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Abstract— Recent studies have proposed computational 

models for a functional brain-heart interplay (BHI) assessment 

based on electroencephalography (EEG). Nevertheless, the role 

of the EEG electrical reference on such BHI estimates has not 

been investigated yet. Here we present a pilot study assessing 

BHI in 4 minutes resting-state in 10 healthy subjects through 

methods including heartbeat-evoked potentials (HEP) and 

oscillations, Maximal Information Coefficient, and our recently 

proposed model based on Synthetic Data Generation (SDG). 

EEG signals were re-referenced to the Cz channel, common 

average, mastoids, and Laplacian. Results for EEG power in the 

α band indicate that the most significant differences between 

BHI methods are with the Laplacian reference while a higher 

agreement exists between HEP and SDG approaches.  

I. INTRODUCTION 

Functional brain-heart interplay (BHI) continuously 

affects bodily and central functions [1]. The importance of a 

proper BHI assessment is directly linked to emerging evidence 

on the active role of the heart to cognition and associated 

disorders [1]–[4]. From a methodological viewpoint, BHI 

estimates may be gathered using simultaneous 

Electroencephalogram (EEG) and Heart Rate Variability 

(HRV) recordings to compute  heartbeat-evoked potentials 

(HEP) [5]. Further BHI assessments include heartbeat-evoked 

oscillations (HEO) [7], functional linear or nonlinear 

correlation measurements between time-varying EEG and 

HRV components, such as Maximal Information Coefficient 

(MIC) [8], and the coupling estimation from computational 

models for EEG and HRV Synthetic Data Generation (SDG) 

that are mathematically combined to estimate the directional 

strength [9]. In this frame, HRV-derived powers within the 

high and low frequency bands may be used for the estimation 

of vagal and sympathovagal activities, respectively [6].  

While EEG electrical reference may strongly affect EEG-

based markers [10], its impact on functional BHI assessment 

has not been investigated yet. To this end, in this preliminary 

study we investigate group-wise BHI changes from SDG, 

HEP, HEO, and MIC methods across four commonly used 

EEG-referencing options including the Cz electrode, common 

average, mastoids average, and Laplacian method [11].  

II. MATERIALS AND METHODS 

A. Data acquisition and processing 

High-density 128 channels EEG (Electrical Geodesics, 

Inc) and one-lead ECG were gathered from 10 healthy young 
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adults during a 4-minute resting state. Data were sampled at 

500 Hz and referenced to the Cz channel.  

All signals were bandpass filtered between 0.5-45 Hz. On 

the EEG series, a wavelet-enhanced independent component 

analysis was performed to remove large movements and 

cardiac field artefacts. Channels located on the face and neck 

were not considered for further analysis. EEG channels were 

considered corrupted if the area under the curve exceeded 3 

standard deviations of all channels mean, or if the weighted-

by-distance correlation with their neighbors was below R2 = 

0.6. Corrupted channels were replaced using a weighted-by-

distance interpolation of neighbors. EEG data is then re-

referenced using 4 methods: Cz electrode, Common Average, 

Mastoids Average or Laplacian Method [11]. A subset of 64 

channels were selected for this study according to the 10-10 

system. EEG α-band series (8-12 Hz) are computed using FFT 

algorithm within 2s time windows with 50% overlap and 0.5 

Hz step. Electrocardiogram processing includes automatic R-

peak detection using a template correlation approach with a 

subsequent visual inspection and eventual correction to derive 

HRV series. Series of high-frequency power (HRV-HF within 

0.15-0.4 Hz) are computed from HRV series using an adapted 

Wigner-Ville distribution [12]. 

B. Brain-Heart Interplay Assessment 

Functional BHI was quantified through the following 

approaches: 

1) Synthetic Data Generation (SDG) model assesses bi-

directional interplay between EEG oscillations and HRV [9]. 

Here the interplay is computed from HRV-HF to EEG α-band 

and its time-varying dynamics was averaged for further 

analysis. 

2) Heartbeat-evoked potential (HEP) is the neural response 

triggered by each heartbeat [5]. For each subject, HEP is 

computed by averaging EEG epochs within the 200-400ms 

interval with respect to R-peaks. Time-varying dynamics is 

condensed by averaging for further analysis. 

3) Heartbeat-evoked oscillations (HEO) similarly to HEP, 

EEG oscillations were locked to the R-peak as proposed in [7]. 

The evoked oscillations were studied in  the α-band. EEG 

epochs were locked to the R-peak between 200-400 ms, with 

relative change baseline respect -300 to -200 ms interval. 

Time-varying dynamics is averaged for further analysis. 

4) Maximal information coefficient (MIC) aims to find 

linear/non-linear functional associations between EEG power 
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and HRV series [4], [8]. In this study, the coefficient is 

computed between the EEG α-band and HRV-HF time series. 

C. Group-wise statistics and correlation analysis 

Group-wise statistics included Spearman’s correlation 

coefficients computed between each pair of referencing 

methods and for each BHI estimation method per channel. P-

values are computed from the t-distribution approximation. 

Results are then summarized as the percentage of EEG  

channels (ch) with significant p-value (p<0.05), and 

correlation coefficients (r) median ± median absolute 

deviation (MAD) calculated across all EEG electrodes. 

Correlations were considered significant if ch>50% and 

median r≥0.6.  

III. RESULTS 

Z-scored, group-wise topographic maps for all referencing 

options and BHI estimates are shown in Fig 1, whereas results 

from the non-parametric correlation analysis are shown in 

Table I.  

To a qualitative extent, group-wise topographies between 

BHI estimates show high similarities between SDG and HEP 

methods for all references (see Fig 1). Moreover, while MIC 

seems to be associated with heterogeneity between reference 

methods, Laplacian reference shows the most significant 

differences between references and estimation methods. 

Quantitatively, common average and mastoids, as well as 

common average and Cz references show similarities between 

different BHI methods (see Tab. I). 

TABLE I.  RE-REFERENCE WIITHIN BHI ESTIMATES CORRELATIONS 

 SDG HEP HEO MIC  

Cz-

Average 

ch = 91% 

r =  0.8± 0.1 

ch = 44% 

r =  0.6± 0.3 
ch = 63% 

r =  0.7± 0.2 
ch = 9% 

r =  0.2± 0.3 
Cz-

Mastoids 

ch = 47% 

r =  0.6± 0.2 

ch = 6% 

r =  0.2± 0.3 
ch = 52% 

r =  0.6± 0.2 
ch = 6% 

r =  0.2± 0.3 
Cz-

Laplacian 

ch = 38% 

r =  0.6± 0.2 

ch = 22% 

r =  0.4± 0.2 
ch = 19% 

r =  0.3± 0.3 
ch = 2% 

r =  0.1± 0.2 
Average-

Mastoids 

ch = 89% 

r =  0.8± 0.1 

ch = 53% 

r =  0.7± 0.1 
ch = 70% 

r =  0.7± 0.2 
ch = 16% 

r =  0.3± 0.2 
Average-

Laplacian 

ch = 39% 

r =  0.6± 0.2 

ch = 33% 

r =  0.6± 0.2 
ch = 19% 

r =  0.3± 0.3 
ch = 5% 

r =  0.1± 0.3 
Mastoids-

Laplacian 

ch = 30% 

r =  0.5± 0.2 

ch = 16% 

r =  0.3± 0.2 
ch = 20% 

r =  0.3± 0.3 
ch = 5% 

r =  0.1± 0.3 
Bold indicates significant outputs (ch>50% and r≥0.6) 

IV. DISCUSSION 

In this preliminary study we reported on the role of EEG 

electrical reference for a functional BHI assessment. Our 

findings suggest that EEG electrical reference significantly 

influences the quantification of functional BHI. Particularly, 

while the Laplacian reference strongly biases the BHI 

estimation, the Cz, common average, and mastoids average 

references show consistency for BHI estimates from SDG and 

HEP. While the MIC shows low correlations between 

reference methods, HEO shows good correlations but 

different topography between references.  

Indeed, further data is needed to investigate the role of 

EEG reference over different experimental tasks, different 

EEG frequency bands, and with a larger set of subjects. 

Different methods for BHI estimation are likely to measure 

different functional activities of the underlying physiological 

processes. Although preliminary, these findings highlight the 

important role of EEG referencing choice for BHI estimation. 

 

Fig 1. Brain-Heart Interplay estimates (group median and z-scored, for 

visualization purposes only). AU: Arbitrary Units 
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