Biofabrication

† Tissue engineering

 an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve biological tissue function or a whole organ

⁺ Tissue engineering

Classic paradigm

* Regenerative medicine

 the application of tissue science, tissue engineering, and related biological and engineering principles that restore the structure and function of damaged tissues and organs

* Biofabrication

 the generation of biologically functional products with structural organization from living cells, micro-tissues or hybrid tissue constructs, bioactive molecules or biomaterials either through top-down (Bioprinting) or bottom-up (Bioassembly) strategies and subsequent tissue maturation processes.

* Biofabrication

* Biofabrication

BIOFABRICATION AT RESEARCH CENTER E. PIAGGIO

⁺ Scaffolds

⁺ Scaffolds

⁺ Scaffold

⁺ Scaffold cues

Living tissues: multiscale e multimaterial

* Multimaterial Processing

Lithographyand Soft-Lithography

2-DIMENSIONAL LITHOGRAPHY AND **SOFT-LITHOGRAPHY PDMS** COMBINATION OF 2D AND 3D TECHNOLOGIES

* Soft-lithography process

PDMS solution

Casting

Lift-off of mold

PDMS mold

Micro-pattering of gelatin-GP scaffolds

Micro-pattering of gelatin-GP scaffolds

Graded patterned substrates were used to follow myoblasts and myotubes orientation

200 μm 100 μm 50 μm

LATERAL VIEW

+ C212 myoblasts orientation on patterned structures

C2C12 myoblasts orientation is preferentially restricted within 10° relative to the direction of the structure

+ C212 myoblasts orientation on patterned structures

C2C12 myotubes are orientated on micropatterned substrates

⁺ Microdevice fabrication

⁺ Microdevice fabrication

Silicon Wafer with SU-8 structure

* Experimental vs simulated

+

3D Concentration gradient maker

Biomedical

Graded stiffness substrates

* Soft-MI

Molecular Imprinting

- Molecular Imprinting is a technology that allows to realise matrix or surface, usually made of organic polymers, with specificic and selective sites of recognition of a selected molecule (template) thanks to the steric and chemical complementarity
 - covalent interactions
 - reversible not covalent interactions

+ SOFT-MI

Realisation of bio-active scaffolds for tissue cultures

Principles of *Molecular Imprinting* on surface

Soft-Lithography

- 1. Fabrication of PDMS mold
- 2. modification of its superficial chemical properties
- 3. functionalisation of its surface
- 4. cell culture test

⁺ Imprinting cells

48h

72h

⁺ Electrospinning

⁺ Electrospinning

⁺ PAMsquare

⁺ PAM²

- Modular CAD/CAM system
- A 3-axes robotic stages:
 - position ±50 mm;
 - velocity 0-15 mm/s;
 - resolution 1 μm;
 - different extrusion modules;
 - layer-by-layer processing.

3D robotic stage

Pressure

Force

Temperature

Light

Tirella A, De Maria C, Criscenti G, Vozzi G, Ahluwalia A. The PAM² system: a multilevel approach for fabrication of complex three-dimensional microstructures. Rapid Prototyping J 2012;18(4):5-5

⁺ PAM²

Polyester structures

Natural polymer hydrogel structures

Laser ablation dry and wet structures

Polymeric actuators

* Multi-tuning Bioactive scaffold

⁺ Open-Source FDM

* Fused Deposition Modeling

Polymeric structures for bacterial cell growth for cellulose production

⁺ Inket Printing

⁺ Penelope Ink-Jet printer

Printable Smart Scaffolds

Structure not altered by 24 h at 60°C in water.

Also GPTMS silanol groups are able to bond to glass, so delamination is unlikely.

Swelling effects are minimal.

* Printable Smart Scaffolds

Nanoparticles are within the gel, even after 24 h at 60 degrees.

* Inkjet printer - application

- CNTs for compliant and transparent electrodes for polymeric actuators
 - 0.01 SWNTs in 1% SDS in water
 - Problems with surfactants

Combination of2D and 3D Technologies

⁺ PAM & Inkjet

⁺ PAM² & Electrospinning

In combination with inkjet printing

* SOFT MI & PAM

Indirect Rapid Prototyping (iRP)

- Molds realised with RP devices (CAD/CAM)
- Casting of the desired (bio-)material
- Extraction of the final object

SCAFFOLD CHARACTERISATION

* Scaffold Characterisation

- Mechanical Characterization
 - Zwick Roell Uniaxial Testing Machine
 - Trasduttori isometrico e isotonico Ugo Basile
- Surface Characterization
 - Kelvin Probe
 - Contact Angle
- Rheological Characterization
 - Rheometer Rheostress
- Optical Microscopy
- Finite Element Modelling

KEEP CALM AND USE THE FORCE