i1°(0) + u; (k). Predict successor state
fc: (k+1) = 4}2(k) + Bu(k) + Byd (k) and disturbance
d (k+1)=d(k).Setk—k+1andgoto 1

Course on Model Predictive Control. Part II - Linear MPC theory
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General formulation of an optimization problem

The three ingredients

@ x €R", vector of variables

o f:R" — R, objective function

e ¢:R" — R™, vector function of constraints that the variables
must satisfy. m is the number of restrictions applied

The optimization problem

ci(x)=0 Vie&
ci(x)=0 Vie g

min f(x) subject to {
xeR”

&, #: sets of indices of equality and inequality constraints, respectively
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Constrained optimization: example 1

min x; + X s. t. x%+x§—2=0

Standard notation, feasibility region and solution

2

o In standard notation: f(x) = x1 + X2, £ = @, & = {1},
c1(x) :xf+x§—2

e Feasibility region: circle of radius v/'2, only the border

@ Solution: x* = [-1,-1]T

Observation

1 -2 1
Vfx*) = H Ve (x*) = [_2] = Vf(x") =—§Vcl(x*)
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Constrained optimization: example 2

min xj + X s.t.2—xf—x§20

Standard notation, feasibility region and solution

o In standard notation: f(x) = x1 + x2, £ = {1}, £ = @,
c(x)=2- (xf 4 x%)

e Feasibility region: circle of radius v/2, including the -
interior \ \

@ Solution: x* = [-1,-1]T

Observation

1 2 1
Vf(x") = H Ve (x*) = [2] = Vfx") = EVcl(x*)
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Constrained optimality conditions (KKT)

Lagrangian function

LxD=f)- Y Aicix)
i€e6US

y

Karush-Kuhn-Tucker optimality conditions

o If x* is alocal solution to the standard problem, there exists a
vector 1* € R” such that the following conditions hold:

VL A") =0

ci(x*)=0 forallie&

ci(x*)=0 forallie.#

Af=0 forallie.#
Afei(x*)=0 forallieu.y

o The components of 1* are called Lagrange multipliers
o Notice that a multiplier is zero when the corresponding
constraint is inactive
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Linear programs (LP) problems

LP in standard form

minc’ x subjectto Ax=b, x=0
X

where: ce R", xe R", Ae R™" beR™ and rank(A) = m

v

Optimality conditions

@ Lagrangian function: £ (x,7,s) =cTx—nT(Ax-b)—sTx

o If x* is solution of the linear program, then:

ATn*+s* =¢
Ax* =b
x*=0

s¥=0

* _k .
x;s; =0, i=12,...n
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LP: the simplex method

The “base points”

A point x € R" is a base point if
@ Ax=bandx=0

@ Atmost m components of x are nonzero

@ The columns of A corresponding to the nonzero elements are - 3
linearly independent ©

Fundamental aspects of the simplex method

@ Base points are vertices of the feasibility region

@ The solution is a base point

o The simplex method iterates from a base point xj to another one xj., and
stops when all components of s; are nonnegative

@ When a component of s; is negative, a new base point xx; in which the
corresponding element of xi. is nonzero is selected
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Quadratic Programming (QP)

Standard form

1
min-x"Gx+x"d
x 2
subject to:

aiszbi, ieé&

alx=b;, ies

where G € R"™" is symmetric (positive definite), d € R", b € R", and
a;eR" forallieSu.¥#

The active set

| A

Ax*)={iegu.I:al x* =b;}
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Quadratic Programming (QP) problems (2/2)

Lagrangian function

1
LN =-xTGx+x" - > /li(aiTx—b,-)
2 €809

v

Optimality conditions (KKT)

Gx*+d- ) Aa;=0
iesd (x)

I'x*=b;,  forallieo(x*)

ajx*>b;, forallie g\ o/ (x*)
A7 =0, forallie Nt (x*)

a
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Active set methods for convex QP problems

Fundamental steps

@ Given a feasible xj, we evaluate its active set and build the
matrix A whose row are {a]}, i € o (x;)

@ Solve the KKT linear system

G AT
A 0

d+ Gxp
Axp—b

—Pk
Ak

Q@ If|pkll < p, checkif )L;f‘ =0 for all i € o/ (x). If so, stop.

@ If a multiplier /1;‘ < 0 for some i € &/ (xy), remove the i—th
constraint from the active set.

@ If|Ipkll > p, define xy4+1 = Xk + @ pi, where ay is the largest
scalar in (0, 1] such that no inequality constraint is violated.
When a blocking constraint is found, it is included in the new
active set «f (Xr41)

Course on Model Predictive Control. Part II - Linear MPC theory 44 /47



Nonlinear programming (NLP) problems via SQP
algorithms

Nonlinear programming (NLP) problems

mxin fx) s.t.

ci(x)=0 ie&
ci(x)=0 ied

“Sequential Quadratic Programming” (SQP) approach

1
n’%}cngpgwkpk+Vf(xk)Tpk s.t.

Vci(xk)Tpk+Ci(xk) =0 ie&

Vci(xk)Tpk+ci(xk) >0 ieg

Course on Model Predictive Control. Part Il - Linear MPC theory 45/ 47



References I

E.J. Davison and H. W. Smith. Pole assignment in linear time-invariant multivariable systems with
constant disturbances. Automatica, 7:489-498, 1971.

B. A. Francis and W. M. Wonham. The internal model principle of control theory. Automatica, 12:
457-465, 1976.

H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. John Wiley & Sons, 1972.
E. B. Lee and L. Markus. Foundations of Optimal Control Theory. John Wiley & Sons, New York, 1967.

P. Lundstrém, J. H. Lee, M. Morari, and S. Skogestad. Limitations of dynamic matrix control. Comp.
Chem. Eng., 19:409-421, 1995.

U. Maeder, E Borrelli, and M. Morari. Linear offset-free model predictive control. Automatica, 45(10):
2214-2222, 2009.

K. R. Muske and T. A. Badgwell. Disturbance modeling for offset-free linear model predictive control. J.
Proc. Contr.,, 12:617-632, 2002.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, second edition, 2006.

G. Pannocchia. Robust disturbance modeling for model predictive control with application to
multivariable ill-conditioned processes. J. Proc. Cont., 13:693-701, 2003.

G. Pannocchia and A. Bemporad. Combined design of disturbance model and observer for offset-free
model predictive control. IEEE Trans. Auto. Contr., 52(6):1048-1053, 2007.

G. Pannocchia and J. B. Rawlings. Disturbance models for offset-free model predictive control. AIChEJ.,
49:426-437, 2003.

Course on Model Predictive Control. Part IT - Linear MPC theory 46 / 47



References II

M. R. Rajamani, J. B. Rawlings, and S. J. Qin. Achieving state estimation equivalence for misassigned
disturbances in offset-free model predictive control. AIChE J., 55(2):396-407, 2009.

J. B. Rawlings, E. S. Meadows, and K. R. Muske. Nonlinear model predictive control: a tutorial and
survey. In ADCHEM Conference, pages 203-214, Kyoto, Japan, 1994.

H. W. Smith and E. J. Davison. Design of industrial regulators. Integral feedback and feedforward
control. Proc. IEE, 119(8):1210-1216, 1972.

Course on Model Predictive Control. Part Il - Linear MPC theory 47 1 47



	Estimator module design for offset-free tracking
	Steady-state optimization module design
	Dynamic optimization module design
	Closed-loop implementation and receding horizon principle
	Quick overview of numerical optimization

