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Abstract—Background: Multifractal analysis of human heart-
beat dynamics has been demonstrated to provide promising
markers of Congestive Heart Failure (CHF). Yet, it crucially
builds on the interpolation of RR interval series, which has been
generically performed with limited links to CHF pathophysiology.

Objective: We devise a novel methodology estimating multifrac-
tal autonomic dynamics from heartbeat-derived series defined in
the continuous time. We hypothesize that markers estimated
from our novel framework are also effective for mortality
prediction in severe CHF.

Methods: We merge multifractal analysis within a methodolog-
ical framework based on inhomogeneous point process models of
heartbeat dynamics. Specifically, wavelet coefficients and wavelet
leaders are computed over measures extracted from instanta-
neous statistics of probability density functions characterizing
and predicting the time until the next heartbeat event occurs.
The proposed approach is tested on data from 94 CHF patients,
aiming at predicting survivor and non-survivor individuals as
determined after a 4 years follow up.

Results and Discussion: Instantaneous markers of vagal and
sympatho-vagal dynamics display power-law scaling for a large
range of scales, from ' 0.5s to ' 100s. Using standard SVM algo-
rithms, the proposed inhomogeneous point-process representation
based multifractal analysis achieved the best CHF mortality
prediction accuracy of 79.11 % (sensitivity 90.48%, specificity
67.74%).

Conclusion: Our results suggest that heartbeat scaling and
multifractal properties in CHF patients are not generated at the
sinus-node level, but rather by the intrinsic action of vagal short-
term control and of sympatho-vagal fluctuations associated with
circadian cardiovascular control, especially within the VLF band.
These markers might provide critical information in devising a
clinical tool for individualized prediction of survivor and non-
survivor CHF patients.

Index Terms—Multifractal analysis, Point Process, Heart Rate
Variability, Wavelet coefficients, Wavelet leaders, Congestive
Heart Failure, Autonomic Nervous System.
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I. INTRODUCTION

Nonlinear dynamics of human cardiovascular oscillations
has long been recognized throughout the past two decades [1]–
[3]. In fact, because of the multiple dynamical interplay with
other physiological systems (e.g., endocrine, neural, and respi-
ratory), as well as multiple biochemical processes, combined
sympathetic and vagal stimulations on heart rate control are
not simply additive [1]. Consequently, standard estimates from
heartbeat dynamics defined in the time and frequency domains
[4], which intrinsically assume that the magnitude of cardiac
responses is proportional to the strength/amplitude of the
autonomic stimuli, need complementary nonlinear/multiscale
metrics (see [2], [4]–[6] and references therein for reviews).
Among others, fractal theory has been giving a major con-
tribution in understanding complex cardiovascular dynamics,
especially involving nonlinear cardiovascular control and re-
lated autonomic nervous system (ANS) activity [2], [5], [7]–
[11]. Recently, a robust and efficient procedure relying on the
use of multiscale representation and wavelet leaders, has been
proposed to conduct multifractal analysis [10] and tested on
heartbeat series [8], [11].

A paradigmatic clinical application of these metrics refers
to severe congestive heart failure (CHF) [9], [12]. Indeed,
nonlinear measures derived from bispectral, entropy, and non-
Gaussian analyses have been proven effective in discerning
healthy subjects from CHF patients at a group-wise level [2],
[4], [5], [12]–[17]. Also in CHF patients, departures from
Gaussianity were used to evaluate increased mortality risk [9],
and compared against fractal exponent [18]. Leveraging on
the so-called cardiovascular fractal complexity at many spatial
and temporal scales, multifractal analyses were successfully
employed to model ANS regulatory actions and related tem-
poral fluctuations in CHF heartbeat dynamics [2], [4], [5],
[19], [20]. Additionally, in discerning the healthy from CHF
patients, Dutta [21] reported on the dependency of parameters
on multifractal spectra, whereas Galaska et al. [22] pointed on
advantages of multifractal detrended fluctuation analysis.

Nevertheless, several limitations can be pointed out in
dealing with current multiscale approaches: i) the intrinsic
discrete nature of the unevenly sampled R-R interval series
can lead to estimation errors; considering the series as inter-
events does not allow for matching time scales, may be
missing intrinsic generative properties as reflected in complex
dynamics; ii) the application of preliminary interpolation pro-
cedures could affect complexity estimates, with a bias from the
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Acronym
ANS Autonomic Nervous System
CHF Congestive Heart Failure
ECG Electrocardiogram
LF Low Frequency

LOO Leave one out
HF High Frequency
HR Heart Rate
NS Non-Survivors

PDF Probability Density Function
RFE Recursive Feature Elimination
SV Survivors

SVM Support Vector Machine
VLF Very Low Frequency

specific interpolation function (e.g., linear, polynomial, etc.);
iii) multifractal analysis has always been performed over series
of heartbeat dynamics exclusively; therefore it is unknown
whether scale-free properties arise from the nonlinear/complex
interactions between sympathetic and parasympathetic activity
at the level of the sinoatrial node (as thoroughly reported
in [1]), or whether there are already intrinsic multifractal
properties in each autonomic dynamics per se; iv) specifically
for CHF, an effective prediction of mortality risk, as well
as risk stratification, at a single-subject level with enough
accuracy for a direct application in clinical practice [9], [11],
[23], [24] is still missing.

To overcome these limitations, in this study we pro-
pose a novel methodology combining multifractal analysis
and inhomogeneous point-process models, which have been
specifically devised for cardiovascular dynamics [14], [25].
Specifically, we propose multiscale representation and the
so-called wavelet p-leaders, i.e., local `p norms of wavelet
coefficients [10], [26] of derived moments from probability
density functions (PDFs) characterizing and predicting the
time until the next heartbeat event occurs. To this extent,
we proposed the use of inhomogeneous point-processes to
effectively characterize the probabilistic generative mechanism
of heartbeat events, even considering short recordings under
nonstationary conditions [25]. The unevenly spaced heartbeat
intervals are then represented as multiscale quantities of a
state-space point process model defined at each moment in
time, thus allowing to estimate instantaneous measures without
using any interpolation method, therefore overcoming limita-
tions i) and ii). We demonstrate how to capture fluctuations of
regularity in heartbeat data by scanning all details finer than
the chosen analysis scale [8], [11]. To compare our method
against a more standard approach, we also investigate the
use of a non-informative standard spline-based interpolation.
Finally, we here study multiscale properties of heartbeat-
derived series with high resolution in time, including long-
term instantaneous mean heart rate, standard deviation, and
low-frequency (LF) and high-frequency (HF) spectral powers,
which corresponds to time-varying vagal activity estimates [4],
thus overcoming limitation iii). Application of these metrics is
then performed on experimental data gathered from 94 CHF
patients by evaluating the recognition accuracy in predicting
survivor and non-survivor patients after a 4 years follow
up, demonstrating how to overcome limitation iv). Of note,
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dynamics; ii) the application of preliminary interpolation pro-
cedures could affect complexity estimates, with a bias from the
specific interpolation function (e.g., linear, polynomial, etc.);
iii) multifractal analysis has always been performed over series
of heartbeat dynamics exclusively; therefore it is unknown
whether scale-free properties arise from the nonlinear/complex
interactions between sympathetic and parasympathetic activity
at the level of the sinoatrial node (as thoroughly reported
in [1]), or whether there are already intrinsic multifractal
properties in each autonomic dynamics per se; iv) specifically
for CHF, an effective prediction of mortality risk, as well
as risk stratification, at a single-subject level with enough
accuracy for a direct application in clinical practice [8], [10],
[21], [22] is still missing.

To overcome these limitations, in this study we propose
a novel methodology combining multifractal analysis and
inhomogeneous point-process models, which have been specif-
ically devised for cardiovascular dynamics [13], [23]. Specif-
ically, we propose multiscale representation and the so-called
wavelet p-leaders, i.e., local `p norms of fractionally integrated
wavelet coefficients [9], [24] of derived moments from prob-
ability density functions (PDFs) characterizing and predicting
the time until the next heartbeat event occurs. To this extent,
we proposed the use of inhomogeneous point-processes to
effectively characterize the probabilistic generative mechanism
of heartbeat events, even considering short recordings under
nonstationary conditions [23]. The unevenly spaced heartbeat
intervals are then represented as multiscale quantities of a
state-space point process model defined at each moment in
time, thus allowing to estimate instantaneous measures without
using any interpolation method, therefore overcoming limita-
tions i) and ii). We demonstrate how to capture fluctuations of
regularity in heartbeat data by scanning all details finer than
the chosen analysis scale [7], [10]. To compare our method
against a more standard approach, we also investigate the
use of a non-informative standard spline-based interpolation.
Finally, we here study multiscale properties of heartbeat-
derived series with high resolution in time, including long-
term instantaneous mean heart rate, standard deviation, and
low-frequency (LF) and high-frequency (HF) spectral powers,
which corresponds to time-varying vagal activity estimates [4],
thus overcoming limitation iii). Application of these metrics is
then performed on experimental data gathered from 94 CHF
patients by evaluating the recognition accuracy in predicting
survivor and non-survivor patients after a 4 years follow
up, demonstrating how to overcome limitation iv). Of note,
preliminary results associated with this study were presented
in [25], in which we have shown the impact of several
interpolation strategies on wavelet leader-based multiscale
representations applied to heartbeat series. We demonstrated
that such representations may be biased by the interpolating
method employed (e.g., linear, spline, etc.). Therefore, more
informative ad-hoc physiologically plausible models, such
as the inhomogeneous point-process [13], [23], are strongly
recommended.
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Fig. 1. Overall data processing chain.

II. MATERIALS AND METHODS

In this Section, we provide theoretical and methodological
details on the proposed multifractal approach for inhomo-
geneous point-processes of heartbeat dynamics. The overall
processing chain is shown in Fig. 1. Specifically, automatic
R-peak detection is performed on artifact-free ECG series
from each CHF patient enrolled in this study. Recognition
and correction of eventual algorithmic (e.g., R-peak mis-
detection) and/or physiological artifacts (e.g., ectopic beats)
was performed through our recently proposed log-likelihood
point process-based method [26]. Then, for each RR interval
series from each subject, a continuous PDF in time, in the
form of inverse-Gaussian distribution, is estimated for each
heartbeat event considering the long-term past events. From
such continuous PDFs, multiscale representations of a number
of instantaneous estimates defined in the time (e.g., mean heart
rate and standard deviation) and frequency domains (e.g., LF
and HF powers) are derived. Finally, these and further features
are fed into a standard Support Vector Machines (SVM) to
predict mortality in CHF patients at a single-subject level.
Validation was performed through a leave-one-out procedure.
Mathematical details of each processing stage follow below.

A. Experimental Data

24-hour Holter ECG recordings from a cohort of 94 patients
suffering from CHF were made available by the Nagoya
Hospital or Fujita Health University Hospital, Japan. Of these
patients, 31 died within 33 ± 17 months (range, 1-59 months)
after Hospital discharge, whereas 61 survived for a longer
time. The former group is referred to as non-survivors (NS)
and the latter as survivors (SV). Further clinical details can
be found in [8]. For each patient, R peak arrival times
were carefully extracted from 24-hour Holter ECG recordings.
Missing data and outliers stemming from atrial or ventricular
premature complexes were handled by preprocessing auto-
mated tools (see Section II). All RR interval series were also
checked by visual inspection analysis. Subjects with sustained
tachyarrhythmias were excluded from the study.

Fig. 1. Overall data processing chain.

preliminary results associated with this study were presented
in [27], [28], in which a wavelet leader-based multiscale repre-
sentation was applied to instantaneous heartbeat series as well
as to instantaneous vagal activity series. Here, we significantly
expand on these results by generalizing the development of the
methodology to be suitable for generic inhomogeneous point
process-derived heartbeat dynamics series defined in contin-
uous time, as well as by increasing the number of patients
involved in the experiment, and accounting for their clinical
characteristics. Furthermore, the scale dependent features re-
sulting from the proposed methodology have been exploited
through nonlinear support vector machines and related feature
selection procedures.

II. MATERIALS AND METHODS

In this Section, we provide theoretical and methodological
details on the proposed multifractal approach for inhomo-
geneous point-processes of heartbeat dynamics. The overall
processing chain is shown in Fig. 1. Specifically, automatic
R-peak detection is performed on artifact-free ECG series
from each CHF patient enrolled in this study. Recognition
and correction of eventual algorithmic (e.g., R-peak mis-
detection) and/or physiological artifacts (e.g., ectopic beats)
was performed through our recently proposed log-likelihood
point process-based method [29]. Then, for each RR interval
series from each subject, a continuous PDF in time, in the
form of inverse-Gaussian distribution, is estimated for each
heartbeat event considering the long-term past events. From
such continuous PDFs, multiscale representations of a number
of instantaneous estimates defined in the time (e.g., mean heart
rate and standard deviation) and frequency domains (e.g., LF
and HF powers) are derived. Finally, these and further features
are fed into a standard Support Vector Machines (SVM) to
predict mortality in CHF patients at a single-subject level.
Validation was performed through a leave-one-out procedure.
Mathematical details of each processing stage follow below.

A. Experimental Data

24-hour Holter ECG recordings from a cohort of 94 patients
suffering from CHF were made available by the Fujita Health
University Hospital, Japan. Of these patients, 31 died within
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33± 17 months (range, 1-49 months) after hospital discharge,
whereas 61 survived for a longer time. The former group is
referred to as non-survivors (NS) and the latter as survivors
(SV). Further clinical details can be found in [9]. For each
patient, R peak arrival times were carefully extracted from
24-hour Holter ECG recordings. Missing data and outliers
stemming from atrial or ventricular premature complexes were
handled by our preprocessing automated tools [29]. All RR
interval series were also checked by visual inspection analysis.
Subjects with sustained tachyarrhythmias were excluded from
the study. Baseline clinical characteristics of the patients
enrolled in this study are shown in Table I. The study was
approved by the ethics committee of Fujita Health University
and conformed to the principles outlined in the Declaration of
Helsinki. All patients provided written informed consent.

TABLE I
BASELINE CLINICAL CHARACTERISTICS OF THE PATIENTS

Survivors (n=63) Non Survivors (n=31) p-val
Age [years] 66.5 ± 10 71 ± 8 >0.05
Sex [M/F] 39/24 17/14 >0.05

NYHA:
class II 9(15.5%) 3(9.7%) >0.05

class III-IV 54(84.5%) 28(90.3%) >0.05
Ischemia 15 (25.8%) 15(48.4%) <0.05

LVEF [%] 36.5 ± 11.5 40 ± 10 >0.05
BNP [pg/mL] 483.5 pm 322.5 960.0± 490.0 <0.01
BUN [mg/dL] 18.5± 5.5 25.0 ± 8.0 <0.01

Cr [mg/dL] 0.8± 0.3 1.0± 0.4 <0.05
Beta-blocker 21(36.2%) 7(22.6%) >0.05

Hb 12.25± 1.25 10.9 ± 1.9 <0.05
ACE/ARB 25(43.1%) 16(51.6%) >0.05

Loop diuretic 26(44.8%) 21(67.8%) <0.05
Spironolactone 14(24.1%) 13(41.9%) <0.05

VPBh 1.062± 1.062 1.333± 1.333 >0.05
Uncorrected p-values calculated from Mann-Whitney Non-parametric tests for

continuous variables and Chi-square test for other variables.
NYHA: New York Heart Association functional class; LVEF: Left ventricular ejection
fraction; ACE: angiotensin-converting enzyme inhibitor; ARB: angiotensin II receptor
blocker; BNP: brain natriuretic peptide; BUN: blood urea nitrogen; Cr: creatinine; Hb:

Hemoglobin; VPBh: Ventricular premature beats per hour.

B. Multiscale analysis

Self-similarity and wavelets: Classical multiscale analysis
relies on the estimation of wavelet coefficients, which are
obtained by comparing the cumulated sum of a series of RR
intervals {RR} to the collection {ψj,k(t) = 2−jψ(2−jt −
k)}(j,k)∈N2 of dilated and translated templates of a mother
wavelet ψ via inner products, d{RR}(j, k) = 〈ψj,k|{RR}〉
(see, e.g., [30] for details on wavelet transforms).

For self-similar processes {RR} such as fractional Brow-
nian motion, which are commonly used models for heartbeat
dynamics series [19], the so-called wavelet structure functions
S(q, j) display power laws with respect to scale j and order
of sample moments q:

S(q, j) =

nj∑
k=1

|d{RR}(j, k)|q ' Kq2
jqH (1)

with nj the number of d{RR}(j, k) available at scale 2j . The
Hurst parameter H and the function S(q = 2, j) are directly

related to the distribution of energy along frequencies (i.e., to
the Fourier spectrum or autocorrelation of {RR}). They are
hence linear features of {RR} that can be efficiently estimated
using wavelets [8], [10].

Multifractal models and wavelet p-leaders: It has been
demonstrated that self-similar models describe only parts of
the scaling properties in HRV data and that multifractal
models could provide more complete descriptions (see, e.g.,
[2], [8]). These models essentially imply that the linear scaling
exponents qH in (3) should be replaced with a more flexible,
concave function ζ(q), and that the parameter H alone can no
longer account for all scaling properties in HRV data. To cor-
rectly estimate ζ(q), wavelet coefficients must be replaced with
non-linear multiscale quantities that sense the local regularity
fluctuations in data across all finer scales [10]. In this study, we
employ the wavelet p-leaders, which have recently renewed
the state-of-the-art for the estimation of multifractal models
[26], for the primitive {RR}′(t) =

∫ t{RR}(s)ds of {RR}.
They are defined as `p-norms, computed in a narrow time
neighborhood over all finer scales, of the wavelet coefficients
of {RR}′,

L
(p)
{RR}′(j, k) =

(
2j
∑

λ′⊂3λj,k

|d{RR}′(λ′)|p2−j
′
)1/p

, (2)

with λj,k = [k2j , (k+1)2j) and 3λj,k =
⋃
m∈{−1,0,1} λj,k+m.

The parameter p > 0 must be chosen to ensure minimal
regularity constraints (cf. [26] and references therein for details
on multifractal analysis, beyond the scope of this contribution).
Below, we use p = 1, which have been shown to yield lowest
variance [26]. It can been shown that the multifractal proper-
ties of {RR} are well described by a multiscale representation
consisting of the sample cumulants Cumm of the logarithm of
p-leaders lnL

(p)
{RR}′(j, ·) [10]

Cm(j) ≡ Cumm lnL
(p)
{RR}′(j) ' c0m + cm ln 2j . (3)

In particular, the coefficients cm are related to ζ(q) via the
polynomial expansion ζ(q) ≡∑m≥1 cmq

m/m! (and hence to
the multifractal spectrum, cf., [10] for details). Consequently,
the leading coefficients c1 and C1(j) are closely related to
H and S(2, j), respectively, and constitute linear features
associated to the autocorrelation of {RR} [8], [10], while
C2(j), C3(j) and C4(j) (the variance, skewness and kurtosis
of lnL

(p)
{RR}′(j), respectively) and c2, c3 and c4 (related to

the multifractal properties of {RR}) are nonlinear features
that capture information beyond correlation.

C. Instantaneous Autonomic Features for Multifractals

Point Process models: We model the unevenly sampled
RR interval series through inverse-Gaussian PDFs whose first-
order moment (the mean µRR(t,Ht, ξ(t)), with Ht as the
history of past RR intervals, ξ(t) the vector of the time-
varying parameters, and ξ0(t) the shape parameters of the
inverse-Gaussian) has an autoregressive formulation. Impor-
tantly, the use of an inverse Gaussian distribution f(t|Ht, ξ(t))
is physiologically motivated, as it models the integrate-and-fire
mechanism of the cardiac contraction [25]).

The inverse Gaussian is defined as:
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f(t|Ht, ξ(t)) =

[
ξ0(t)

2π(t− uj)3
] 1

2

× exp

{
−1

2

ξ0(t)[t− uj − µ(t,Ht, ξ(t))]2
µ(t,Ht, ξ(t))2(t− uj)

}
(4)

with j = Ñ(t) the index of the previous R-wave event before
time t, and:

µRR(t,Ht, ξ(t)) = γ0 +

p∑
i=1

γ1(i, t) RRÑ(t)−i (5)

where Ht = (uj ,RRj ,RRj−1, ...,RRj−p+1), ξ(t) =
[ξ0(t), γ0(t), γ1(1, t), ..., γ1(p, t)], and ξ0(t) > 0.

Since these PDFs are defined at each moment in time,
it is possible to obtain an instantaneous estimate of µRR(t)
at a very fine time scale (with an arbitrarily small bin size
∆), which requires no interpolation between the arrival times
of two beats, therefore addressing the problem of dealing
with unevenly sampled observations. This key advantage,
particularly useful when dealing with multifractality, applies
also for the derivation of spectral measures, following the
estimation of µRR(t,Ht, ξ(t)).

Model identification: We estimate the parameter vectors
ξ(t) at each time interval ∆ = 5ms using a Newton-Raphson
procedure to compute the local maximum-likelihood estimate
[25], using observations within a time window of 90s. Because
there is significant overlap between adjacent local likelihood
intervals, we start the Newton-Raphson procedure at t with
the previous local maximum-likelihood estimate at time t−∆,
where ∆ defines the time interval shift to compute the next
parameter update. We determine the optimal model order {p}
by pre-fitting the point process model goodness-of-fit to a
subset of the data. Model goodness-of-fit is based on the
Kolmogorov-Smirnov (KS) test and associated KS statistics.
The recursive, causal nature of the estimation allows to predict
each new observation, given the previous history, indepen-
dently at each iteration. The model and all its parameters
are therefore also updated at each iteration, without priors.
In other words, each test point RRk is tested against one
instance of a time-varying model trained with points {RRj}
with j < k. Autocorrelation plots are also considered to test
the independence of the model-transformed intervals. Once
the order {p} is determined, the initial model coefficients are
estimated by the method of least squares. Extensive details on
all these steps can be found in [25].

Feature selection: Our framework allows for a quantitative
characterization of autonomic features based on instantaneous
time- and frequency-domain estimations. Time-domain in-
dices are based on the first and the second order moments
of the underlying probability structure. Namely, given the
time-varying parameter set ξ(t), the instantaneous estimates
of mean µRR(t,Ht, ξ(t)), R-R interval standard deviation
σ2
RR(t,Ht, ξ(t)), mean heart rate µHR(t,Ht, ξ(t)), and heart

rate standard deviation σHR(t,Ht, ξ(t)) can be derived at each
moment in time as follows [14], [25]:

σ2
RR(t,Ht, ξ(t)) = µ3

RR(t)/ξ0(t). (6)

µHR(t,Ht,ξ(t)) = ˜µRR
−1 + ξ0(t)−1 (7)

σHR(t,Ht, ξ(t)) =

[
2 ˜µRR + ξ0(t)

˜µRR ξ0
2(t)

]1/2
(8)

Linear power spectrum estimation allows for selection of
autonomic features in the frequency domain. In particular,
given the model of µRR(t,Ht, ξ(t)), we can compute the time-
varying parametric (linear) autospectrum [14], [25] as follows:

Q(f, t) = σ2
RRH1(f, t)H1(−f, t) (9)

where H1 represents the Fourier transform of the γ1 terms (see
(5)). By integrating (9) in each frequency band, we compute
the indices within the very low frequency (VLF = 0+-
0.04 Hz), low frequency (LF = 0.04-0.15 Hz), and high
frequency (HF = 0.14-0.45 Hz) ranges, along with their
ratio (LF/HF ). In the end, the instantaneous feature set
considered for further analyses is as follows: µRR(t), ξ0(t),
σ2
RR(t), V LF (t), LF (t), HF (t), LF/HF (t). The informa-

tion about the long-term, time-varying dynamics of each given
instantaneous feature can then be summarized using a subset
of exponents ζ(2), c1, c2, c3, c4, estimated for each range of
scales 1:8, as well as a subset of multiscale representation
log2 S(2, j), C1(j), C2(j), C3(j), C4(j) for j ∈ [jm, jM ], es-
timated for each range of scales 5:19.

D. Statistical Testing and Pattern Recognition

First, from the heartbeat series, we investigated the scaling
properties and predictive value in the frame of CHF for: i)
heartbeat series as interpolated using the informative Point
Process model, i.e., µRR(t); ii) heartbeat series as interpolated
using a standard non informative Spline-based interpolation,
referred to as the Spline Interpolated time series.

The analysis is conducted using Daubechies3 wavelets.
As mentioned in Feature Selection, for each feature µRR(t),

ξ0(t), σ2
RR(t), V LF (t), LF (t), HF (t), LF/HF (t), we con-

sidered
• α set: a subset of exponents ζ(2), c1, c2, c3, c4, obtained

as local slopes estimated over 4 octaves centred at
{1.71, 3.41, 6.83, 13.7, 27.3, 54.6, 109.2, 218.5}s.

• β set: a subset of multiscale representation
log2 S(2, j), C1(j), C2(j), C3(j), C4(j) for dyadic
scales 2j ∈ [0.21, 3495]s.

We then evaluated between-group differences (NS vs.
SV) for every feature using bivariate non parametric statis-
tics (Mann-Whitney test) under the null hypothesis that the
between-subject medians of the two groups are equal.

Furthermore, we employed an automatic classification al-
gorithm based on well-known SVM in order to automati-
cally discern NS vs. SV at a single subject level. To this
extent, a multidimensional point in a given feature set was
considered an outlier if z-scores associated to its dimensions
were greater than 2.58 (i.e., p < 0.01). To assess the out-of-
sample predictive accuracy of the system, we adopted a Leave-
One-Out (LOO) procedure based on a SVM-based classifier.
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Specifically, we employed a ν-SVM (ν = 0.5) with a sigmoid
kernel function with γ = n−1, where n is equal to the number
of features. Within the LOO scheme, the training set was
normalized by subtracting the median value and dividing by
the median absolute deviation over each dimension. These
values were then used to normalize the example belonging
to the test set. During the LOO procedure, this normalization
step was performed on each fold.

In order to optimize the number of features to be used for the
NS vs. SV classification, and to provide meaningful informa-
tion for the physiopathology-related discussion of results, we
applied a support vector machine recursive feature elimination
(SVM-RFE) procedure. Such a procedure was carried out on
the training set at each LOO fold. Then, the mode of all
ranks was considered for further analyses. Note that SVM-RFE
includes a correlation bias reduction strategy into the feature
elimination procedure [31]. All analyses were performed using
Matlab (MathWorks, Natick, Massachusetts, USA) v8.4 and
an additional toolbox for pattern recognition (LIBSVM [32]).
Classification results are summarized as balanced recognition
accuracy, sensitivity and specificity.

III. RESULTS

Between SV and NS patients, there were no significant
differences with regard to age, sex, disease severity according
to New York Heart Association classification, left ventricular
ejection fraction, use of beta-blockers, angiotensin-converting
enzyme inhibitor, and number of ventricular premature beats
per hour. NS patients exhibited higher prevalence of ischemic
events, higher plasma brain natriuretic peptide, blood urea
nitrogen, and creatinine, lower hemoglobin, and were treated
more frequently with diuretics during Holter recording (see
Table I).

A. Comparison between Multifractals of Point-process and
Standard Interpolation

The wavelet coefficient-based representations log2 S(2, j)
and C1(j) (related to self-similarity) and p-leader based rep-
resentations C2(j), C3(j), C4(j) (quantifying multifractality)
for the informative point-process time series µRR(t), for non-
informative cubic spline interpolation time-series, as well as
for raw RR interval data RR, are shown in Fig. 2 as a
function of scale 2j . Scales have been translated to physical
units (seconds) using the inverse of the central frequency
of the wavelet. Because of the intrinsic ambiguity in the
unevenly sampled raw RR interval series, associated scales are
qualitatively matched using the average over RR inter-arrival
times for all NS or SV subjects, respectively. This enables
us to compare multiscale representations obtained from each
method, as functions of equivalent scales, for NS and SV
subjects. The blue shaded area indicates the finer resolution
time scales that can not be assessed for the raw RR interval
data (for the mother wavelet used here, smaller than ' 2s).

Results clearly show that the multiscale representations for
the three time series are essentially identical at large time
scales (i.e., above ' 10s), therefore not altering actual coarse
time scales. This is to be expected for the spline interpolation,
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Fig. 2. Multiscale representations for the 3 different data modeling, for SV
an NS subjects (median values ; the blue shaded areas indicate time scales
not directly available from raw RR intervals).

and validates the proposed physiologically-informative quan-
tification strategy.

The finer scales below ∼ 2s do not exist for original RR
series but can be computed for the interpolated data. Important
differences between physiologically-informative point process-
derived heartbeat series and smooth deterministic spline inter-
polated series are shown, confirming the difference in the two
approaches. For the finest two time scales of RR intervals
(∼ 2 − 10s), the scaling behaviour is broken and departs
from that observed at intermediary ≥ 10s. For these scales,
the spline interpolated time series show scaling in agreement
with coarser scales for the (linear) self-similar representations
log2 S(2, j), C1(j), but it suffers from the same drawback as
RR for C2(j), C3(j), C4(j).

In contrast, the physiologically-informative point-
process model leads to a clean continuation of the
scaling behaviour that is manifested at coarser scales
for log2 S(2, j), C1(j) as well as for the multifractal
representations C2(j), C3(j), C4(j). This is particularly
striking for C4(j), for which scaling is continued to one order
of magnitude finer times scales than what can be observed
on RR.

B. Scaling properties between CHF Survivors and Non-
Survivors

The favourable comparison of the observed scale invariance
properties for the informative point process-derived time-
series µRR(t) motivates a closer investigation of the scaling
and multifractal properties of other instantaneous estimates
provided by this model. Since S(2, j) and C1(j) quantify
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Fig. 3. Scaling and multifractal properties of physiologically-informative point process-derived series of heartbeat dynamics between SV and NS patients
with severe CHF. The blue shaded areas indicate time scales not directly available from raw RR intervals. The red shaded areas represent scales for which
statistically significant differences between SV and NS patients exist.

essentially the same information, we discard S(2, j) here and
focus on the representations C1(j), C2(j), C3(j), C4(j) for the
sake of conciseness.

Fig. 3 reports these representations (from top to bottom)
for the time series µRR(t), ξ0(t), σ2

RR(t), HF (t), LF (t),
V LF (t), LF/HF (t) (from left to right), as a function of
scale. In addition, scales for which the difference between NS
and SV is significant (Wilcoxon rank-sum p-values below the
value 0.05) are shaded in red (uncorrected p-values). Results
indicate that the time series µRR(t), ξ0(t), σ2

RR(t), HF (t)
display power law scaling from ∼ 0.5s to ∼ 82s. These scaling
properties are observed both for the NS and SV groups. For
ξ0(t), the shape parameter of inverse-Gaussian PDFs, scale
invariance appears to be perturbed for scales ∼ 2 − 10s.
Within this interval, significant discerning between SV and NS
patients with CHF are associated with multifractal representa-
tions C3(j), C4(j). This is consistent with previous evidences
reporting that parasympathetic activity affects complexity at
short and long time scales, with maximum at precisely the
range of scales ∼ 2− 10s [33].

A second, different scaling regime is observed for coarse
time scales beyond 82s, yet is apparently non-informative
for CHF clinical application, because the multiscale repre-
sentations similarly converge for NS and SV. In contrast,
the difference between NS and SV are almost systematically
significant for finer scales for the multifractal representation
C3(j), C4(j).

Importantly, such significant differences are not observed
for the original RR time series. Also, interestingly, for ξ0(t),
these scales with significant differences largely overlap with
those where scaling is observed to be perturbed.

For the time series V LF (t), LF (t) and LF/HF (t) of
instantaneous spectral measures, scale invariance in form of
power laws is evidenced exclusively for scales larger than

∼ 100s, again both for NS and SV. This indicates that the
scaling properties of combined (because of the overlap in
the LF band) instantaneous sympathetic and parasympathetic
activities can be considered a signature of slower physiological
phenomena than those observed for the other time series. This
is consistent with previous evidences reporting that sympa-
thetic activity affects complexity only at long time scales [33],
constituting best predictors of mortality following myocardial
infarct or heart failure (see [33] and references therein).

These observations suggest that it is meaningful to estimate
self-similar and multifractal exponents c1 and c2, c3, c4, re-
spectively, for scales faster than ∼ 82s for the time series
µRR(t), ξ0(t), σ2

RR(t), HF (t). Results are reported in Table
II, together with those obtained for RR for comparison with
µRR(t). The instantaneous time series µRR(t), ξ0(t), σ2

RR(t),
σ2
HR(t), HF (t) can be well described by a multifractal model

since cm 6= 0 for m ≥ 2, both for NS and SV.

As discussed above, µRR(t) and RR lead to similar results,
with the exception of c4 for which µRR(t) yields a reduction
of cross-subject variability by a factor 3 to 4. The time series
ξ0(t), σ2

RR(t) (and to a lesser extent HF (t)) are further
characterized by a long-range persistence type autocorrelation
with c1 > 0.5.

Yet, none of the exponents cm, considered individually,
can be directly translated into the clinical practice for risk
stratification between NS and SV. Consistently with the fact
that autonomic nervous system linear and nonlinear dynamics
cannot be fully explained by a single measure only, in the next
paragraph we show how to combine the aforementioned mul-
tifractal point-process measures for SV vs. NS discrimination
in CHF at a single subject level.
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TABLE II
SCALING AND MULTIFRACTAL EXPONENTS c1, c2, c3, c4 ESTIMATED
OVER SCALES [2.6, 81.9]s - MEDIAN (MED) AND MEDIAN ABSOLUTE

DEVIATION (MAD) - P-VALUES FROM MANN-WHITNEY TEST

RR NS: med (mad) SV: med (mad) p-value
c1 0.104 (0.164) 0.156 (0.171) 0.07
c2 -0.007 (0.049) 0.004 (0.054) 0.60
c3 0.007 (0.040) 0.003 (0.037) 0.68
c4 -0.045 (0.275) -0.030 (0.298) 0.33
µRR NS: med (mad) SV: med (mad) p-value
c1 0.147 (0.155) 0.200 (0.175) 0.11
c2 -0.027 (0.044) -0.019 (0.060) 0.74
c3 -0.019 (0.050) -0.007 (0.048) 0.76
c4 -0.068 (0.096) -0.030 (0.064) 0.04
ξ0 NS: med (mad) SV: med (mad) p-value
c1 0.766 (0.062) 0.744 (0.095) 0.35
c2 -0.192 (0.094) -0.133 (0.118) 0.05
c3 0.124 (0.254) 0.071 (0.207) 0.19
c4 -0.340 (0.773) -0.228 (0.423) 0.24
σ2

RR NS: med (mad) SV: med (mad) p-value
c1 0.773 (0.058) 0.732 (0.093) 0.36
c2 0.026 (0.120) -0.009 (0.098) 0.23
c3 0.016 (0.149) 0.033 (0.125) 0.91
c4 -0.109 (0.489) 0.015 (0.538) 0.33
σ2

HR NS: med (mad) SV: med (mad) p-value
c1 0.759 (0.066) 0.715 (0.096) 0.49
c2 0.016 (0.118) -0.008 (0.116) 0.24
c3 -0.017 (0.186) 0.025 (0.164) 0.71
c4 -0.155 (0.876) -0.008 (0.705) 0.23
HF NS: med (mad) SV: med (mad) p-value
c1 0.549 (0.074) 0.526 (0.105) 0.88
c2 -0.164 (0.122) -0.197 (0.130) 0.19
c3 -0.137 (0.243) -0.080 (0.252) 0.82
c4 -0.611 (0.883) -0.488 (1.449) 0.35

C. SV versus NS classification

Leveraging on the aforementioned results performed at a
group-wise level and with inferential significance only, we
moved beyond statistical analysis to automatically discern SV
from NS patients with CHF at a single-subject level. Scaling
and multifractal features of point process-derived heartbeat dy-
namics are then combined throughout a nonlinear discriminant
function, allowing therefore for a direct clinical translation.
Following the methodology description, we considered instan-
taneous dynamics of µRR(t), ξ0(t), σ2

RR(t), σ2
HR(t), V LF (t),

LF (t), HF (t), LF/HF (t), and condensed the information
about the long-term, time-varying dynamics using the α and
β sets of exponents and multiscale representations defined in
Section II-D.

Throughout the LOO-SVM procedure, prediction accuracy,
sensitivity and specificity in discerning SV vs. NS patients
were evaluated for feature sets α and β, whose results are
shown in Tables III and IV, respectively. For each scale,
these tables report the best classification accuracy using a
proper combination of features, as identified by the SVM-RFE
algorithm. Considering the two CHF classes, accuracy of 50%
is the change.

Using the subset of exponents ζ(2), c1, c2, c3, c4, an accu-
racy of 72.66 % was obtained for exponents estimated over
scales 27.3s ± 2 octaves. Nevertheless, specificity was barely
beyond the chance level (54.84%), being therefore not suitable
for an actual clinical application.

TABLE III
CLASSIFICATION PERFORMANCES IN % USING THE α SET OF EXPONENTS

ESTIMATED OVER 4 OCTAVES

Center scale (s) Accuracy Sensitivity Specificity N. Feature
1.71 63.02 46.03 80.00 3
3.41 54.05 71.43 36.67 15
6.83 58.02 79.37 36.67 28
13.7 67.90 80.95 54.84 2
27.3 72.66 90.48 54.84 30
54.6 64.52 77.42 51.61 18
109.2 57.26 72.58 41.94 2
218.5 62.90 77.42 48.39 2

Bold indicates best accuracy set.

Using the subset of multiscale representation
log2 S(2, j), C1(j), C2(j), C3(j), C4(j), best classification
accuracy of 79.11 % was obtained at scale 6.83s, with
satisfactory sensitivity of 90.48 % and specificity 67.74
%. The trend of classification accuracy as a function of
the number of features is shown in Figure 4. Particularly,
the following four features were selected as best candidate
for the prediction of survivors in patients with CHF:
log2 S(2, j), C3(j), C4(j) calculated over V LF (t), and
log2 S(2, j) calculated over LF/HF (t), at scale j = 10
(∼ 7s) at which the precise choice of interpolation (here,
using the informative point process model) has significant
impact.

TABLE IV
CLASSIFICATION PERFORMANCES IN % USING THE β SET

Scale (s) Accuracy Sensitivity Specificity N. Feature
0.21 60.93 44.44 77.42 15
0.43 67.95 74.60 61.29 39
0.85 68.66 85.71 51.61 28
1.71 67.90 80.95 54.84 29
3.41 66.26 84.13 48.39 29
6.83 79.11 90.48 67.74 4
13.7 63.06 80.95 45.16 12
27.3 71.86 88.89 54.84 14
54.6 58.22 80.95 35.48 17
109 64.70 77.78 51.61 11
218 63.36 42.86 83.87 1
437 71.07 87.30 54.84 31
874 61.75 42.86 80.65 1

1748 67.13 76.19 58.06 21
3495 77.44 96.83 58.06 31

Bold indicates best accuracy per feature set.

Merging the proposed multifractal features of α and β sets
did not straightforwardly improve the aforementioned best
classification accuracy of 79.11%.

IV. DISCUSSION AND CONCLUSION

We proposed a novel methodology combining multifractal
analysis with instantaneous (time resolution of 5ms) physio-
logical estimates derived from inhomogeneous point-process
models of cardiovascular dynamics. As previous evidences
demonstrated that autonomic nervous system dynamics affects
heartbeat complexity at all scales [33], we hypothesized that
our methodology would provide a good predictor of mortality
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Fig. 4. Recognition accuracy in discerning NS vs. SV patients as a function
of the feature rank estimated through the SVM-RFE procedure, considering
feature set β comprising log2 S(2, j), C1(j), C2(j), C3(j), C4(j) at scale
6.83s.

following congestive heart failure with single-patient specific
prognostic capabilities.

All instantaneous series derived from our physiologically-
informative model show a clear scaling behaviour at
coarser scales over all indices of self-similarity and
multifractality. Conversely, considering multifractal indices
C2(j), C3(j), C4(j) for the scales ∼ 2 − 10s, the scaling
behaviour of spline-interpolated series of RR intervals is
broken and departs from the behaviour observed at scales
≥ 10s. This is particularly evident for multifractal index
C4(j). Note that self-similar models describe only parts of
the scaling properties of the heartbeat interval series, whereas
multifractal models provide a more comprehensive description
(e.g., [2], [8]). Therefore, we demonstrated that scaling and
multiscale representations of RR interval series is biased by
the interpolating method employed (e.g., linear, spline, etc.).
Therefore, more informative ad-hoc physiologically plausible
models, such as the inhomogeneous point-process [14], [25],
are strongly recommended. This result is in agreement with
our previous investigations [14], [25] demonstrating that the
use of an inverse-Gaussian distribution, characterized at each
moment in time, inherits both physiological (the integrate-and-
fire initiating the cardiac contraction [25]) and methodological
information.

Additionally, we found that series of purely vagal dynamics,
i.e., HF (t), display power law scaling from ∼ 0.5s to ∼ 82s,
whereas series of sympatho-vagal dynamics (e.g., LF (t) and
LF/HF (t)) are associated with scale invariance in form of
power laws exclusively for scales larger than ∼ 100s. This
is also in agreement with previous evidences reporting that
sympathetic activity affects complexity at long time scales [33]
only. Scaling and multifractal properties of circadian heartbeat
dynamics in CHF patients, therefore, do not arise at a sinus-
node level, but seem to be already intrinsically present in vagal
and sympatho-vagal dynamics. At a speculative level, this can
be due to dysfunctional acetylcholine release on adrenergic
receptors on the vagal terminals, and/or dysfunctional cytosolic
adenosine 3,5-cyclic monophosphate release in post-junctions,
and/or dysfunctional acetylcholine release on muscarinic re-
ceptors [1].

Using these measures, we were able to predict survivor and
non-survivor CHF patients (4 year follow-up) with a satisfac-

tory accuracy of 79.11% (sensitivity 90.48% and specificity
67.74%), considering newly-derived heartbeat variables. To
the best of our knowledge, the majority of the previous studies
dealing with CHF mortality prediction evaluated the predictive
power of novel HRV markers using p-values and statistical
inference only. Since results from statistical inference refer
to a group-level analysis, whereas our classification results
deal with single subject-level analysis, a proper comparison
of the proposed multifractal point-process methodology with
these studies cannot be performed. To give an idea of the
significance of our results, here we mention few studies that
quantified accuracy, specificity, and sensitivity of an HRV-
based methodology for the mortality prediction in CHF. In
particular, our results show higher statistical performances than
Yang et al. (accuracy: 74.4%) [34], Bigger et al. (sensitivity
58%, specificity of 71%) [35], and comparable with Pecchia
et al. (79.3%) [36]. An indirect quantitative reference to our
results with other relevant reports would point at an accuracy
rate lower than Melillo et al. (85.4%) [37], Guidi et al. (86%,
sensitivity and sensibility not reported) [38], and Shahbazi et
al. (100%) [39], although Melillo et al.’ method is with a
specificity rate of 63.6%, and results from Melillo et al., Guidi
et al., and Shahbazi et al. are from 41, 50, and 44 patients,
respectively. Here, it is important to highlight again that our
study is associated with a significantly higher statistical power
than others, given our sample of 94 patients. Also, it must
be noted that methods proposed by Guidi et al. [38], and
Yang et al. [34] need some parameters as input that should be
gathered directly from physicians, while the adoption of only
HRV measures, as in the current study, enables a completely
automatic assessment.

We found that optimal predictors of mortality in this kind
of pathology are associated with multifractal quantification
of very low frequency oscillations (< 0.04Hz) of heartbeat
dynamics. Although precise physiological correlates of such
VLF are not well-defined yet [4], it is reasonable to associate
proper diagnostic and prognostic value to multifractal changes
in cardiovascular nonlinear oscillations with period between
25s and 100s. Accordingly, other studies involving circadian
cardiovascular rhythms or long-term sleep recordings high-
lighted such clinical value of VLF dynamics, also as a power-
ful predictor of clinical prognosis in patients with CHF [40]–
[44]. In particular, testing on a large cohort of asymptomatic
participants undergoing 24h Holter ECG recordings, the short-
term fractal scaling exponent of heartbeat dynamics and VLF
power have been recently selected as best candidate for the
prediction of CHF onset on follow-up [44]. To this extent,
using the same standard clinical recordings, our study makes
a scientific step forward, providing an effective methodology
predicting mortality in CHF within a 4 years period at a single-
patient level.

The number of subjects (94) has provided solid ground for
validation of our multifractal framework. Nevertheless, we are
planning a new prospective clinical trial study devoted to the
collection of long-term cardiovascular data from CHF patients,
including mortality follow-up evaluations. Moreover, we are
aware that the classification results shown in Tables III and IV
cannot be considered ”optimal”. While in the initial phases of
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this study we performed some exploratory analyses including
different classifiers such as Linear and Quadratic Discriminant
Classifiers, K-Nearest Neiborghts, Artificial Neural Network,
and others, a rigorous/unbiased comparison between classifiers
would require proper parameter optimization to be performed
at each step of the leave one out procedure within a nested-
cross validation framework, which should also include param-
eter optimization for each classifier. This kind of optimization
would call for a larger sample size (see limitation above)
and, most importantly, is beyond the scope of this study,
whose primary aim is to demonstrate of novel multifractals for
inhomogeneous point-process models carry very discriminant
power and are associated with prediction of CHF mortality.
Indeed, the obtained accuracy, with associated specificity and
sensitivity, may increase with a proper optimization of the
classification algorithm. Future works will also focus on the
investigation of combined scaling and multifractal analysis,
and instantaneous nonlinear/complex heartbeat dynamics in-
cluding time-varying bispectra [14], time-varying Lyapunov
spectra [45], and time-varying monovariate and multivariate
cardiac entropy [16], [46], extending therefore to higher-
order statistics the recently proposed complexity variability
framework [45] (which is currently defined through second-
order moments).

In conclusion, this study poses a solid methodological basis
for devising a tool capable of performing accurate assessments
of CHF morbidity and sudden mortality, which still remain un-
acceptably high despite effective ongoing drug therapies. We
suggest that, in case of severe CHF, dysfunctional, multidimen-
sional power-law scaling of instantaneous sympatho-vagal dy-
namics, as estimated through physiologically-plausible proba-
bilistic models of heartbeat generation, should be considered
as a high-mortality risk factor in a 4-year follow-up.
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